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This paper is a study of the distribution of eigenvalues of various classes of
operators. In Section 1 we prove that the eigenvalues (A,(7)) of a p-absolutely
summing operator, p > 2, satisfy

1/p
( y |A,.(T)|r) < (7).

neN

This solves a problem of A. Pietsch. We give applications of this to integral
operators in L,-spaces, weakly singular operators, and matrix inequalities.

In Section 2 we introduce the quasinormed ideal II{®, P = ( p, ,..., p,) and
show that for T'e II{M, 2 = (2,..., 2) € N*, the eigenvalues of T satisfy

n/2 {n)
Y IMDPRR) < m(D).

1EN

More generally, we show that for Teﬂg,"), P = (P10 )y Ps > 2, the
eigenvalues are absolutely p-summable,

1 | p .
—=Y— and (Z | /\,,(T)P’) < emi (D).
? o1 P neN
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354 JOHNSON ET AL.

We also consider the distribution of eigenvalues of p-nuclear operators on
L,-spaces.

In Section 3 we prove the Banach space analog of the classical Weyl in-
equality, namely

Y MWD <6y, (TP,

neN neN

0 < p < o, where a, denotes the Kolmogoroff, Gelfand of approximation
numbers of the operator T. This solves a problem of Markus-Macaev.

Finally we prove that Hilbert space is (isomorphically) the only Banach space X
with the property that nuclear operators on X have absolutely summable eigen-
values. Using this result we show that if the nuclear operators on X are of
type [, then X must be a Hilbert space.

NorarioN AND TERMINOLOGY

In this paper we assume all Banach spaces to be complex. The space of all
continuous linear operators from a Banach space X into a Banach space Y is
written Z(X, Y), for X = Y simply Z(X). When necessary, we will denote the
normof Te Z(X, Y)by || T : X — Y. Given a map T € Z(X) the spectrum
of which consists of eigenvalues only, we mean by (A,(T)) the sequence of
eigenvalue of T ordered according to their magnitude in absolute value and
counted according to their multiplicity.

For 1 < p < oo, we denote the Banach ideal of the absolutely p-summing
operators by (I, , m,). For the appropriate definitions see [5] and [20]. For a
positive integer # and P = ( p,,..., p,) with 1 < p;, < 0, IIJN(X, Y) is the
class of all operators T'e Z(X, Y) for which there are Banach spaces X ,..., X, _;,
depending on 7, and operators T €ll,(X;y,X,), ¢ = 1,...,n with X, = X
and X,, = Ysuchthat T =T, --- 7.

7T = inf [ m, (T))
=1

is a quasinorm on II{"(X, Y) (the infimum taken over all possible factorizations
over Banach spaces X ,..., X, ;) which makes (II{"),={") into a complete
quasinormed operator ideal.

For 0 << p < 1, we call those operators T e Z(X, Y') which admit a represen-
tation T =3 v f; @ %, f; € X', ;€ Y with 3oy [l fi 1P || %, ||? < 00, p-nuclear
and write T e A,(X, Y).

Given any operator T € Z(X, Y), one defines the approximation numbers
of T by

oa(T) =inff| T — T, ||: T, € Z(X, Y), rank T, < n},
the Kolmogorov numbers of T

8,(T) = inf[sup(inf{]| Tx — y|: ye ZC Y}: || x| = 1): dim Z < n]
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and the Gelfand numbers of T by
yo(T) =inf{)| T |z ||: Z C X, codim Z < n}

for any n e N. For properties of these s-numbers we refer to Pietsch [22]. We
mention here only

max(y,(T), 8,(T)) < a(T), yu(T) = 8,(T")

and for compact T, 8,(T) = y,(T"). For any of these s-numbers s, € {a,, , Y1 » Oy}
and 0 < p << oo, we define a complete quasinormed operator ideal

S, = Tezuwa):(zsxnﬁmﬂ<w

nenN

with quasinorm o,° In Hilbert spaces, the s5,(T’) are just the singular numbers
of T, i.e. the eigenvalues of (T*T')1/2, The above s-numbers are multiplicative,

Sman—1(TS) < Sm(S) “s(T)

for myne N and Se Z(X, Y), Te Z(Y, Z).

Finally, we will have occasion to use the following standard notation. Given a
sequence of Banach spaces (X,,), we denote their / -direct sum by (D, X,,), .
The Banach-Mazur distance between Banach spaces X and Y is defined by

dX,Y)=inf{| T|||| T7|: T: X — Y is an isomorphism},

with d(X, Y) = oo if no such isomorphism exists.

1. EIGENVALUES OF p-ABSOLUTELY SUMMING OPERATORS

In [18] Pietsch showed that for 1 < p < 2, T € IT,(x) implies
Y IM(T)2 < 400 (1.0)

neN
This generalized, and simplified earlier work of Grothendieck [6] and Saphar
[24]. Examples of Grothendieck [6] of nuclear convolution operators on L; and
L., whose eigenvalues are not p-summable for p < 2 show that, for this range
of p, the Pietsch result is the best possible.
In this chapter we prove the following result.

TueoreM 1.1.  The eigenvalues (A(T)) of any absolutely p-summing operator
T e IT,(x) for p = 2 are absolutely p-summable and satisfy

(% 12ue)” <) (1.1)

neN
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This answers affirmatively a question raised by Pietsch [18], [21]. To prove
(1.1) observe that it is enough to consider only operators on I.*. Indeed if
Tell(X)and ¥, ,..., x, are the first n eigenvectors of 7, X, = [x{,..., ¥,] and
T, = Ty, then my(T,,) < m,(T) and we have the factorization

T, A

Xn - Xn Loc(l’-)
Al BT (1.2)
Lm(l") ! Y c Lm(l")

Choosing m large enough so that 4X, embeds (1 + ) isomorphically in I
we have that S = ABj|; » has the same first n eigenvalues as T, and 7,(S) <
7,(T). Now the idea of the proof of (1.1) is simple:

If Te £(I,") and 7,(T) < | we show that there is an invertible diagonal
operator 8 so that

$1Tse #(I,) and o, (8-1T5) < L.

The proof of this result is a bit involved. Our starting point is well known.

Lemma 1.2. Let X be a Banach space and T & L(1,,», X). Thenfor | <p << o0
7(T) = inf|| T: I,*(m;) > X|| (1.3)

where 1,%(m;) denotes C* under the norm
1
e = (% 1 mme ), >0
V=1

and the infimum is taken over all non-negative numbers m, with ZLI m? < 1.

