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This paper is a study of the distribution of eigenvalues of various classes of 
operators. In Section 1 we prove that the eigenvalues (h,(T)) of a p-absolutely 
summing operator, p > 2, satisfy 

This solves a problem of A. Pietsch. We give applications of this to integral 
operators in L,-spaces, weakly singular operators, and matrix inequalities. 

In Section 2 we introduce the quasinormed ideal L$“), P = ( p1 ,.,., p,,) and 
show that for T E II?), 2 = (2,..., 2) E N”, the eigenvalues of T satisfy 

More generally, we show that for T E l7l,“), P = ( p1 ,..., p,), pr > 2, the 
eigenvalues are absolutely p-summable, 
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We also consider the distribution of eigenvalues of p-nuclear operators on 
&-spaces. 

In Section 3 we prove the Banach space analog of the classical Weyl in- 
equality, namely 

0 < p < to, where oy, denotes the Kolmogoroff, Gelfand of approximation 
numbers of the operator T. This solves a problem of Markus-Macaev. 

Finally we prove that Hilbert space is (isomorphically) the only Banach space X 
with the property that nuclear operators on X have absolutely summable eigen- 
values. Using this result we show that if the nuclear operators on X are of 
type I, then X must be a Hilbert space. 

NOTATION AND TERMINOLOGY 

In this paper we assume all Banach spaces to be complex. The space of all 
continuous linear operators from a Banach space X into a Banach space Y is 
written 9(X, Y), for X = Y simply 9’(X). When necessary, we will denote the 
norm of T E 9(X, Y) by 11 T : X -+ Y 11. Given a map T E 9’(X) the spectrum 
of which consists of eigenvalues only, we mean by (h,(T)) the sequence of 
eigenvalue of T ordered according to their magnitude in absolute value and 
counted according to their multiplicity. 

For 1 < p < co, we denote the Banach ideal of the absolutely p-summing 
operators by (17, , n,). For the appropriate definitions see [5] and [20]. For a 
positive integer n and P = (p, ,..., pn) with 1 <pi < co, ITc)(X, Y) is the 
class of all operators T E %0(X, Y) f or which there are Banach spaces XI ,..., X,+r, 
depending on T, and operators Ti E 17,((X,-l , X,), i = l,..., n with X,, = X 
andX,, = Ysuchthat T= T;.*Tl. 

rrp’(T) = inf fi n,JT,) 
id 

is a quasinorm on Dr)(X, Y) (the infimum taken over all possible factorizations 
over Banach spaces X, ,..., X,-r) which makes (UC), QT~)) into a complete 
quasinormed operator ideal. 

For 0 < p < 1, we call those operators T E 9(X, Y) which admit a represen- 
tation T = CiENfi @I Xi ,fi E x’, xi E Y with CfEN /lfi IlP II xi 119 < 00, p-nuclear 
and write T E A$(X, Y). 

Given any operator T E %“(X, Y), one defines the approximation numbers 
of Tby 

a,(T) = inf{l] T - T, 11: T, E 3(X, Y), rank T, < n}, 

the Kolmogorov numbers of T 

S,(T)=inf[sup(inf{j/Tx--yII:y~ZCY):ljxll = l):dimZ<n] 
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and the Gelfand numbers of T by 

y,(T) = inf{]l T 1s 11: 2 C X, codim 2 < n) 

for any rr E N. For properties of these s-numbers we refer to Pietsch [22]. We 
mention here only 

maxh(T>, %U)) < 4Th y,(T) = UT’) 

and for compact T, S,(T) = m( T’). F or any of these s-numbers s,, E (an , yn ,a,} 
and 0 < p < co, we define a complete quasinormed operator ideal 

with quasinorm ups. In Hilbert spaces, the s,(T) are just the singular numbers 
of T, i.e. the eigenvalues of (T*T)l12. The above s-numbers are multiplicative, 

sm+n-,W) < s,(S) * G(T) 

for m, n E N and SE 3(X, Y), T E %“(Y, 2). 
Finally, we will have occasion to use the following standard notation. Given a 

sequence of Banach spaces (X,), we denote their &-direct sum by (en X,), . 
The Banach-Mazur distance between Banach spaces X and Y is defined by 

d(X, Y) = inf{ll T 11 I/ T-l /I: T: X + Y is an isomorphism}, 

with d(X, Y) = cc if no such isomorphism exists. 

1. EIGENVALUES OF p-~SOLUTELY SUMMING OPERATORS 

In [18] Pietsch showed that for 1 < p < 2, T E n,(x) implies 

& I UTV -==c +a (1-O) 

This generalized, and simplified earlier work of Grothendieck [6] and Saphar 
[24]. Examples of Grothendieck [6] of nuclear convolution operators on L, and 
L, whose eigenvalues are not p-summable for p < 2 show that, for this range 
of p, the Pietsch result is the best possible. 

In this chapter we prove the following result. 

THEOREM 1.1. The ezgenvalues (An(T)) of any absolutely p-summing operator 
T E 17D(x) for p > 2 are absolutely p-summable and satisfy 

(1-l) 
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This answers affirmatively a question raised by Pietsch [18], [21]. To prove 
(1.1) observe that it is enough to consider only operators on 1,‘“. Indeed if 
T E 17,(X) and x r ,..., s, are the first n eigenvectors of T, X:, = [sr ,..., x,J and 
T, = T IX, then rD(T,) < r,(T) and we have the factorization 

T, 
n -- x:, 

Ai 1 

A WCL) 

B U-2) 

Lo(P) 3 ’ y -L,(P) 

Choosing m large enough so that AX;, embeds (1 + E) isomorphically in Z,“, 
we have that S = AB’ Ilam has the same first n eigenvalues as T, and r,(S) < 
np( T). Now the idea of the proof of (1.1) is simple: 

If T E 9(Z,“) and r&T) < 1 we show that there is an invertible diagonal 
operator 6 so that 

6-l TS E 2’(Z.,“) and u&-~T~) < 1. 

The proof of this result is a bit involved. Our starting point is well known. 

LEMMA 1.2. Let X be a Banach space and T G 8(Z,“, X). Thenfor 1 < p < co 

r,(T) = inf I/ T: ZDqA(mj) --f XI/ (1.3) 

where Z,n(mj) denotes @” under the norm 

and the injimum is taken over all non-negative numbers m, with & rn3p < 1. 

