Sharp condition of global existence for second-order derivative nonlinear Schrödinger equations in two space dimensions

Ji Shu a,b,c,*, Jian Zhang c

a College of Mathematics, Sichuan University, Chengdu 610064, China
b Sichuan Provincial Key Laboratory of Computer Software, Sichuan Normal University, Chengdu 610066, China
c College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, China

Received 25 April 2005
Available online 27 April 2006
Submitted by H.A. Levine

Abstract

This paper discusses a class of second-order derivative nonlinear Schrödinger equations which are used to describe the upper-hybrid oscillation propagation. By establishing a variational problem, applying the potential well argument and the concavity method, we prove that there exists a sharp condition for global existence and blow-up of the solutions to the nonlinear Schrödinger equation. In addition, we also answer the question: how small are the initial data, the global solutions exist?

© 2006 Elsevier Inc. All rights reserved.

Keywords: Nonlinear Schrödinger equations; Variational problem; Global existence; Blow-up; Sharp condition

1. Introduction

In this paper, we study a class of second-order derivative nonlinear Schrödinger equations as follows:

\[
i\phi_t + \Delta \phi + \phi \Delta |\phi|^2 + \phi |\phi|^2 = 0, \quad t \geq 0, \quad x \in \mathbb{R}^2,
\]

\[\tag{1}\]

This work was partially supported by SZD(0406).

* Corresponding author.

E-mail addresses: shuji@163.com, shuji2008@hotmail.com (J. Shu).

0022-247X/$ – see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2006.03.055
where \(\varphi = \varphi(t, x) : \mathbb{R}^+ \times \mathbb{R}^2 \to C, i = \sqrt{-1}, \Delta \) is Laplacian operator. In physics, Eq. (1) is used to describe the upper-hybrid oscillation propagation [1–3].

For Eq. (1) and its more general situations, Liapunov stability of soliton solutions had been considered in [4], local well-posedness and global well-posedness were discussed in \(H^\infty \) and \(H^k \) in [5,6], the blow-up property of solutions was studied in [7], the existence of soliton solutions was discussed in [8,9]. In this paper, we are interested in studying the sharp condition of global existence for the Cauchy problem of Eq. (1). Firstly, we construct a type of constrained variational problem and establish its property, then apply it to the second-order derivative nonlinear Schrödinger equation (1). By studying the corresponding invariant manifolds under the flow of Eq. (1), applying the potential well argument and the concavity method [10–14], we establish the sharp condition for global existence and blow-up of the solutions. At the same time, by using the scaling argument, we also can answer that how small the initial data are, the global solutions exist? Berestycki and Cazenave [15], Weinstein [16] as well as Zhang [17] have studied the similar problems.

This paper organizes as follows. In Section 2, we give some preliminaries of the second-order derivative nonlinear Schrödinger equation (1) and define a constrained variational problem. In Section 3, we derive some new theorems of blow-up and sharp sufficient conditions of global existence.

2. Preliminaries and the variational problem

For Eq. (1), we impose the initial data as follows:

\[
\varphi(0, x) = \varphi_0, \quad x \in \mathbb{R}^2,
\]

(2)

for simplicity, we denote \(\int_{\mathbb{R}^2} . dx \) by \(\int . dx \).

In this paper, as in Refs. [18,19], we do not study the local well-posedness of Eq. (1) with initial data (2).

Firstly give two lemmas [7,19,20] as follows:

Lemma 2.1. Let \(T > 0, \varphi_0 \in H^2 \cap H^1 \) and \(\varphi \) be a solution of the Cauchy problem (1)–(2) in \(C([0, T); H^2 \cap H^1) \). Put the energy functional

\[
E(t) = \int \left(|\nabla \varphi|^2 + \frac{1}{2} |\nabla |\varphi||^2 - \frac{1}{2} |\varphi|^4 \right) dx.
\]

Then one has

\[
\int |\varphi|^2 dx = \int |\varphi_0|^2 dx,
\]

(3)

and

\[
E(t) \equiv E(0).
\]

(4)

Lemma 2.2. Let \(\varphi_0 \in H^2 \cap H^1 \) and \(\varphi \) be a solution of the Cauchy problem (1)–(2) in \(C([0, T); H^2 \cap H^1) \), \(|x|\varphi_0 \in L^2(\mathbb{R}^2) \). Put \(J(t) = \int |x|^2 |\varphi|^2 dx \). Then one has

\[
J''(t) = 8 \int \left(|\nabla \varphi|^2 + |\nabla |\varphi||^2 - \frac{1}{2} |\varphi|^4 \right) dx.
\]

(5)

For \(u \in H^2 \cap H^1 \), we define the following functionals:
\(S(u) = \int \left(|\nabla u|^2 + \frac{1}{2} |\nabla |u|^2 \right) dx, \) \((6) \)