Indeed m,(T) is the infimum over all constants ¢ > O such that there is a
probability measure p on the extreme points of the dual ball of /%, i.e. on
K = {Z4e;} in [,® such that

1750 < e[ 1Kn i duta)) (14)

If I is given) let m; = (F‘(ei) + .u’(‘—ez'))l/p and if (mi)’ m; > 0’ Z:L=1 mip = 1,
let p(4-e,) = }m;/®. Then clearly (1.3) is a restatement of (1.4).

Remark. For p = 1, we define the canonical measure by m; = || Te;||.
For our main results we introduce the following notation. For a« > 0 and
z2eClet
e?108a a>0

o = o (1.5)
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If X is an n-dimensional Banach space with basis (e,);.; and 8 = (8,);_; € C7,
the diagonal operator B (with respect to (g;)) is defined by B(e;) = Be; . If
(o)1 , ; = 0, z € C, the diagonal operator o is given by («;?). Clearly oo’ =
«?t%, Again, our next lemma is essentially known.

Lemma 1.3, Let 1 <p< oo, 1fp+1/p' =1, Ae L"), and «,feC
with o, > 0, B, = 0 for i = 1,..., n. Suppose

14: L7 > L <1,

and

187 A "~ By | < 1.
Then for any v satisfying p' < v < ©

|82 ety s 1= 1| < 1
where 1ju — 1jv = 1/p.

To prove lemma 1.3, apply the complex interpolation method to the analytic
family of operators T, = 8%/%"Aa—*/*". One must observe that T, = p°4o? is
not, in general, the same as 4, but|| T : [,® — [,® || <{ 1 and so the interpolation
still applies.

The next lemma is quite similar.

Lemma 1.4. Let H be a positive Hermitian operator on I," and & a non-negative
diagonal operator on I," with

18H : lr > 1 <1 1< u < o
For 8¢ (0, 1) let 1/o = (1 — 6)/2 + B/u. Then
18°H? : L — 17| < 1.

Proof. For zeC let T, =8H% For acly, |« =1, the mapping
2 — T,a is analytic and bounded in a neighborhood of the strip 4 = {z: 0 <
Re 2z < 1}. Since I,” is a complex interpolation space between /,* and /,*,

I Totfly = sup {ll Tipetllo s | Typup i}
v
Since H° and &° are orthogonal projections,
T;, = 893°HH™  and Typiy = OVGHHY

both have norm no bigger than one (as operators from L, to /,* and from L,»
to 1", respectively.) Thus || Toall, < L.
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We can now prove the main theorem.

TrEOREM 1.5. Let p > 2 and A € F(I,*) with m,(A) < 1. Assume Ae; # 0
for i < n. Then there is an invertible diagonal operator 8 so that o,(871A48 :
Lr— L") < 1.

Proof. Since m(A) < 1, there are, by lemma 1.2, numbers «, ,..., %, = 0,
> 0; = 1 such that

i 1/p
A5l < lmle) " for el

i=1
Since Ae; # 0, o; > 0 and so
J Ao e L — 17| < 1. (1.6)

Let K={y=(y)e: v: =0, Yiay: =1}, and let 8 (0, 1). For yeKk,

i <1, and letting & = (%} %)f,, the diagonal operator &7’

satisfies

mp(8V7: L" > 1Y) < 1.
In particular,

2 I 31/1:'*4“-1/%] sz <1

=1
or equivalently

Y Y s la, P e <1, (1.7)
where 4 = (a,;).

Define ¢: K — K by

v ’ n ’ ’ "
o) = (57 Ly a2 4 (1 = B it )
=1

i=1 @ l=1

Since @ is continuous, it has a fixed point, i.e. there is some y € K such that
#(y) = y = (y;)j1 » i.€. ; is given by (1.8) for each j.
If v, = 0 for some j, then

n

-6 8 ! o'/
z ‘J’zl' o’ | ay | PP =1
i0=1

n — .
and so Y.y yi %a,? = 1 (since

n
| AaTY?: 1" — 1" = max Y |ag|” -ag”” < 1.
=S =1
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An application of Hélder’s inequality to this equality yields a contradiction since
a; > 0 for each f; thus y; > 0 forj = 1,...,n.

Setting § = a%'~? for this y, we also have 3';_; §; [ a;; [?" «?/* < y; (by (1.8))
and so

” 61/9'4(-!_—1@,},—1/1;'; ,l;"'") l;' ” \<\ 1 (

—t

9)

We introduce the operator B = 8424 71/Py-1/7-1/2 on [;» Setting 6 = 2/p,
8 = a?/Py~1-2/7 and so

B = su24s-1r, (1.10)

The remainder of the proof is to show that o,(B) < 1. To this end we first
observe that if p’ << v < o and 1jv = 1/u — 1/p then

|| 81/v-12By~ 221w [ v [ || < 1. (1.11)
Indeed, by (1.6), (1.9) and lemma 1.3, we obtain
| 872 Aoty 2w I* — 1 || < 1.
But 8§/ AaV/py-1/v = §Y/*-1/2Byl/2-1/w By duality we also have
(| pt/v-12B*§2 L [ m 5 [ m || < 1. (1.12)
Now define a sequence ()i by 1/r;, = 1/2 — kfp, k << m = [ p/2] and let C
be the positive Hermitian operator (B*B)!/2, We show now thatif 2 < v <7,
and 1/v = 1/2 — s/p, then
[y-#PCo: I» — L] < 1. (1.13)
To see this, first suppose that m = 1, i.e. 2 << p < 4. From (1.12) we have
Iy PBR Bt~ I < 1,
since v < r; . And, since C = B*U, U an isometry on l,”, we have
[y *°C: * — 1| < 1. (1.14)
For o€ (0, 1) write (1 — ¢)/2 4 afry = 1/2 — s/p. Then by lemma 1.4.
fy—o/PCo: lr — 1,2 || < 1. (1.15)

For the general case we have from (1.11) and (1.12), with z = 7,..