Indeed n,(T) is the infimum over all constants c > 0 such that there is a 
probability measure p on the extreme points of the dual ball of Z,“, i.e. on 
K = {+e,} in Zr” such that 

II TX II < c ( IK I@, W’ 444)1’p (l-4) 

If p is given, let m, = (p(eJ + p(-eJ)Q and if (md), mi > 0, & mip = 1, 
let p(-&,) = +mi/P. Then clearly (1.3) is a restatement of (1.4). 

Remark. For p = 1, we define the canonica2 measure by mi = 1) Tej [I. 
For our main results we introduce the following notation. For 01 > 0 and 

z E @ let 

(1.5) 
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If X is an ?f-dimensional Banach space with basis (e& and /3 = (~& E Q=“, 
the diagonal operator /3 (with respect to (ei)) is defined by /3(ei) = piei . If 
(ol&r , LY~ > 0, z E C, the diagonal operator c? is given by (Q). Clearly &Y~’ = 
c?fZ’. Again, our next lemma is essentially known. 

LEMMA 1.3. Let 1 <p < 00, l/p + l/p’ = 1, A Ez(‘J?), and %PE C” 
with 01% 2 0, ,& > 0 for i = l,..., n. Suppose 

11 A : 1,” -+ 2,” 11 < 1, 

and 

11 /P’ACl’“‘: II” + z;, 11 < 1. 

Then for any v satisfying p’ < v < co 

where l/u - l/v = l/p. 

To prove lemma 1.3, apply the complex interpolation method to the analytic 
family of operators T, = ~IP’AoI-~IP’. One must observe that T, = /~OACYO is 
not, in general, the same as A, but 11 To : 1,” ---f I,” II < 1 and so the interpolation 
still applies. 

The next lemma is quite similar. 

LEMMA 1.4. Let H be a positive Hermitian operator on lzn and S a non-negative 
diagonal operator on I,?’ with 

11 SH : Z2” + I,” 11 < 1 l<U<cO. 

For 0 E (0, 1) let l/v = (1 - 0)/2 + O/U. Then 

11 SQH0 : Izn -+ I*” 11 < 1. 

Proof. For z E C let T, = SzHz. For 01 E Zsn, 11 01 II2 = 1, the mapping 
z -+ T,ol is analytic and bounded in a neighborhood of the strip A = {z : 0 < 
Re 2: < 11. Since 1,” is a complex interpolation space between Isn and lUn, 

Since Ho and SO are orthogonal projections, 

T. = SivSOHOHiv 
OY and T,,,, = Si’SHHiy 

both have norm no bigger than one (as operators from lzn to Isn and from lzn 
to I,“, respectively.) Thus [I T,ol &, < 1. 
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We can now prove the main theorem. 

THEOREM 1.5. Let p > 2 and A E Y(l,“) with nP(A) < 1. Assume Ae, # 0 
for i < n. Then there is an invertible diagonal operator 6 so that a,(~-1AS : 
zzn + I,“) < 1. 

Proof. Since 7~~(iz) < 1, there are, by lemma 1.2, numbers 01~ ,..., 0~~ > 0, 
~~=, CQ = 1 such that 

Since Ae, # 0, 01~ > 0 and so 

Let K = {r = (y&: yi >, 0, xF=, yi = 1}, and let 8 E (0, 1). For y E K, 
& a,“&” < 1, and letting 6 = (~&~-~)~=r , the diagonal operator al/P’ 
satisfies 

~P,P lfP’: I,” + I;,) ,< 1. 

In particular, 

or equivalently 

i 11 S1’D’,4cd-1’Pe, 11:: < 1 

where A = (Q). 
Definev: K-+Kby 

(1.7) 

ql(y) = f y;-eaf I ai 19’ cxyD + ; (1 - & y:-ect: 1 a,, I”’ LY;~“‘))~ (1.8) 
i=l j-l 

Since C+Z is continuous, it has a fixed point, i.e. there is some y E K such that 

P(Y) = Y = (Yi)i”=l 9 i.e. ‘yj is given by (1.8) for each j. 
If yi = 0 for some j, then 

lde and so CL1 yd zt d = 1 (since 
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An application of Holder’s inequality to this equality yields a contradiction since 
aj > 0 for eachj; thus yj > 0 forj = l,..., tl. 

Setting 6 = c&r-@ for this y, we also have C,“,, a1 [ aij [P’ o~ip”~ < 3/, (by (1.8)) 
and so 

11 Sl’p’Aa-l’ppp’: 11” --+ I,“* /I < 1 (1.9) 

We introduce the operator B = 81/2Aa-11Py-11P-1f2 on 12*. Setting 0 = 2/p, 
8 = $l~y-l-V~ and so 

B = ~WA&-W. (1.10) 

The remainder of the proof is to show that a,(B) < 1. To this end we first 
observe that if p’ < v < cc and 1 /v = l/u - l/p then 

11 W’-1/2By-1/2-W 1,” + I,” 11 < 1. (1.11) 

Indeed, by (1.6), (1.9) and lemma 1.3, we obtain 

[I G1~vAa-l~py-lk I,,,” + 1,” 11 < 1. 

But B1luA~-llpy--llo = #Iv-ilsBy’la-rl~. By duality we also have 

I/ yl~v-1/2B*81/2-1W I,” + I,” 11 < 1. (1.12) 

Now define a sequence (Ye):=,, by I/r, = l/2 - k/p, k < m = [p/2] and let C 
be the positive Hermitian operator (B*B)lj2. We show now that if 2 < v < r, 
and l/v = l/2 - s/p, then 

)I y-*w*: z2n + z,n 11 < 1. (1.13) 

To see this, first suppose that m = 1, i.e. 2 < p < 4. From (1.12) we have 

since v < ri . And, since C = B*U, U an isometry on I,“, we have 

11 y-1%: z2n 4 ZFl 11 < 1. (1.14) 

For (T E (0, 1) write (1 - a)/2 + u/y1 = l/2 - s/p. Then by lemma 1.4. 