\(Q(u) = \int \left(|u|^2 - \frac{1}{2} |u|^4 \right) dx, \) \((7) \)

\(H(u) = \int \left(|\nabla u|^2 + \frac{1}{2} |\nabla |u|^2 + |u|^2 - \frac{1}{2} |u|^4 \right) dx. \) \((8) \)

In addition, we define a manifold as follows:

\[M := \{ u \in H^2 \cap H^1 \setminus \{0\}, \ Q(u) = 0 \}. \] \((9) \)

Now we consider the following constrained-variational problem:

\[d := \inf_{u \in M} S(u). \] \((10) \)

Firstly, we have:

Lemma 2.3. \(d > 0. \)

Proof. From \(Q(u) = 0 \) and Gagliardo–Nirenberge inequality

\[\int |u|^2 dx \leq c \int |\nabla u|^2 dx \int |u|^2 dx. \] \((11) \)

Here and hereafter \(c \) denote various positive constants. Thus

\[\int |\nabla u|^2 dx \geq c > 0. \] \((12) \)

So

\[S(u) = \int \left(|\nabla u|^2 + \frac{1}{2} |\nabla |u|^2 \right) dx \geq c > 0 \] \((13) \)

it follows that \(d > 0. \) \(\Box \)

Now we give:

Proposition 2.4. Put

\[K_1 = \{ v \in H^2 \cap H^1, \ Q(v) < 0, \ H(v) < d \}, \]

\[K_2 = \{ v \in H^2 \cap H^1, \ Q(v) > 0, \ H(v) < d \} \]

then \(K_1 \) and \(K_2 \) are invariant under the flow generated by the Cauchy problem (1)–(2).

Proof. Let the initial data \(\varphi_0 \in K_1, \varphi(t) \) is the solution of the Cauchy problem (1)–(2). From (3), (4), we have

\[H(\varphi_0) = H(\varphi(t)), \quad t \in [0, T). \] \((14) \)

Because \(H(\varphi_0) < d \), so

\[H(\varphi(t)) < d, \quad t \in [0, T). \] \((15) \)
To check $\varphi(t) \in K_1$, need to prove that

$$Q(\varphi(t)) < 0, \quad t \in [0, T).$$

(16)

Now prove it by contradiction. Assume that (16) is not true, that is

$$Q(\varphi(t)) \geq 0, \quad \text{for some } t \in [0, T).$$

(17)

By continuity and $Q(\varphi_0) < 0$, there would exist a $\bar{t} > 0$, such that

$$Q(\varphi(\bar{t})) = 0.$$

(18)

It follows that $\varphi(\bar{t}) \in M$. On the other hand, from (15), (18) and $H(\varphi(\bar{t})) = S(\varphi(\bar{t})) + Q(\varphi(\bar{t}))$, have

$$S(\varphi(\bar{t})) < d, \quad \varphi(\bar{t}) \in M.$$

(19)

From (10), it is impossible, thus (16) is true for $t \in [0, T)$. So K_1 is invariant under the flow generated by the Cauchy problem (1)–(2). By the same argument as the above, we can prove that K_2 is invariant under the flow generated by the Cauchy problem (1)–(2).

3. Sharp conditions for global existence

In this section, we will give main results of this paper.

Theorem 3.1. Let $\varphi_0 \in H^2 \cap H^1$ and satisfy the condition

$$\int \left(|\nabla \varphi_0|^2 + \frac{1}{2} |\nabla|\varphi_0|^2|^2 + |\varphi_0|^2 - \frac{1}{2} |\varphi_0|^4 \right) dx < d$$

(20)

then

(1) if

$$\int |\varphi_0|^4 dx > 2 \int |\varphi_0|^2 dx$$

(21)

then the solution of the Cauchy problem (1)–(2) will blow up in finite time $T < \infty$;

(2) if

$$\int |\varphi_0|^4 dx < 2 \int |\varphi_0|^2 dx$$

(22)

then the solution $\varphi(t, x)$ of the Cauchy problem (1)–(2) will globally exist in $t \in [0, \infty)$. In addition, $\varphi(t, x)$ also satisfies that

$$\frac{1}{2} \| \nabla|\varphi|^2 \|_{L^2}^2 + \| \nabla|\varphi|^2 \|_{L^2}^2 < d.$$

(23)

Proof. (1) From (20), (21), $\varphi_0 \in K_1$, so for $t \in [0, \infty)$, the solution $\varphi(t)$ of the Cauchy problem (1)–(2) $\in K_1$. Thus have

$$Q(\varphi(t)) < 0, \quad H(\varphi(t)) < d.$$

(24)