; I 8—(k+1)/pB,yk/n: l:k—’ l:k“” <1 ( 6)
an 1.1
” y—(k+1)/PB*8k/D: l:lk_> l:'k+1 ” < 1
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If m is even we have
(I PB*§0n—1)/B)( 5~ (1) [ Boym-2)[3) .-+ (5y=2/7B*SL/P)(§-1/2B)
= I(B*BYn2 = ymipC™,
and if m is odd
(PR HS 1) - (y-SIBRSDY 2B Yy HIC) = ymIC,

Thus in every case

|y ™ C™ L 17 || < 1 (1.17)
Thus if 2 <<v<r,, again let ljv = (1 — 6)/2 + afr,, = 1/2 — ma/2 =
1/2 — s/p. Then by lemma 1.4,

ly=mCs: Iy — 1 | < 1.
Since 1jr,, = 1/2 —mj2 and m = [p/2] we have m 41 > p/2 or p <7,,.
Thus applying the above with s = p/2 — 1, we obtain

ly=s/PCs: Ir — L2 || < L. (1.18)
We now put the pieces together. Let D be the mapping defined by the diagram

y—8/pCs Aa—L/P 81/2
n n n
I I L, L.

Then we have

oy(D) < m(842) | AatiP ||| 875C2 ]| < 1,

by the formulas displayed above and
D = 812 4q-1Pytin1/2Cs = BC®.

Since D has Hilbert-Schmidt norm no larger than one,

D*D = CsB*B(C® = (C2+2 = (C?

has trace class norm no larger than one, i.e. o,(B) < 1. This proves theorem 1.5.
If Ae; = O for some ¢, a perturbation argument yields an invertible § with
0,(67148) < 1 + €. This proves theorem 1.1.
We now consider a few applications of theorem 1.1.

CorOLLARY 1.6. Let p > 2 and n be a probability measure on a measure
space Q. Then any operator T: L () — L () whose image is contained in L (n),
has absolutely p-summable eigenvalues with

(Z | /\n(T)l”)w < T2 L) — L@l

nenN
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Proof. The natural inclusion I: L,(u) — L (1) has m,-norm one.

Exampre. Let0 << a << N, 2 C RY be a bounded region, 4 = {(x, x): x € £}
and K: Q2 — 4 — C a measurable kernel with

| K(x, y)l < cffx—y

Then the weakly singular integral operator

Tf) = | Kx3)f(2)dy (1.19)

defines a continuous linear map T L (2) — L(82) with || T: L(£2) — L. ()|
< oo for any p > N/(N — a). Hence the eigenvalues of T are absolutely p-
summable for any p > 2 with p > N/(N — «). This improves a result of
P. Saphar {24].

ProrosiTION 1.7. Let (2, n) be a measure space and K: 22 — C a measurable
kernel with

L (fQ | K(x, y)|* dll«(y))p/p, du(x) < o0

where p > 2. Then (1.19) defines a continuous linear operator T: L (§2) — L,(£2)
with absolutely p-summable eigenvalues,

(2 1wre)™ < ([ (] 1 Kesop ) ) . 120

Proof. It is easy to see that w,(T)? is smaller than or equal to the double
integral of (1.20). Apply theorem 1.1.

CororLARY 1.8 (Hausdorff-Young inequality). Let p > 2 and feL,(0, 1).
If f(n) denote the Fourier coefficients of f,

2 1/p
(% 170P)” <111,
nEN

Proof. The Fourier coefficients are eigenvalues of the operator Fy: L, — L,
of convolution with f, with eigenvectors exp(2min -). The double integral in
proposition 1.7 for K(x, y) = f(x — y) reduces to || f fle, -

In the case of square matrices of complex numbers, proposition 1.7 simply
reads (p > 2)

(Ziaanre)” < (2 () )" (1.21)

J i \k

We do not know a simpler proof of this inequality except for p = 2. The case
p = 2 is a classical result of I. Schur [25]. If there is an earier proof, the proof
of theorem 1.1 could be simplified:
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Remark 1.9. Assume (1.21) has been shown for any mairix operator T ~ (t;)
and p > 2. Then the absolute p-summability of the eigenvalues of absolutely p-
summing operators is an easy consequence with

(2 13r7) " <t (122

/

Proof. It is enough to derive (1.22) for operators T: [,* - [,» Let &:
I,» —I.,® be a diagonal map with || 8|, = 1 and §; + 0. Applying (1.21) to
§ = 87371, we get using lemma 1.2.

Bl

1/p’
sup (Z { 2)2/0% !”') o, =1
1 k

(inmye) " <ins

i

< inf

= inf{j| T: [,"8) — L™ [ 1 81, = 1} = m(T).

ExamPLE. Let (£, u) be a measure space and p > 2. If K: 22 — C does not
fulfill the integrability condition

»/p’ 1/p
o= ([ ([ 1K@y duty)  dua) " < oo
of proposition 1.7, but only the weaker (but similar looking)
1/p’
I, = K(x, )| d dj < oo,
o= ([ [ 1K@ du(y) dut))

the eigenvalue distribution may change drastically. The following example of
Hille-Tamarkin [8] shows that the spectrum then may consist of an arbitrary
sequence of complex numbers (A,,). Let b, = 0 and b, be a positive monotone
increasing sequence converging to one and define K: [0, 1]> — C by

K(x,y) = gn/(bn ~bny) by <x, y<b,

otherwise
If (A,) is bounded, the operator T defined by K will be bounded T: L, —L, .
Otherwise 7' may be unbounded. In any case T has the (A,) as eigenvalues,

since the characteristic functions y,, of the intervals (4,_, , b,) are eigenvectors.
Nevertheless

LI K@y dydy = 3 107G — by

neN

will be finite, only if the 4, tend fast enough to one, even in the case that the (A,)
are unbounded.



P-SUMMING AND [ -OPERATOR EIGENVALUES 363

2. EIGENVALUES OF OPERATORS IN Crass JI{"
In [18] Pietsch made the following observation:

Lemma 2.1. Let Pe #(X,Y) and Qe L(Y, X). Then the spectra of PQ
and QP are identical and the multiplicities of non-zero eigenvalues coincide.

Using this lemma, Pietsch gave a remarkably simply proof of (1.0). We extend
this result of Pietsch as follows.