11 y-w?: 12n -+ 1,” 11 < 1. (1.15) 

For the general case we have from (1.11) and (1.12), with I( = yk . 

and 
II a- (k+l) bByk/". 173 . Tk - Ck,, II < 1 

11 y-(k+1)‘PB*6k”: l;k -+ Z:,,, 11 < 1 
(1.16) 
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If m is even we have 

(y-“/P~*~(7n-l)/P)(~-~nl-l)/P~Y( m-2)/P) . . . (y-21~~*S1/P)(S~1:PB) 

= y’nj~(B*B)“‘2 _ y-mIPC”; 

and if m is odd 

(y-m/~B*8(rW/~) . . . (y-3/VB*S2jP)(S-2/.pByl/~)(y-l/PC) = y-n~,'Z'C1". 

Thus in every case 

11 y-m9Y? 1,” + lr”, 1) < 1 (1.17) 

Thus if 2 < v < v, , again let l/v = (1 - a)/2 + u/rm = l/2 - ma/2 = 
l/2 - s/p. Then by lemma 1.4, 

11 y--J:x?: 12” -+ I,” 11 < 1. 

Since 11~~ = 1/2-m/2 and m = [p/2] we have m+ 1 >p/2 or p <r,. 
Thus applying the above with s = p/2 - 1, we obtain 

[ / y-m2: Z,?’ + I,” 11 < 1. (1.18) 

We now put the pieces together. Let D be the mapping defined by the diagram 

Then we have 

ug(D) < I$%‘~) Ij Acx-liP 11 I/ 6-S/pC8 11 < 1, 

by the formulas displayed above and 

D = ~~I~~~,-~IP~~I~-~/~C~ = BC”. 

Since D has Hilbert-Schmidt norm no larger than one, 

D*D = CSB*BC~ = C28f2 zz CP 

has trace class norm no larger than one, i.e. u,(B) < 1. This proves theorem 1.5. 
If Aei = 0 for some i, a perturbation argument yields an invertible 6 with 

u,(FAG) < 1 + E. This proves theorem 1.1. 
We now consider a few applications of theorem 1.1. 

COROLLARY 1.6. Let p > 2 and p be a probability measure on a measure 
space Q. Then any operator T: L&J) + L&) whose image is contained in L&L), 
has absolutely p-summable eigenvalues with 
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Proof. The natural inclusion I: L,&) -+L,(,u) has r,-norm one. 

EXAMPLE. Let 0 < a! < N, Q C Iw” be a bounded region, d = {(x, x): x E Q} 
and K: Q2 - d --+ @ a measurable kernel with 

I K(x, Y)l G c/l x - Y Ia. 

Then the weakly singular integral operator 

VW = s, KcT Y) f (Y) dY (1.19) 

defines a continuous linear map T: &(sZ) -+ L,(Q) with I/ T: L,(Q) + L,(Q)11 
< co for any p > iV/(N - a). Hence the eigenvalues of T are absolutely p- 
summable for any p > 2 with p > N/(N - a). This improves a result of 
P. Saphar [24]. 

PROPOSITION 1.7. Let (Q, CL) be a measure space and K: Q2 + @ a measurable 
kernel with 

jQ (s, I 0, r>l”’ My))p’9’ 444 < ~0 

where p > 2. Then (1.19) de$nes a continuous linear operator T: L,(Q) ---f L,(Q) 
with absolutely p-summable eigenvalues, 

Proof. It is easy to see that z-JT)p is smaller than or equal to the double 
integral of (1.20). Apply theorem 1.1. 

COROLLARY 1.8 (HausdorR-Young inequality). Let p 3 2 and f E L,,(O, 1). 
If f(n) denote the Fourier coe@ients off, 

(zN lf(41p)‘!” d llf IL,. . 

Proof. The Fourier coefficients are eigenvalues of the operator F,: L, + L, 
of convolution with f, with eigenvectors exp(2Gn .). The double integral in 
proposition 1.7 for K(x, y) = f (x - y) reduces to jl f /IL,, . 

In the case of square matrices of complex numbers, proposition 1.7 simply 
reads (p > 2) 

(7 I X,(T)I”)I;’ < (T(; I tjk lp’)l’p’)l’p (1.21) 

We do not know a simpler proof of this inequality except for p = 2. The case 
p = 2 is a classical result of I. Schur [25]. If there is an earier proof, the proof 
of theorem 1.1 could be simplified: 
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Remark 1.9. Assume (1.21) has b een shown for any matrix operator T N (tj,J 
and p > 2. Then the absolute p-summability of the eigenvalues of absolutely p- 
summing operators is an easy consequence with 

(1.22) 

Proof. It is enough to derive (1.22) for operators T: 1,” -+ 1,“. Let 6: 
lmn -+ 1,” be a diagonal map with II S Ilp = 1 and Si # 0. Applying (1.21) to 
S = 6TF, we get using lemma 1.2. 

= inf{il T: lDn(S) -+ 1,” II: I/ 6 /ID = l} = r,(T). 

EXAMPLE. Let (52, I*) be a measure space and p > 2. If K: 522 ---f @ does not 
fulfill the integrability condition 

J, = (s, (s, I WYP’ 44~))~‘~’ &(d)“’ < 03 

of proposition 1.7, but only the weaker (but similar looking) 

IP = (j-- s, I K(% YJI”’ 44Y) 44x$‘p’ < co9 

the eigenvalue distribution may change drastically. The following example of 
Hille-Tamarkin [E] shows that the spectrum then may consist of an arbitrary 
sequence of complex numbers (X,). Let b, = 0 and b, be a positive monotone 
increasing sequence converging to one and define K: [0, 11” --f C by 

If (A,) is bounded, the operator T defined by K will be bounded T: L, -+ L, . 
Otherwise T may be unbounded. In any case T has the (h,) as eigenvalues, 
since the characteristic functions xn of the intervals (bnpl , b,) are eigenvectors. 
Nevertheless 

ss 
1 K(x, y)l”’ dy dx = c / h, (a’(b, - b,J-p’ 

nR PXN 

will be finite, only if the b, tend fast enough to one, even in the case that the (X,) 
are unbounded. 
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2. EIGENVALWS OF OPERATORS IN CLASS I7F) 

In [18] Pietsch made the following observation: 

LEMMA 2.1. Let P E 9(X, Y) and Q E $P(Y, X). Theta the spectra of PQ 
and QP are identical and the multiplicities of non-zero eigenoalues coincide. 

Using this lemma, Pietsch gave a remarkably simply proof of (1.0). We extend 
this result of Pietsch as follows. 