Since $|x|\varphi_0 \in L^2(R^2)$, then $|x|\varphi(t) \in L^2(R^2)$, by Lemma 2.2, it follows that

$$\frac{d^2}{dt^2} \int |x\varphi(t)|^2 dx = 8 \int \left(|\nabla \varphi|^2 + |\nabla|\varphi|^2|^2 - \frac{1}{2} |\varphi|^4 \right) dx.$$

(25)
For fixed \(t \in [0, T) \), there exists \(0 < \lambda < 1 \) such that \(Q(\lambda \varphi_0) = 0 \), that is
\[
\int \left(|\varphi_0|^2 - \frac{1}{2} \lambda^2 |\varphi_0|^4 \right) dx = 0. \tag{26}
\]

From (10) and (15), \(S(\lambda \varphi_0) \geq d, H(\varphi_0) < S(\lambda \varphi_0) \), that is
\[
\int \left(|\nabla \varphi_0|^2 + \frac{1}{2} |\nabla |\varphi_0||^2 + |\varphi_0|^2 - \frac{1}{2} |\varphi_0|^4 \right) dx \\
< \lambda^2 \int \left(|\nabla \varphi_0|^2 + \frac{1}{2} \lambda^2 |\nabla |\varphi_0||^2 \right) dx. \tag{27}
\]

By (25)–(27) and \(0 < \lambda < 1 \), we have
\[
\frac{d^2}{dt^2} \int |x\varphi(t)|^2 dx < 0. \tag{28}
\]

From Tsutsumi and Zhang [10], it implies that there exists a finite time \(T < \infty \) such that the solution \(\varphi(t, x) \) of the Cauchy problem (1)–(2) blows up, that is
\[
\lim_{t \to T} \| \nabla \varphi \|_{L^2} = \infty.
\]

(2) From (20), (22), \(\varphi_0 \in K_2 \), then for \(t \in [0, \infty) \), the solution \(\varphi(t) \) of the Cauchy problem (1)–(2) \(\in K_2 \). Thus
\[
Q(\varphi(t)) > 0, \quad H(\varphi(t)) < d. \tag{29}
\]
Notice that \(H(\varphi) = S(\varphi) + Q(\varphi) \). Therefore, for \(t \in [0, \infty) \), have
\[
\int \left(|\nabla \varphi|^2 + \frac{1}{2} |\nabla |\varphi||^2 \right) dx < d. \tag{30}
\]
It implies that \(\varphi(t, x) \) is bounded, so it must be \(T = \infty \), that is, the solution \(\varphi(t, x) \) of the Cauchy problem (1)–(2) will globally exist in \(t \in [0, \infty) \). In addition, from (30), \(\varphi(t, x) \) satisfies (23). \(\square \)

Now we will answer such a problem: how small are the initial data, the solution \(\varphi(t, x) \) of the Cauchy problem (1)–(2) globally exists?

Theorem 3.2. Let \(\varphi_0 \) satisfy
\[
\int \left(|\nabla \varphi_0|^2 + \frac{1}{2} |\nabla |\varphi_0||^2 + |\varphi_0|^2 \right) dx < d \tag{31}
\]
then the solution \(\varphi(t, x) \) of the Cauchy problem (1)–(2) will globally exist and satisfy
\[
\frac{1}{2} \| \nabla |\varphi|^2 \|_{L^2}^2 + \| \nabla \varphi \|_{L^2}^2 < d. \tag{32}
\]

Proof. By (31), \(\varphi_0 \) satisfies (20). Now we prove that \(\varphi_0 \) satisfies (22). We prove it by contradiction. Assume that (22) is not true, then \(Q(\varphi_0) \leq 0 \), thus exists \(\lambda \in (0, 1] \) such that \(Q(\lambda \varphi_0) = 0 \). On the other hand, for \(\lambda \varphi_0 \), we have
\[
H(\lambda \varphi_0) \leq \int \left(|\nabla \lambda \varphi_0|^2 + \frac{1}{2} |\nabla |\lambda \varphi_0||^2 + |\lambda \varphi_0|^2 \right) dx. \tag{33}
\]
From (31), then

\[H(\lambda \varphi_0) < \lambda^2 d \leq d. \] \hspace{1cm} (34)

Notice that \(H(\lambda \varphi_0) = S(\lambda \varphi_0) + Q(\lambda \varphi_0) \). Thus \(Q(\lambda \varphi_0) = 0, \lambda \varphi_0 \in M, S(\lambda \varphi_0) < d \), it is impossible by (10), so \(\varphi_0 \) satisfies (22). From (2) of Theorem 3.1, the solution \(\varphi(t, x) \) of the Cauchy problem (1)–(2) globally exists and on \(t \in [0, \infty) \), (32) is true. \(\square \)

References