ProposiTiON 2.2. Let ne N and T e II{"(X), X a Banach space and 2 =
(2,..., 2). Then the eigenvalues A(T) of T are 2/n-summable with

(% 1) < afrm).

jeN

Proof. Let € > 0. Choose 8 > 0 and a factorization for T, T' = T, ,..., T}
such that

[1 (AT + 8) < m™(T) + «. @.1)

=1
Each T; can be decomposed as T, = Q,P;, P;eIl,(X, ,, L), O;e Z(,, X))
with

(P} 1 Qi | < mo(T3) + 6. (2.2)

Consider S = (P,0,_1Pp_3 1000y O1P1)0n € Ll , ). Since T = Q,(Py,...,01P)),
the eigenvalues of S and T coincide by lemma 2.1. The factorization of S
contains # absolutely 2-summing operators from , to /,, namely P,0Q,_; ,...,
P,0,, P,Q, . Since II(l,) = S,%(l,), we have by the S *-composition formula
S € 53/n(h), and the of,-norm of S in J, is smaller than the product of the
oy%-norms of all factors. Therefore by (2.1), (2.2) and Weyl’s inequality in
Hilbert spaces, cf. [26],

(2 13men)™ = (5 1)
< ogu(S: = )
< 05 (PrOn-1)s-» 62*(Pe01) 0:°(P1Q5)
= 7y(PrQn_1)s-es (P2 01) 7o P10n)

n

< [P Ol

i=1

<[] (me(T3) + 8)
=1

< 7NT) + e

580/32/3-7
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Remark. Proposition 2.2 shows (without interpolation theory) that if p = 2#,
ne N and T e IT(X) then

(2, M) < mi.

JjeN

We can now generalize proposition 2.2 to operators of class JI{".

TueoreM 2.3. Let 0 < p << 0. Then there exists a constant d, such that if
p:i =2, 1<i<<n ljp= Z?_l 1/p; and P = ( py ..., pn), then any operator
T e IIf(X) has absolutely p-summable eigenvalues with

(Z I/\i(T)l”)llp < dmf(T). (2.3)

EN

A major tool in the proof is the following lemma which is interesting in its own
right.

Lemma 2.4. Let K be a compact Hausdorff space and T € L(C(K)). Assume
p > 2 and p is a probability measure on K such that

I 72 Ly(K, p) = CK)|

<! 2.4
| T: Ly(K, p) > LAK, p)| < 1 @4

Then o,(T:Ly(K, 1) — Ly(K, ) < 1

Conditions (2.4) of course imply 7 (T: C(K) - C(K)) < 1 and 7,(T™*: L (i)
— L (p) < 1, where T* is the Ly(X, pu)-adjoint of 7. Lemma 2.4 is a continuous
phrasing of interpolation results essentially contained in section 1. Therefore we
will omit the proof of lemma 2.4 which comes out of the proofs of lemmas 1.3,
1.4 and (1.13) as well as the last part of the proof of theorem 1.5.

The second main step in the proof of theorem 2.3 is provided by the next
lemma which gives the idea of an alternate proof of theorem 1.5 which may
be more comprehensible.

Lremma 2.5. Assume K is a finite set and T; € 11, (C(K)), 1 <1 < n, where
p; = 2. Then there exists a positive probability measure u on K, i.e. p.(x) > 0 for
every x € K, such that for all i, 1 < i <n,

| Ti: L, (K, p) - CK)|| < 2, (T)

and
| Ty: Ly(K, p) = LK, pll < 2nm, (T)).
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Proof. Let A; be a probability measure on K such that
mpdT3) = || T2 L, (K, &) — C(K))|
and set A = 1/n(3;1 A;). Then for 1 <i < n
| st Ly (K, X) = C(K)]| < 7V -, (T') 2.5)

If A is not strictly positive, we change A a bit to make A > 0, replacing #*/#« by n

in (2.5). Therefore we may assume A > (. Let p be a probability measure on K.
Then

r .

m(C(K) —> C(K) — Ly(K, p)) < mp(T)) (2:6)
since 7,,(j) = 1. Let v,(p) be the canonical measure given by the remark after
lemma 1.2. Then,

iT,

m(C(K) — LK, p)) = || Ti: Ly(K, v(p)) — Ly(K, p)| 2.7

Let v(p) = 1/2n3;_, vi(p) + 3\. Thus for any p, ¥(p) is a probability measure
on K with »(p) = $A. For all 1 <1 < n, by (2.6), (2.7)

| T2 Ly(k, v(p)) — Ly K, pl < 2n]| Ty Ly(K, vi(p)) — LK, p)l|
< 2nm, (T)).

The map p — v(p) is continuous on the compact convex set
{p : p is a probability measure on K and p > } - A}

By Brouwer’s theorem, it has a fixed point p. For this probability measure g,
p>1%-Aand

| To: L(K, p) — LrQ(Kr wll < 2”771);(Ti)
Using (2.5) and p > - A, we also have
| Ty: Ly (K, p) = C(K)| < 207, (T), 1<ign

Proof of theorem 2.3.  As in Section 1, it is enough to show (2.3) for operators
on [,™ = C(K), where the cardinality of K is m. More exactly, we can assume T
to be of the form T' =T, ,..., Ty, T; € I, (C(K)), i = ,..., n. By lemmas 2.5
and 2.4 there exists a probability measure u on K such that

n n

T 00/(Ti: Lo(K, p) > Ly(K, ) < 2n)* [] 7, (T5)

i=1 i=1
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Since 1/p = Yi 1 1/p; , we get using Weyl’s inequality

( 5 Ai(T)w)”" < oo(T: Ly(K, ) — Lo(K, 1))

< [ 05Tt Ly(K, p) — Lo(K, 1))

i=1

Hence theorem 2.3 is clear except that d,, = (2n)" seems to depend on 2. This is
an illusion:

Indeed, if p > 2, we can take d, = 1 by Theorem 1.1 and the composition
formula for I1 -operators [19). If p > 2and T'=T,,..., Ty, T € Hp‘ P =2
we can compose the T,’s together to write T = S, ,..., Sy, where S,-EH,,, s
>2 g+ lga>3j=1l.,m—1 and T, 1)g; = 3, 1p: = 1)p.
Again by the IT,-composition formula we will have [T}, 7 (S5) < M 7 (T)-
It follows that m <C 4/p -+ 1. Repeating the above argument with = replacing n
we obtain d, < [2(4/p 4 1)}¥/7+,

A weak form of theorem 2.3 yielding only that the eigenvalues A,(T) are of
order n~1/? can be proved easily using results of D. R. Lewis [12].