PROPOSITION 2.2. Let n E N and T E Dr)(X), X a Banuch space and 2 = 
(2,..., 2). Then the eigenvalues X,(T) of T are 2/n-summable with 

c 1 h,(T)l+ n’z < r?‘(T). 
iEN 

Proof. Let E > 0. Choose 6 > 0 and a factorization for T, T = T, ,..., TI 
such that 

b (TO-i) + 6) < d’?T) + E. (2.1) 

Each Ti can be decomposed as T, = Q;P, , Pi E II,(Xi-1 , I,), Qf E -E”(l, , Xi) 
with 

rtt(Pi) II Qi II G TdTi) + 6. (24 

Consider S = (P,Q,-lP,+I ,..., QIPI)Qn E 5’(Zz , I,). Since T = Qn(P, ,..., Q,P,), 
the eigenvalues of S and T coincide by lemma 2.1. The factorization of S 
contains n absolutely 2-summing operators from la to Za , namely P,,Qn-l ,..., 
P2Ql , PIQn . Since 17,(12) = S2V2), we have by the Spa-composition formula 
SE S&,(1,), and the o& -norm of S in l2 is smaller than the product of the 
aaa-norms of all factors. Therefore by (2.1), (2.2) and Weyl’s inequality in 
Hilbert spaces, cf. [26], 

,& I W”)I”‘” C 1 x,(s),~I~)~‘~ 
ieN 

d &zw I2 + I21 

< ~zV-‘nQ,-I),..., ~2v’,Q,) 02V1Qn) 

= ~2V’nQ,A.v ~2U=2QJ 772@‘1Qn) 

d fi ms!z(Pi) II Qi II 
i=l 

< 1"I (772Vi) + 6) 
i=l 

< @j(T) + l . 

580/3213-7 
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Remark. Proposition 2.2 shows (without interpolation theory) that if p = 2n, 
n E iV and T E 17,(X) then 

We can now generalize proposition 2.2 to operators of class IIf). 

THEOREM 2.3. Let 0 < p < 00. Then there exists a constant d, such that if 
pi > 2, 1 < i < n, l/p = xyB1 I/pi and P = ( p1 ,..., pn), then any operator 
T E IIF) has absolutely p-summable eigenvalues with 

(2.3) 

A major tool in the proof is the following lemma which is interesting in its own 
right. 

LEMMA 2.4. Let K be a compact Hausa!orfl space and T E Y(C(K)). Assume 
p > 2 and TV is a probability measure on K such that 

II T: L,(K CL) + W)II < 1 

II T: WC CL) --+k(K PII G 1 
(2.4) 

Then u,(T: L,(K P) + UK 4) < 1. 

Conditions (2.4) of course imply p,(T: C(K) + C(K)) < 1 and rr,(T*: L,(p) 
-+ L,(p) < 1, where T* is the L,(K, p)-adjoint of T. Lemma 2.4 is a continuous 
phrasing of interpolation results essentially contained in section 1. Therefore we 
will omit the proof of lemma 2.4 which comes out of the proofs of lemmas 1.3, 
1.4 and (1.13) as well as the last part of the proof of theorem 1.5. 

The second main step in the proof of theorem 2.3 is provided by the next 
lemma which gives the idea of an alternate proof of theorem 1.5 which may 
be more comprehensible. 

LEMMA 2.5. Assume K is a finite set and Ti E D,,(C(K)), 1 < i < n, where 
pi > 2. Then there exists a positive probability measure p on K, i.e. p(x) > 0 f~ 
everyxEK,suchthatforalli, 1 Gifts, 

II Ti: L,I(K d - CWII G 2n~,,V’d 
and 

II Ti: L,(K, ~2) + L,;(K, p)II f 2nx,,(Tt). 
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Proof. Let I\i be a probability measure on K such that 

rp,(Td = II Tz: Lp,(K, h) + C(K)II 

and set h = l/r~(C~~~ hi). Then for 1 < i < n 

II Ti: L,,(K, 4 + C(K)11 d n”‘* * r,*(T,) (2.5) 

If h is not strictly positive, we change h a bit to make h > 0, replacing nllPt by n 
in (2.5). Therefore we may assume h > 0. Let p be a probability measure on K. 
Then 

T(W) --% C(K) L -&;(K, P)) < p&‘-i) (2.6) 

since p,;(j) = 1. Let vi(p) be the canonical measure given by the remark after 
lemma 1.2. Then, 

rl(C(K) -% Lp;(Kv P)) = II Ti: 4(K, vi(P)) ---t Lp;(Ks P)II (2.7) 

Let Y(P) = 1/2n~~-, vi(p) + gh. Thus for any p, v(p) is a probability measure 
on K with v(p) 3 @. For all 1 < i < n, by (2.6), (2.7) 

II Ti: &(k V(P)) + L,;(K, P)II G 2n II Ti: k(K, v~(P)) + L,;(K, P>II 

< 2nrp,( Ti)* 

The map p + v(p) is continuous on the compact convex set 

{p : p is a probability measure on K and p > 4 * A}. 

By Brouwer’s theorem, it has a fixed point CL. For this probability measure p, 
p>$.,4and 

Using (2.5) and ~1 > 4 . h, we also have 

II Ti: J&W, PI -+ W)lI G 2n~,,(Td, 1 <i<?Z. 

Proof of theorem 2.3. As in Section 1, it is enough to show (2.3) for operators 
on 1,” = C(K), where the cardinality of K is m. More exactly, we can assume T 
to be of the form T = T, ,..., Tl , Ti E 17,*(C(K)), i = l,..., n. By lemmas 2.5 
and 2.4 there exists a probability measure p on K such that 
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Since I/p = xr=, l/p, , we get using Weyl’s inequality 

(2 I UT)Ip)l” d u,( T: L,(K CL) - J&K d) 

Hence theorem 2.3 is clear except that d, = (2n)n seems to depend on n. This is 
an illusion: 

Indeed, if p 3 2, we can take d, = 1 by Theorem 1.1 and the composition 
formula for II,-operators [19]. If p > 2 and T = T, ,..., Tl , Ti E II,( , pi > 2 
we can compose the Ti’s together to write T = S, ,..., S, , where Sj E II,,, , 

45 2 23 l/q + l/Pi+1 3 4 i = l,..., m - 1 and XL, l/qj = & l/p, = I/p. 
Again by the UP-composition formula we will have I& ~~~(5’~) < nysl nPi( Ti). 
It follows that m < 4/p + 1. Repeating the above argument with m replacing n 
we obtain d, < [2(4/p + 1)14/P+l. 

A weak form of theorem 2.3 yielding only that the eigenvalues X,(T) are of 
order n--l/p can be proved easily using results of D. R. Lewis [12]. 

We now give an application of theorem 2.3 to p-nuclear operators. For 
0 < p < 1 p-nuclear operators on Banach spaces in general only have absolutely 
q-summable eigenvalues, where I/q = l/p - l/2. But on Hilbert space such 
operators have p-summable eigenvalues. We “interpolate” between this nice 
case (La) and the worst cases (L, and L, of Grothendieck’s examples) to obtain 
the following result. 

THEOREM 2.6. Let 0 <p < 1 and 1 < Y < co, l/q = l/p - I l/2 - l/r I. 
Assume (Q, p) is a measure space and T E M9(L,(p)). Then the etgenvalues of T 
satisfy 

where cp is a constant depending only on p 

Proof. By duality, we may assume I > 2. If T E &(L,.(p)) then for E > 0 
choose elements X; EL,(~)’ and yI EL&), 11 xi I/ < 1, ]I yi II < 1, and (ai) E Z, , 
oli 3 0 such that 

T= 1 c~x;@y~ ‘I’ and < v,(T) + E. 
dEN 

Let it := [2(1/p- l)], 6 := I - (n + 2) p/2 and u := p/6. Clearly n 3 0, 
6 > 0 and 2 < u < co. Define operators 
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O:k(cL)-+4&, ox = (ct!i"x;(x))i 

P: 1, -+ 1, ) P(5,)* = (4’“fi)i 

8: h-4, Q(Si)i = (4’“ti)i 

R: 1, --* II , R(&)i = (&“&)i 

s: II - &(p), a5)i = c &Yd * 
iEN 

These operators are continuous and T = SRPPO since 8 + (rz + l)p/2 + 
p/2 = 1. Routine calculations show 

and 

Using Hclder’s inequality we obtain 

and, finally, I] S 11 < 1. The dual operator I?‘: Z, -+ Z2 is in n2 . Hence 

(SR)’ = R’S’ E WJ$(P), W C 17,&W, U. 

Lemma 4 of Pietsch [20] implies 

SR E Wl2 9 ~544) with +-) < K((W’), 

w,(SR) < T@‘S’) d x,(R’S’) Q ~rz(R’) II s’ II 

since R’ is just multiplication by the diagonal sequence ~$1~. Theorem 2.3. 
yields, for T = (SR)QnPO, 

with l/q = l/u + (n + 1)/2 + l/r = l/p - 1 l/2 - l/r I. This proves theo- 
rem 2.6. 
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Remmk. Using well-known facts about 9r-spaces, cf. [13], [14], theorem 2.6 
can be easily generalized to Pr-spaces; in this case 

wrth some constant c~,~ depending on p and A, if the space is a de,,,-space. 

EXAMPLE 2.7. The summability order q of the eigenvalues of Tin theorem 2.6 
cannot be improved (for fixed r), as the following example shows. Define the 
Littlewood matrices Azn inductively 

A,, = (l), Aa.,+’ = ;” ( -2), ?lEN. 
2n 2” 

Then Ag = 2” Id and hence the spectrum of Agn consists of (f2’+}. Both 
eigenvalues have multiplicity 2+l. Define, say for t < 2 < T’ 

A = c @ ~-2/~(2’94ll~+Vr’) A,,: 
?lEN 

i.e. A: Z, -+ I,. is a blockwise sum of multiples of matrices A,. . Let a,” denote 
the j’th row of A,, , which consists of fl’s. Then 

vp(A2n)” < c 11 ujn IIf.‘, = 2n(1+plr’), 
3 

which implies 

v,(A)p < c r2 < co. 
TEN 

Hence A E M#,.). 

The eigenvalues of A are just all eigenvalues of the multiples of the A2,‘s, 
counted with the right multiplicity. Thus, 

This expression if finite if and only if l/q < 1 /p - 1 l/2 - l/t I. 
For p = Y = 1, the example considered as an operator on the space ( QneN Zrh 

also shows that there are nuclear operators on reflexive spaces whose eigenvalues 
are not q-summable for any q < 2. 

In view of theorem 2.6 and this example, for any q E (1,2) there are Banach 
spaces X, such that (Cj ] &(T)l~)l/* < 0~) for all nuclear operators, but 
(c, 1 X,(T)I+J1fp = cc for some nuclear operator Ton X, and any Y < q. In fact, 
take X,, to be any &,)-space, where r(q) fuliills l/q = 1 - [ l/2 - I/r(q)l. 
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Remurk 2.8. Recently B. Carl [3] has obtained results on the distribution 
of eigenvalues of operators of type Np,r,, [21] in arbitrary Banach spaces. These 
results complement the results given here. 

3. EIGENVALUES OF OPERATORS OF TYPE Z, 

A classical inequality of H. Weyl [26] used in the previous sections states 
that the eigenvalues of operators of class S,(H) in Hilbert spaces Hare absolutely 
p-summable with 

for any 0 < p < co. Here s,(T) stands for the singular numbers of T which 
coincide with the approximation-, Gelfand- or Kolmogorov-numbers of T in 
Hilbert spaces. A. S. Markus and V. I. Macaev [17] showed, by methods of 
analytic function theory, a weak extension of Weyl’s inequality to operators in 
Banach spaces X, namely 

zN I &,(T)Ip < c, c 4T)Pln (1 + +)> 
?lGN n 

where 01, denotes the approximation numbers. That is, the eigenvalues of a 
compact operator T E x(X) are p-summable provided the right side of the 
above expression is finite. We improve this result and generalize Weyl’s in- 
equality to Banach spaces as follows: 

zN I UT)lp < c, c Sag, TE U(X) 
?EN 

where s, refers to either the approximation numbers or the Gelfand- or the 
Kohnogorov-numbers of T and cp depends only on p. This answers positively 
a question of Pietsch [21] and Markus-Macaev [li’J 

THEOREM 3.1 (Weyl’s inequality). Let s, denote either one of the following 
s-number sequences: approximation-, Gelfand- or Kolmogorov-numbers. Tken there 
is an absolute constant c > 1 such that for any 0 < p < 00 and any Banack 
space X, the ei~envalues of an operator T of type I, , T E S,*(X), are absolutely 
p-summable with 

(3.1) 

where cp = max(c, crlp). 
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We need some lemmas for the proof. The idea is to factor an operator of 
type Z, into a product of operators for which the ra-norms can be estimated on 
finite-dimensional restrictions, then apply proposition 2.2 and “improve” the 
result by using a classical inequality of Hardy. 