We now give an application of theorem 2.3 to p-nuclear operators. For
0 < p < 1 p-nuclear operators on Banach spaces in general only have absolutely
g-summable eigenvalues, where 1/g = 1/p — 1/2. But on Hilbert space such
operators have p-summable eigenvalues. We “‘interpolate” between this nice
case (L,) and the worst cases (L, and L, of Grothendieck’s examples) to obtain
the following result.

THEOREM 2.6. Lt 0 <p < land 1 <r << oo, lfg=1/p—|1/2 —1/r|.
Assume (82, p) is a measure space and T € N (L (1)). Then the eigenvalues of T

satisfy
(Z l A,-(T)I")l/q < (T,

jEN
where ¢, is a constant depending only on p

Proof. By duality, we may assume 7 > 2. If T e A, (L, (1)) then for e > 0
choose elements ;€ L,(u)’ and 3, €L (), | %/l < 1, [ 3] <1, and () €1,
o; == 0 such that

T= Y@y wmd (Y a.-v)l“' <olT) +

{eEN ieN

Let n:={2(1/p— 1)}, 8:=1—(n+2)p/2 and u := p/3. Clearly n = 0,
8 > 0 and 2 < u < 0. Define operators
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O:L(p) = L, Oz = (% X));
P:l,—1, P(£); = (272¢.);
Q:l,— 1, O&:): = (26,
R:l,—1, R(£); = (2%¢,),
S: & — Li(p), S(¢:); = gv £iyi

These operators are continuous and T = SRO"PO since & + (- 1) pf2 -
/2 = 1. Routine calculations show

0 < (T )" wp) = (T )"

iEN ieN

and

(@ < (3 %) -

iEN

Using Hélder’s inequality we obtain

1/2
IRl < (Z as”)

iEN
and, finally, | S| < 1. The dual operator R': I, — I is in II, . Hence
(SRY = R'S' € Il(Ly/(p), &) C IT(Ly (), L).

Lemma 4 of Pietsch [20] implies

SReIL(l,, L(r)) with m(SR) < IT((SRY)),
7{SR) < m(R'S") < m(R'S") < mR)|| 5"l

= m(R’) < (Z o )1/2,

ieN

since R’ is just multiplication by the diagonal sequence o/, Theorem 2.3.
vields, for T — (SR)Q"PO,

(Z | MT)V)”" < el + 9

ieN

with 1/¢g = 1ju 4+ (n+ 1)/2 4+ 1jr = 1/p — | 1/2 — 1/r|. This proves theo-
rem 2.6.
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Remark. Using well-known facts about %,~-spaces, cf. [13], [14], theorem 2.6
can be easily generalized to .%,-spaces; in this case

(2 1M < et £ 2

jeN

with some constant ¢, , depending on p and A, if the space is a %, ,-space.

ExampLE 2.7. Thesummability order g of the eigenvalues of T'in theorem 2.6
cannot be improved (for fixed r), as the following example shows. Define the
Littlewood matrices Ayn inductively
A A4
on 2"
4. _4 "), neN.

2 2

Ap=(1), Apn= (

Then A,.2 =271d and hence the spectrum of 4,. consists of {427/2}. Both
eigenvalues have multiplicity 271, Define, say for r << 2 < r’

A=Y @ neimQry i 4, (@ lf") *(@) lf") ’

neN

ie. A:1, — I, is a blockwise sum of multiples of matrices 4,. . Let a,* denote
the j’th row of 4, , which consists of +1’s. Then

vy < T llap I, = 2o,
i

which implies

v(A)P < Y n? < oo. Hence 4eHyl)

neN

The eigenvalues of A4 are just all eigenvalues of the multiples of the A,.’s,
counted with the right multiplicity. Thus,

(Z IA,(T)iq)”“ _ (Z -sal ()2 /911 20 )2 2n)1/a'

JeN neN

This expression if finite if and only if 1/g < 1/p — | 1/2 — 1/r|.

Forp = r = 1, the example considered as an operator on the space (D,en 7 )2
also shows that there are nuclear operators on reflexive spaces whose eigenvalues
are not g-summable for any g < 2.

In view of theorem 2.6 and this example, for any ¢ € (1, 2) there are Banach
spaces X, such that (3;|A(T)|9)¢ << oo for all nuclear operators, but
5 1 A4(T)[)/* = oo for some nuclear operator T on X, and any r < ¢. In fact,
take X, to be any Z,)-space, where r(g) fulfills 1/g =1 — | 1/2 — 1/r(g)|.
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Remark 2.8. Recently B. Carl [3] has obtained results on the distribution
of eigenvalues of operators of type A7, .. , [21] in arbitrary Banach spaces. These
results complement the results given here.

3. EIGENVALUES OF OPERATORS OF TYPE [,

A classical inequality of H. Weyl [26] used in the previous sections states
that the eigenvalues of operators of class S (H) in Hilbert spaces H are absolutely
p-summable with

Y IMDIPP L Y silT)?,  TeS,H)

neN neN

for any 0 << p << co0. Here s,(7T) stands for the singular numbers of T which
coincide with the approximation-, Gelfand- or Kolmogorov-numbers of T in
Hilbert spaces. A. S. Markus and V. I. Macaev [17] showed, by methods of
analytic function theory, a weak extension of Weyl’s inequality to operators in
Banach spaces X, namely

Y IMT)P <o, B olTpPIn (14 L)

neN neN

where «, denotes the approximation numbers. That is, the eigenvalues of a
compact operator T € X (X) are p-summable provided the right side of the
above expression is finite. We improve this result and generalize Weyl’s in-
equality to Banach spaces as follows:

YD) <cp 3 sulT),  TeSHX)

neN neN

where s, refers to either the approximation numbers or the Gelfand- or the
Kolmogorov-numbers of 7" and ¢, depends only on p. This answers positively
a question of Pietsch [21] and Markus-Macaev [17].

Tueorem 3.1 (Weyl’s inequality). Let s, denote either one of the following
s-number sequences: approximation-, Gelfand- or Kolmogorov-numbers. Then there
is an absolute constant ¢ > 1 such that for any 0 < p < oo and any Banach
space X, the eigenvalues of an operator T of type I, T € S,%(X), are absolutely
p-summable with

(% 130e)” < e (Z otrr)” (3.1)

nenN neN

where ¢, = max(c, ¢'/?).
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We need some lemmas for the proof. The idea is to factor an operator of
type [, into a product of operators for which the m,-norms can be estimated on
finite-dimensional restrictions, then apply proposition 2.2 and “improve” the
result by using a classical inequality of Hardy.