LEMMA 3.2. Let s, be a theorem 3.1. Then, for any 0 < p < co, any positive 
integer N and all operators T E S,“(X) 

u;,~( TN)“, < N%/(T). 

This follows easily from the fact that the s, are monotone decreasing and 
multiplicative. 

The following lemma is contained implicitly in Pietsch’s proof that operators 
of class S, are p-nuclear if 0 < p < 1, which is given in [19]. 

LEMMA 3.3. Let 0 < p < 1 and T E S,“(X, Y). For any E > 0 there are 
operators Dj E 9(X, Y), j E N with rank Dj < dj : = 4 * 33ma, 

and 

(~411D~Ilp)l’p < (1 + c) 811%pa( T). 

The connection between the us- and a,a-(quasi)norms we want to use is given 
by the following result. 

LEMMA 3.4. For any 2 < p < co there is cz, > 0 such that for all Banach 
spaces X and Y with dim X = n and any T E 9(X, Y) 

On any closed subinterval I of (2, co) one can choose sup&,: p E I} < co. 

Proof. Assume dim X = n, N = [log, n] and let E > 0. By definition there 
are operators Ti: X + Y with rank Tt < 2’ and 

II T - Tt II < (1 + 4 c&7, 

i = l,..., N. Let D, = T, , DJ = Tj - Tjml for j = 2,..., N and D,,l = 
T - TN. Then T = CF: Dj . If I, denotes the identity map on Yj = Dj(X) 
C Y, we have by Garling-Gordon [4] 

~~(1~) < (3 . 2j+l)l/2, 
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since dim Y, < 3 * 21-r. Using the injectivity of the rs-norm, we get 

N+l N+l 

N+l 

< 1 (3 - 2’+l)lle [I D, 11. 
I-1 

An application of Holder’s inequality yields 

( 
N+l 

T2(T) < c (3 * 2i+y/w~)a’ “” 
i=l 1 ( 

z; (3 .2’+9 1) Dj ,,pr” 

< a, - &/2-1/P - “’ (3.2) 

where the constant a, depends only on p and is bounded as a function of p on 
any closed subinterval of (2, co). To estimate the right side of (3.2), use 

II D, II < (1 + +,477 + ~2d9, j = 2,..., N + 1 

and the monotonicity of the approximation numbers to obtain, after reordering 
terms, 

[f (3 . 2’+l) 11 Dj I/P)l” 
3=2 

< (1 + l ) -2 . 32/9 (i 2’4 4‘(T)p)l’p 
1-l 

This together with (3.2) implies the lemma. 
We remark that by a similar argument one derives for 1 < p < q < 2 and 

any pair of Banach spaces X and Y that 

S,=(X, Y) c ~q(X, Y). 

Since lemma 3.4 assumes p > 2, we need a proposition on the decomposition 
of operators of type I, . 

PROPOSITION 3.5. Let 0 < p < 1, N a natural number larger than one and 
T E SDa(X, Y). Then there are Banach spaces X, , j = 0 ,..., N with X0 = X and 
X, = Y as well as operators S, E Sk,(X,-, , X,), j = l,..., N such that T = 
&.I --- S, and 

N 

El &(S,) < 2 - wp - o,“(T). 

580/32/3-8 
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Proof. Let E = l/3 and decompose T E SDa(X, Y) according to lemma 3.3 
as T = znsN D, with 

I” d (1 + E) * W’ . upa( d, = 4 . 3n-2 (3.3) 

Let Yk = Dk(X) C Y and define the Banach spaces X, mentioned in the 
proposition as certain &.-sums of the Yk , 

N/3’ 
j = l,..., N - 1 

and the operators Sj by 

sl:xo+x,, SIX = (11 D, II1’N-1 D$),,, 

S*:Xj-l+Xj, ‘%k)kGV = (11 Dk iI1’N tkk)ksN 3 j = 2,..., N - 1 

s,: X,-l - x, , ‘%(fk)ksN = kz 11 Dk I/1’N fk . 

These operators are well-defined, continuous and 

T = 1 D, = S, ,..., S, . 
7lEN 

To estimate the approximation numbers of the Sj , j = 2,..., N - 1, consider 
the operators 

Pj”: Xj-1 + Xj , P?(‘fk)keN = (r]k)k,h’ > 
rlk = 11 Dkll1/N tk 

I 

k < n 

0 k>n 

which are of finite rank, 

rank Pj” < i rank D, < 2 * 3+1 =: m(n). 
k-1 

Therefore by definition of the orj , 

Olmcn,(Sj) < 11 S, _ pin 11 = sup (zk>n 11 Dk ll1’5 11 he IIN’j)“N 

k,)+O (CkeN 11 tk IIN’(5-1))(‘-1)‘N 

An application of H6lder’s inequality yields that this quantity is less than or equal 

<(&'~"l!)li' j=%...,N-- 
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Observe that a similar estimate holds for j = 1 and j = N so that 

Using the fact that the Z,-norm is smaller that the Z,-quasinorm, we get 

6 (2 . 81/P - (T~~(T))~I~. 

Hence the product of the N factors $$r(Sj) fulfills the inequality stated in the 
proposition. 

We are now ready to prove the following weak form of Weyl’s inequality in 
Banach spaces. 

PROPOSITION 3.6. There is c > 0 such that for all 0 < p < 1, all Banach 
spaces X, all T E SDS(X) and any n E N 

I UW’ d c~,“(Vh 

where s stands for either the approximation- or the Gelfand- or the Kolmogorov- 
numbers. 

Proof. The equality S,(T) = m(T’) holds for compact operators T, in 
particular for T E S,l(X). Further, 6,(T) < (Y~( T). Therefore it suffices to give 
the proof for the Gelfand numbers. If K is the unit ball of X’ and i: X + C(K) 
the natural imbedding, one has by [22] 

Y,(T) = 4T), uDy(T) = oaE(iT). 

Choose a natural number N > 2 such that 3 < Np < 4. We decompose 
iT E SDu(X, C(K)) according to proposition 3.5 as iT = S, ,..., S, with 
S, E S”,,(X,-, , X,) where X0 = X, X, = C(K) and 

jfil u;,(SJ < 2 * 8l19 * a,y(T). (3.4) 
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Let Y,O be the range of the spectral projection of T relative to the first m 
eigenvalues of T, i.e. the span of (generalized) eigenvactors and Y,i = Sj( Yc’) 
for j = I,..., N. We may assume without loss of generality that X,(T) # 0. 
Then 1 := dim Y,” > m, the case 1 > m occurs only for multiple eigenvalues. 
But in any case h,(T) = h,(T). Since 

has the same first I eigenvalues as T, proposition 2.2 yields 

N 

= pl Tz(Sj: Yz’ + Xj). 

We next apply lemma 3.4 N times to the right side, with Np instead of p. Using 
that the 1 h,(T)1 are monotone decreasing we get by (3.4) 

ZNj2 1 h,(T)\ < (i 1 Aj(T)IN/1)2’N 
i-l 

f c,N, * zN(1’2-1’Np) fi U”N,(Sj) 
j=l 

which implies 

<2-8 . c;p . lNf2--119 . ,,,Y(T) 

m I &,,(T)IP < d, * u~~;/(T)~ 

where the constant d, = 2p8c$ is bounded as a function of p E (0, 11. 

COROLLARY 3.7. There is c > 0 such that for all 0 < p < 1, all Banach 
spacesX,allTE~(X)MUIanynEN 

1 X,(T)lp < c f s,(T)?k. 
j-4 

Proof. Apply proposition 3.6 to the Gelfand number ideal and the restriction 
of T to the range X, of the spectral projection of T relative to the first n eigen- 
values. The corollary follows for the Gelfand numbers by using their injectivity 
y,(T: X, +X,) < y,(T: X-+X). 

We need the following classical inequality of Hardy [7], chap. 9. 
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LEMMA 3.8. Let 0 < I -C p -K co. Then for any sequence 01 E I, 

Proof of theorem 3.1. If 0 < p < 2, choose T = p/2. Then by corollary 3.7 
and lemma 3.8. 

showing (3.1) for p < 2. The statement for p > 2 and the behaviour of the 
constant cg follows by an application of the previous case to TN E S;,,(X) with 
N = [2p] using lemma 3.2, and sup{ pllp: p > l} < co. This ends the proof 
of Weyl’s generalized inequality. 

COROLLARY 3.9. Let T E 9(X) b e compact. Then for any 0 -=c p < co and 
?ZEN 

The proof of theorem 3.1 could be simplified a bit by directly relating the 
ILj”)-quasinorms to the operators D, in a decomposition of T = CasN D, E 
SD=(X). However, the proof which was given, also yields some information on 
the dependence of cg on p, and the factorization theorem for operators of type 1, 
seems to have some interest in its own right, since similar statements are false 
e.g. for the absolutely p-summing operators. 

As an application of corollary 3.7, we prove a fact on eigenvalues of operators 
inL,. 

PROPOSITION 3.10. Let Q C RN be st@ciently regular dommk, 1 < p < co 
and T: L,(Q) -+ L,(S) a continuous linear operator whose image is contained in a 
Sobok space W9m(sZ). Then the eigenvalues h,(T) of T decrease of order n-/N and 
this is in general the best possible result. 

Proof. As a map from L,(Q) into WDm(Q), T has closed graph and therefore 
is continuous also with respect to the Sobolev norm. It is well-known, cf. [l], 
that the approximation numbers of the Sobolev imbedding WDm(12) + Lp(Q) 
are of order n-n/N, therefore also 

cL,( T: L, -+ LJ < 11 T: L, * w9m 11 OLn(wpm + L,) = O(K+q. 
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Choose r < N/m and apply corollary 3.7 to get 

d d ($” j-‘m+)l” = o(n-w). 

The operators of m-fold integration show in the case of N = 1 that the order 
given in the proposition is, in general, optimal. 

If T is a continuous integral operator in L,(Q), a sufficient condition for 
T(L,(Q)) C WPm(L?) can be given easily in terms of m-fold differentiability of 
the kernel with respect to the first variable. 

In Hilbert spaces more is known on the operators of type 1, so far considered: 
For p = 1, they coincide isometrically with the nuclear operators, for p = 2 
with the absolutely 2-summing operators. Over general Banach spaces this is 
not true; in fact, if .A$(X) = Sr=(X) holds with equality of the nuclear and 
up(quasi)norms, X is isometrically isomorphic to a Hilbert space, cf. [23]. 
The same idea also shows that 17,(X) = Sam(X) isometrically implies X = H 
isometrically. The isomorphic problem: is it true that the equality x1(X) = 
Sr”l(X) alone implies that X is isomorphic to a Hilbert space, turns out to be more 
complicated. We answer this question affirmatively for both real and complex 
Banach spaces. This will follow from Weyl’s inequality and the following 
theorem which characterizes Hilbert spaces by the absolute summability of the 
eigenvalues of nuclear operators. 

THEOREM 3.11. Let X be a Banach space and suppose that each nuclear 
operator on X has absolutely summable e&nvalues Then X is isomorphic to a 
Hilbert space. 

To show this, we need some notation. 

DEFINITION. For T E 9=(X, Y), the finite rank operators between 
the projective tensor norm is given by 

II Tlb, = inf 5 
I kl 

where the infimum is taken over all representations 

Xand Y, 

T= ~fiOri> n finite. 
d=l 
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If E is a subspace of a Banach space Y with dim E < co, iz denotes the 
inclusion mapping from E into Y. We define the norms I] * IIr and ]I * 11~~ on 
9(E), EC Y by 

and 

11 T lIy = inf{ll T 11: T E Z’(Y, E), T extends T} 

II T/I,, = II G”ll/, - 

It is well-known that 8(E) is algebraically self-dual under the duality 
(T, S) = trace(ST). 

LEMMA 3.12. For the norms I/ l IIy and 11 l [lhY the above is a norm duality, 

V’(E)> II - IId = WV), II * Il,v>~ 

Proof. We show the equivalent equality (9(E), II * IlAy)’ = (9(E), II - Ijy). 
Given S E 9(E), 

11 iESllA = sup{] trace(T T E Z(Y, E), II T II < l}. 