LevmMa 3.2. Let s, be a theorem 3.1. Then, for any 0 < p < o0, any positive
integer N and all operators T € S,5(X)

O';/N(TN)I/N < Nl/Po_pS(T)'

This follows easily from the fact that the s, are monotone decreasing and
multiplicative.

The following lemma is contained implicitly in Pietsch’s proof that operators
of class S, are p-nuclear if 0 < p < I, which is given in [19].

LemMa 33. Lt 0 <p <1 and TeS,HX,Y). For any ¢ > O there are
operators D;je L(X,Y), je N with rank D; < d; := 4 - 313,

JjEN
and

/
(Z d; || D; II”)]L "< (1 + ) 8Yr0,(T).

jeN
The connection between the 7,- and o,%-(quasi)norms we want to use is given
by the following result.
LemMMa 3.4. For any 2 < p << o there is ¢, > O such that for all Banach
spaces X and Y with dim X = n and any Te (X, Y)
m(T) < ¢, » nM21? - g X(T).
On any closed subinterval I of (2, 00) one can choose sup{c,: p €I} < oo.

Proof. Assume dim X = n, N = [log, #] and let ¢ > 0. By definition there
are operators T;: X — Y with rank T, < 2¢ and

[T — Tl <1+ €) ol(T),

i =1, N. Let Dy =Ty, D;=T;— Ty for j=2,.,N and Dy,; =
+

T—Ty.Then T =%, D;.If I, denotes the identity map on Y; = D(X)
C Y, we have by Garling-Gordon [4]

ml}) < (3 - 27
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since dim Y; < 3 - 2/-1, Using the injectivity of the m,-norm, we get

N+1 N+1

m(T) < Y, m(Dy) < Y, mo(I;) || Dyl

=1 i

N+1
< Y (3-29)2| Dy,

=1
An application of Hélder’s inequality yields

N+1 N+1

m(T) < (}: (3 -2f+1)u/2—1/m')1’ ”'( Y (3-24)| D, ”,,)1/”

=1 =1

N+1 1/
< a, - nl/2-1/p . ( z (3 . 2J'+1) ” D_,,- ”JJ) ? (3.2)

Jj=1

where the constant a, depends only on p and is bounded as a function of p on
any closed subinterval of (2, o0). To estimate the right side of (3.2), use

1Dl < (1 + e)agl(T) + 0peo(T)), j=2,., N+1

and the monotonicity of the approximation numbers to obtain, after reordering
terms,

N+1 1/p N 1/p
( Y, (3-274)| D, n") <1 +q-2-3u0 (Z 2 az«(T)P)
j=2

j=1

K 6(1 + €) 0,%(T).

This together with (3.2) implies the lemma.
We remark that by a similar argument one derives for 1 < p < ¢ <2 and
any pair of Banach spaces X and Y that

8,4X, Y)CmyX, Y).

Since lemma 3.4 assumes p > 2, we need a proposition on the decomposition
of operators of type .

ProrosiTionN 3.5. Let 0 < p < 1, N a natural number larger than one and
T'e S X, Y). Then there are Banach spaces X; ,j = 0,..., N with Xy = X and
Xy =Y as well as operators S;e Sy (X;_1, X)), j = 1,..., N such that T =
Sy -8, and

N
[T o%s(S) <2847 0, (T).

j=1

580/32/3-8
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Proof. Let € = 1/3 and decompose T e S,*(X, Y) according to lemma 3.3
as T =Y,y D, with

( S 4, D,.up)”p <+ 8- T) d,—4 32 (33)

neEN

Let Y, = D(X)CY and define the Banach spaces X; mentioned in the
proposition as certain I,-sums of the Y,

Xj=(@ Yk) ; j: 1,...,N_1
kEN N/i

and the operators S; by
Sy Xo— Xy, Six = (|| Dy [N Dit)yen
Sy Xy —> X, Siéx)een = (| Di MY xdren » J=2.,N—1
Syt Xy —> Xy Sxl€xdreny = Z | Dy [N €, .

keN

These operators are well-defined, continuous and

T=) D,=S8y,5.
neEN
To estimate the approximation numbers of the S;, j = 2,..., N — 1, consider
the operators

D, |tV kR<n
Pp X, — X, PMEken = (M)ren » M = I(I) RPN & k ; n
which are of finite rank,
rank P < Y rank Dy << 2 - 371 =: m(n).

k=1
Therefore by definition of the a;,

Dy |17} &, ||NIYIN
2(S) < S; — P = su ion |l Dy A
am@)(S;) < I Sy |l (s,)go (Cken | & ING=DYG-D/N

An application of Holder’s inequality yields that this quantity is less than or equal

I/N .
<(z uDkn) =2 N—1

k>n
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Observe that a similar estimate holds for j = 1 and j = N so that

1/N .
dm(ﬂ)(S]') < (Z “ Dk ”) ] ] = 1"") N

k>n

Using the fact that the I,-norm is smaller that the /,-quasinorm, we get

oinS) < (18,1 + F 4 3tamiatSipe)

neN

1/Np
< (z IDulp+ Y 4301 5 nDknp)

keN neN k>n

= (T 1D+ 3 (5 4-3)10ele) "

\kEN k32 \n<k
1/Np
s(z 2.3 Dknp)
keN

< (2 . 81/1) . a.pa(T))l/N.

Hence the product of the N factors o%,(S;) fulfills the inequality stated in the
proposition.

We are now ready to prove the following weak form of Weyl’s inequality in
Banach spaces.

ProprosiTiON 3.6. There is ¢ > 0 such that for all 0 < p < 1, all Banach
spaces X, all T € S,%(X) and any ne N

[ AT < o, (T)7[m,

where s stands for either the approximation- or the Gelfand- or the Kolmogorov-
numbers.

Proof. The equality §,(T') = y(T’) holds for compact operators T, in
particular for T e S,*(X). Further, 8,(T) < a,(T). Therefore it suffices to give
the proof for the Gelfand numbers. If X is the unit ball of X” and i: X — C{K)
the natural imbedding, one has by [22]

YlT) = on(iT),  0(T) = o,°(T).