Clearly this supremum is just 

= sup{1 trace(T T E 2’(E), II T IIy < l}. 

THEOREM 3.13. Let X be a Banach space. Suppose there is c > 0 such that 

,; I W’)I d c II Tlh 

for every finite rank operator on X. Then X is isomorphic to a Hilbert space. 

Proof. Let E be a finite-dimensional subspace of X. By lemma 3.12 there is 
S E Z(E) with I] S ll,,z = 1 and trace S = I] iE IIr . By definition of II S ]l,,r and 
the Hahn-Banach theorem, given E > 0 we can extend S to a finite rank 
operator S on X with I] S II* < 1 + E. Then 

I trace S I = ( C h(S) 1 < C I US)1 
z i 

< c II 3 Ilh < 4 + 4. 

Letting E + 0 yields II ie ]Ir < c. By the Lindenstrauss-Tzafriri theorem [15], 
X is isomorphic to a Hilbert space. 

If c = 1, it follows from theorems of Kakutani-Bohnenblust [2], [9] that X is 
isometrically isomorphic to a Hilbert space, the exact converse of Weyl’s 
inequality for Hilbert space. 
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Proofoft~o~em3.11. Let @(X)=inf{/~:x~1h~(T)I <k]I TjJ*, TEF(X)}. 
First observe that if O(Y) < co for some subspace Y of finite codimension in X, 
then by theorem 3.13 X is isomorphic to a Hilbert space. Thus if O(X) = co, 
the same is true for each subspace of finite codimension in X. 

Suppose @a(X) = co. Choose T1 of finite rank with C 1 hi( > 22 11 T1 /I,, . 
Let El C X, dim El < co be such that T,(X) C E1 and 22 II T1 ]I,, < C 1 h,(T)]. 
Here the bar denotes restriction and astriction of Tl to El , similarly for what 
follows. Choose Y1 C X, codim I; < co with 11 e + y II 3 Q 11 elj for all e E El, 
yfY,.Since aa = co,thereisanE2CY1,dimE2 < coandaT,EF(Y,) 
with 

7'2tYl)CE2 and T I UT2)l > 2*11 T2b, - 

In general choose Yk+i C X, codim Yk+l -=c ~,IIe+ylI 3 !zIIellfore~E,O 
... @E, and y E Yk+l, and choose Ekfl C Yk,l, dim E,+l < CO, and Tk+l E 
SC Yk) with Tk+dYJ C Ekfl and x.i I hi(Tk+& > 22k 11 Tkikfl lll\ . Without loss 
of generality suppose that for all k jl Tk /I,, = 1. Define T on OkeN Ek by 

= gl 2-“T&d 
Clearly T is nuclear and so has a nuclear extension i’ to all of X. But the eigen- 
values of T contain those of 2-kTk for each k and so x:i I X,(T)/ = m. 

COROLLARY 3.14. X is isomorphic to a Hilbert space if and only if 17i2)(X) 
(2 = (2,2)) is a Banuch space, coinciding with the nuclear operators Ml(X). 

Proof. If X is isomorphic to a Hilbert space, n.$“)(X) is the same as the 
nuclear operators on X, since any such operator can be written as the product 
of two Hilbert-Schmidt operators. Therefore U.j”)(X) is a Banach space. 

On the other hand, if n.j”)(X) is a Banach space, it must contain the nuclear 
operators Jr(X), since Mr is the smallest Banach ideal. Therefore any nuclear 
operator is in l74”) and hence has absolutely summable eigenvalues, by proposi- 
tion 2.2. By theorem 3.11, X is isomorphic to a Hilbert space. 

As a corollary to 3.11 we obtain the isomorphic characterization of Hilbert 
spaces mentioned above. 

THEOREM 3.15. A complex Banach space X is isomorphic to a Hilbert space 
if and only if the nuclear operators on X coincide with the operators Sla(X) of 

trpe 4 . 

Proof. It is clear that in Hilbert spaces H, JY;(H) = S,=(H) and that in 
general &m(X) C Ml(X), [19]. If S,=(X) = M&X), the eigenvalues of any 
nuclear, i.e. S+operator are absolutely summable by Weyl’s inequality (3.1). 
Hence X is isomorphic to a Hilbert space by theorem 3.11. 
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We remark that the real version of 3.15 follows from the complex case. 
Indeed if X is a real Banach space and Y = X + iX its complexifixation, then 
any T E Nr( Y) induces, by considering real and imaginary parts of a nuclear 
representation of T, eight nuclear operators on X or isometric copies of X. If 
Jv;(X) = Z,%(X), these eight operators add to yield T E Zla( Y). By 3.15, Y, 
hence X, is isomorphic to a Hilbert space. 

For the finite rank operators on a Banach space X, the trace functional tr(*) 
is well-defined and continuous with respect to the ora-quasinorm. It may 
therefore be extended to any operator of type Zr . In Hilbert spaces, with SIa(H) 
= x1(H), Lid&j’s theorem [16] states that the so-defined trace of any S<(H)- 
operator is equal to the sum of its eigenvalues. As with Weyl’s inequality, this 
trace formula can be extended to the class Sra(X) of operators of type Zr on 
general Banach spaces, cf. [lo]. 

Remark 3.16. If .X(X) denotes the compact operators on X, Grothendieck 
has conjectured that if .X(X) = MI(X), then dim X < co. Theorem 3.11 
yields some more information on this problem: Suppose X is a Banach space 
with the property that for every T E Jv;(X) there are A, I3 E .X(X) with T = AB. 

For such a space the Grothendieck conjecture is true. In fact, if s(X) = 
Jv;(X), we have C 1 h,(T)/ < 03 for T E Nl(X) = Ml 0 Ml(X) by the above 
hypothesis and proposition 2.2. Hence X is isomorphic to a Hilbert space. This 
violates .X(X) = 4(X) un ess 1 dim X < co. The above hypothesis is met by 
any space X such that X is isomorphic to (0 X), for some p, 1 < p < 00. In 
particular let (Gn) be a sequence of finite-dimensional spaces such that for every 
finite dimensional space F there is n with d(G, , F) < 2, d denoting the Banach- 
Maxur distance. Let G,” = G, for all i and let 

Then X lacks the approximation property but has the above property. 
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