Choose a natural number N 2> 2 such that 3 < Np < 4. We decompose
tT € S;4(X, C(K)) according to proposition 3.5 as iT = Sy ,...,S; with
S; € Syp(Xs1 » X;) where X, = X, Xy = C(K) and

1_[ oxo(S;) < 2 8YP -0 (T). 3.4)

F=1
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Let Y,0 be the range of the spectral projection of T relative to the first m
eigenvalues of T, i.e. the span of (generalized) eigenvactors and Y,/ = Sy(Y7?)
for j = 1,..., N. We may assume without loss of generality that A,(T) = 0.
Then / := dim Y,,* > m, the case [ > m occurs only for multiple eigenvalues.
But in any case A, (T") = A(T). Since

N
T |Y,,,° = 1—[ S, |Y,’"—1
=1

has the same first / eigenvalues as T, proposition 2.2 yields

t N/2 N ) )
(Z | A,-(T»w) <[] mlS: Yi > )
=1 j=1

N
= 1—[ 71'2(Sj: Y:n—l e Xf)-

j=1

We next apply lemma 3.4 N times to the right side, with Np instead of p. Using
that the | A;(T')| are monotone decreasing we get by (3.4)

! 2/N
e | \(T)] < ( Y | A,-(T)wﬂ)

j=1

N
< c%,, . lN(1/2-1/Np) 1—[ er ,,( Sj)
je=1

< 2-8 . C%z) . IN/2—1/1: . GDV(T)
which implies
m| A (T)? < dp - 0(T)

where the constant d, = 278¢3? is bounded as a function of p € (0, 1].
» »

CoRrOLLARY 3.7. There is ¢ > O such that for all 0 < p < 1, all Banach
spaces X, all Te A (X) and anyne N

(TP < ¢ i s{(T)?/n.

i=1

Proof. Apply proposition 3.6 to the Gelfand number ideal and the restriction
of T to the range X, of the spectral projection of T relative to the first # eigen-
values. The corollary follows for the Gelfand numbers by using their injectivity
vi(T: X, - X)) < y(T: X — X).

We need the following classical inequality of Hardy [7], chap. 9.
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Lemma 3.8. Let 0 <r < p << oo. Then for any sequence o€ l,,

(% (E==)")” <(525) e

neN

Proof of theorem 3.1. If 0 < p < 2, choose r = p/2. Then by corollary 3.7
and lemma 3.8.

(Z l A,,(T)P)”” < cl/f(

neN

3 ( e Sf(T)')””)‘/ i

neEN n

< @epie( 3 sury)”

neN

showing (3.1) for p << 2. The statement for p > 2 and the behaviour of the
constant c, follows by an application of the previous case to TV € S} ,(X) with
N = [2p] using lemma 3.2, and sup{p'/?: p > 1} < 0. This ends the proof
of Weyl’s generalized inequality.

CoroLLARY 3.9. Let T e £(X) be compact. Then for any 0 < p < 00 and
neN

(i | /\,-(T)I”)l/p <e, ( 3 s,(T)p)‘“’.

J=1 i=1

The proof of theorem 3.1 could be simplified a bit by directly relating the
IT{™-quasinorms to the operators D, in a decomposition of T' =3,y D, €
S,%(X). However, the proof which was given, also yields some information on
the dependence of ¢, on p, and the factorization theorem for operators of type [,
seems to have some interest in its own right, since similar statements are false
e.g. for the absolutely p-summing operators.

As an application of corollary 3.7, we prove a fact on eigenvalues of operators
inL,.

PropositioN 3.10. Let QC RN be sufficiently regular domain, 1 < p < o
and T: L () — L,(£2) a continuous linear operator whose image is contained in a
Sobolev space W, (). Then the eigenvalues A,(T) of T decrease of order n—™/¥ and
this is in general the best possible result.

Proof. As a map from L,(Q) into W,m(£2), T has closed graph and therefore
is continuous also with respect to the Sobolev norm. It is well-known, cf. [1],
that the approximation numbers of the Sobolev imbedding W,m™(2) — L¥(£2)
are of order n~™/N, therefore also

a4 (T:L,—L,) <| T:L, > W,"| a,(W,™ — L,) = O(n—™/¥).
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Choose r << N/m and apply corollary 3.7 to get

n

(@) < o3 wrynf "

j=1
n 1/r

< d(Zj—""/N/n) = O(n—™/N),
J=1 /

The operators of m-fold integration show in the case of N' = | that the order
given in the proposition is, in general, optimal.

If T is a continuous integral operator in L (£2), a sufficient condition for
T(L,(2)) C W,™(£2) can be given easily in terms of m-fold differentiability of
the kernel with respect to the first variable.

In Hilbert spaces more is known on the operators of type /,, so far considered:
For p == 1, they coincide isometrically with the nuclear operators, for p = 2
with the absolutely 2-summing operators. Over general Banach spaces this is
not true; in fact, if A(X) = S;%(X) holds with equality of the nuclear and
o°-(quasi)norms, X is isometrically isomorphic to a Hilbert space, cf. [23].
The same idea also shows that IT(X) = S,¢(X) isometrically implies X = H
isometrically. The isomorphic problem: is it true that the equality A{(X) =
S,%(X) alone implies that X is isomorphic to a Hilbert space, turns out to be more
complicated. We answer this question affirmatively for both real and complex
Banach spaces. This will follow from Weyl’s inequality and the following
theorem which characterizes Hilbert spaces by the absolute summability of the
eigenvalues of nuclear operators.

TueoreM 3.11. Let X be a Banach space and suppose that each nuclear
operator on X has absolutely summable eigenvalues Then X is isomorphic to a
Hilbert space.

To show this, we need some notation.

DeriNiTION. For T € #(X, Y), the finite rank operators between X and Y,
the projective tensor norm is given by

I Tla = inf {3 I filllly:ll: fie X7, y, € Y7,

i=1

where the infimum is taken over all representations

n
T=Y/f®y;, nfinite
i=1
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If E is a subspace of a Banach space Y with dim E < oo, 7 denotes the
inclusion mapping from E into Y. We define the norms || « [[y and || - [|]ay on
F(E), ECY by

| Ty = inf{)| T'|: T e L(Y, E), T extends T}
and
I Tliar = 2T A -
It is well-known that #(F) is algebraically self-dual under the duality
(T, S§) = trace(ST).

Lemma 3.12. For the norms || + ||y and || < ||y the above is a norm duality,

(ZLE) N -lr) = (L) *lIav)-

Proof. We show the equivalent equality (Z(E), |l *lIar) = (ZL(E), || - lly)
Given S € Z(E),

1S [|n = supf{] trace(TiS): Te L(Y, E),|| Tl < 1.
Clearly this supremum is just

= sup{| trace(TS)|: Te L(E), || Ty < 1}.

TueoREM 3.13. Let X be a Banach space. Suppose there is ¢ > 0 such that

2D < el Tia

1EN

Jor every finite rank operator on X. Then X is isomorphic to a Hilbert space.

Proof. Let E be a finite-dimensional subspace of X. By lemma 3.12 there is
S € L(E) with || S|ax = 1 and trace S = || iz ||y . By definition of || S|{py and
the Hahn-Banach theorem, given ¢ > 0 we can extend S to a finite rank
operator § on X with || §{l, < 1+ e. Then

| trace S| =

SMS) | <TIMS)
<cll8la <l +e).

Letting € — O yields || iz |y <X ¢. By the Lindenstrauss-Tzafriri theorem [15],
X is isomorphic to a Hilbert space.

If ¢ = 1, it follows from theorems of Kakutani-Bohnenblust [2], [9] that X is
isometrically isomorphic to a Hilbert space, the exact converse of Weyl’s
inequality for Hilbert space.
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Proof of theorem 3.11.  Let @(X) = inf{k: 3, | M(TH < k|| T'|lp , T € F(X)}-
First observe that if &(Y) < oo for some subspace ¥ of finite codimension in X,
then by theorem 3.13 X is isomorphic to a Hilbert space. Thus if @(X) = oo,
the same is true for each subspace of finite codimension in X.

Suppose @(X) = co. Choose T; of finite rank with 3" | A,(T})| > 22| T |5 -
Let E; C X, dim E; < o be such that Ty(X) C E, and 22|| Ty [, < X | A(T)I.
Here the bar denotes restriction and astriction of 7 to E, , similarly for what
follows. Choose Y, C X, codim ¥; << oo with |[e + y|| > 4| ¢ forallee E;,
yeY,.Since #(Y;) = oo, thereisan E,C Y, , dim E, < oo and a T, € F(Y,)
with

Ty(Y,)CE,  and Z | A(T2)l > 24 Ty llp -

In general choose Y, ; C X, codim Y, ,, < oo, le+ 3| = %l e| forec E; B
- @E; and ye Y,,,, and choose E; ,CY;,;, dimE;,; < o0, and T}, €
F(Y,) with Tp,,(Y) C Epyy and 3, | Ad(Tiyq)l > 2% || Tpypq llp - Without loss
of generality suppose that for all k|| 7}, {|, = 1. Define T on @y Ey, by

T (21 ek) = 21 25T (eg).

Clearly T is nuclear and so has a nuclear extension 7' to all of X. But the eigen-
values of 7' contain those of 2-*T, for each k and so 3; | A,(T)] = 0.

CoroLLARY 3.14. X is isomorphic to a Hilbert space if and only if IT{¥(X)
(2 = (2, 2)) is @ Banach space, coinciding with the nuclear operators N;(X).

Proof. If X is isomorphic to a Hilbert space, J[I{(X) is the same as the
nuclear operators on X, since any such operator can be written as the product
of two Hilbert-Schmidt operators. Therefore II{*(X) is a Banach space.

On the other hand, if JI{¥(X) is a Banach space, it must contain the nuclear
operators A7(X), since 4] is the smallest Banach ideal. Therefore any nuclear
operator is in II{* and hence has absolutely summable eigenvalues, by proposi-
tion 2.2. By theorem 3.11, X is isomorphic to a Hilbert space.

As a corollary to 3.11 we obtain the isomorphic characterization of Hilbert
spaces mentioned above.

TueoreM 3.15. A complex Banach space X is isomorphic to a Hilbert space
if and only if the nuclear operators on X coincide with the operators S;(X) of
type I, .

Proof. It is clear that in Hilbert spaces H, A;(H) = S*(H) and that in
general Sp(X)C AY(X), [19]. If Sp3(X) = A{(X), the eigenvalues of any
nuclear, i.e. S,*-operator are absolutely summable by Weyl's inequality (3.1).
Hence X is isomorphic to a Hilbert space by theorem 3.11.
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We remark that the real version of 3.15 follows from the complex case.
Indeed if X is a real Banach space and ¥ = X  iX its complexifixation, then
any T e A4(Y) induces, by considering real and imaginary parts of a nuclear
representation of T, eight nuclear operators on X or isometric copies of X. If
M(X) = L% X), these eight operators add to yield Te[(Y). By 3.15, Y,
hence X, is isomorphic to a Hilbert space.

For the finite rank operators on a Banach space X, the trace functional tr(-)
is well-defined and continuous with respect to the o,*-quasinorm. It may
therefore be extended to any operator of type /; . In Hilbert spaces, with S;*(H)
= A}(H), Lidskij’s theorem [16] states that the so-defined trace of any S;*(H)-
operator is equal to the sum of its eigenvalues. As with Weyl’s inequality, this
trace formula can be extended to the class S,%(X) of operators of type /; on
general Banach spaces, cf. [10].

Remark 3.16. If o (X) denotes the compact operators on X, Grothendieck
has conjectured that if (X)) = A3(X), then dim X < co. Theorem 3.11
yields some more information on this problem: Suppose X is a Banach space
with the property that for every T' € A4(X) there are 4, B € X (X) with T = AB.

For such a space the Grothendieck conjecture is true. In fact, if #(X) =
AHUX), we have 3 | A(T)] < oo for T e H(X) = A; o #1(X) by the above
hypothesis and proposition 2.2. Hence X is isomorphic to a Hilbert space. This
violates X (X) = A7(X) unless dim X << co0. The above hypothesis is met by
any space X such that X is isomorphic to (P X), for some p, 1 < p < o0. In
particular let (G,) be a sequence of finite-dimensional spaces such that for every
finite dimensional space F there is n with d(G,, , F) < 2, d denoting the Banach-
Mazur distance. Let G, = G,, for all ¢ and let

(2@

Then X lacks the approximation property but has the above property.
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