
Physics Letters B 681 (2009) 469–471

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

The Cardy–Verlinde formula and entropy of the charged rotating BTZ black hole

M.R. Setare a,∗, Mubasher Jamil b

a Department of Science, Payame Noor University, Bijar, Iran
b Center for Advanced Mathematics and Physics, National University of Sciences and Technology, Rawalpindi 46000, Pakistan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 August 2009
Received in revised form 10 October 2009
Accepted 16 October 2009
Available online 23 October 2009
Editor: M. Cvetič

In this Letter we show that the entropy of black hole horizon in charged rotating BTZ space–time can be
described by the Cardy–Verlinde formula, which is supposed to be an entropy formula of conformal field
theory in any dimension.
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1. Introduction

The discovery of the existence of black hole solutions in three
spacetime dimensions by Bañados, Teitelboim and Zanelli (BTZ)
[1,2] (for a review see Ref. [3]) represented one of the main recent
advances for low-dimensional gravity theories. Owing to its sim-
plicity and to the fact that it can be formulated as a Chern–Simons
theory, 3D gravity as become paradigmatic for understanding gen-
eral features of gravity, and in particular its relationship with gauge
field theories, in any spacetime dimensions.

The realization of the existence of three-dimensional (3D) black
holes not only deepened our understanding of 3D gravity but also
became a central key for recent developments in gravity, gauge and
string theory.

The BTZ black hole continues to play a key role in recent inves-
tigations aiming to improve our understanding of 3D gravity and
of general feature of the gravitational interaction [4].

A characterizing feature of the BTZ black hole (at least in its un-
charged form) is the absence of curvature singularities. The scalar
curvature is well-behaved (and constant) throughout the whole 3D
spacetime. This feature is shared by other low-dimensional ex-
amples such as 2D AdS black holes (see e.g. Ref. [5]), for which
also the microscopic entropy could be calculated [6,7] using the
method proposed in Ref. [8].

The absence of curvature singularities makes the BTZ black hole
very different from its higher-dimensional cousins such as the 4D
Schwarzschild black hole. On the other hand, one can try to con-
sider low-dimensional black holes with curvature singularities gen-
erated by matter sources. In this Letter we consider the alternative
case in which the curvature singularity is not generated by mass
sources but by charges of the matter fields. An example, which we
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discuss in this Letter, is the electrically charged rotating BTZ (CR-
BTZ) black hole.

One of the remarkable outcomes of the AdS/CFT correspon-
dence has been the generalization of Cardy’s formula (Cardy–
Verlinde formula) for arbitrary dimensionality, as well as a variety
AdS backgrounds. The Cardy–Verlinde formula proposed by Ver-
linde [9], relates the entropy of a certain CFT with its total energy
and its Casimir energy in arbitrary dimensions. Quantum gravity in
low-dimensional anti-de Sitter (AdS) spacetime has features that
make it peculiar with respect to the higher-dimensional cases. For
d = 2, 3 the theory is a conformal field theory (CFT) describing
(Brown–Henneaux-like) boundary deformations and has a central
charge determined completely by Newton constant and the AdS
length [6,10–12]. Conversely, in d > 4, quantum gravity in AdS
space–times should admit a near-horizon description in terms of
BPS solitons and D-brane excitations, whose low-energy limit is an
U (N) gauge theory [13–15]. The difference between these two de-
scriptions is particularly evident in their application for computing
the entropy of non-perturbative gravitational configurations such
as black holes, black branes and BPS states.

In the present Letter we would like to check the consistency
of the Cardy–Verlinde formula, for the charged rotating BTZ black
hole.

2. The charged rotating BTZ black hole

The BTZ black hole solutions [1,2] in (2 + 1) spacetime dimen-
sions are derived from a three-dimensional theory of gravity

I = 1

16πG

∫
dx3√−g (R + 2Λ), (1)

where G is the three-dimensional Newton constant and Λ = 1
l2

> 0
is the cosmological constant. Often in the literature units are cho-
sen such that G is dimensionless, 8G = 1, here we use such units.
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The corresponding line element in Schwarzschild coordinates is

ds2 = − f (r)dt2 + f −1 dr2 + r2
(

dθ − J

2r2
dt

)2

(2)

whit metric function:

f (r) =
(

−M + r2

l2
+ J 2

4r2

)
, (3)

where M is the Arnowitt–Deser–Misner (ADM) mass, J the angu-
lar momentum (spin) of the BTZ black hole and −∞ < t < +∞,
0 � r < +∞, 0 � θ < 2π . The outer and inner horizons, i.e. r+
(henceforth simply black hole horizon) and r− respectively, con-
cerning the positive mass black hole spectrum with spin ( J �= 0) of
the line element (2) are given as

r2± = l2

2

(
M ±

√
M2 − J 2

l2

)
. (4)

In addition to the BTZ solutions described above, it was also shown
in [1,16] that charged black hole solutions similar to (2) exist.
These are solutions following from the action [16,17]

I = 1

2π

∫
dx3√−g

(
R + 2Λ − π

2
Fμν F μν

)
. (5)

The Einstein equations are given by

Gμν − Λgμν = π Tμν, (6)

where Tμν is the energy–momentum tensor of the electromagnetic
field:

Tμν = Fμρ Fνσ gρσ − 1

4
gμν F 2. (7)

Electric charged black hole solutions of Eqs. (6) takes the form (2),
but with

f (r) = −M + r2

l2
+ J 2

4r2
− π

2
Q 2 ln r, (8)

whereas the U (1) Maxwell field is given by

F tr = Q

r
, (9)

where Q is the electric charge. Although these solution for r → ∞
are asymptotically AdS, they have a power law curvature singular-

ity at r = 0, where R ∼ π Q 2

r2 . This r → 0 behavior of the charged
BTZ black hole has to be compared with that of the uncharged one,
for which r = 0 represent just a singularity of the causal structure.
For r > l, the charged black hole is described by the Penrose dia-
gram as usual [18].

Horizons of the CR-BTZ metric are roots of the lapse function f .
Depending on these roots there are three cases of the CR-BTZ black
hole [19,20] (see also [21]): Two distinct horizons r± exist where
plus correspond to the event horizon while minus gives the Cauchy
horizon (the usual CR-BTZ); black hole in case of two repeated real
roots gives a single horizon (extreme case); and the case when no
real root exists thus no horizon exists (naked singularity).

We shall assume the first case in this Letter. The black hole
mass and the angular momentum are given respectively by

M = r2+
l2

+ J 2

4r2+
− π

2
Q 2 ln r (10)

and

J = 2r+

√
M − r2+

2
+ π

Q 2 ln r+ (11)

l 2
with the corresponding angular velocity to be

Ω+ = J

2r2+
= 1

r+

√
M − r2+

l2
+ π

2
Q 2 ln r+. (12)

The Hawking temperature T H of the black hole horizon is

T H = df

dr

∣∣∣∣
r=r+

= 1

4π

(
2r+
l2

− J 2

2r3+
− π

2

Q 2

r+

)
. (13)

The entropy of the charged rotating BTZ black hole takes the form

SBH = 4πr+. (14)

Also the electric potential of the black hole is

Φ = ∂M

∂ Q

∣∣∣∣
r=r+

= −π Q ln r+. (15)

The generalized Cardy formula (hereafter named Cardy–Verlinde
formula) is given by

SSFT = 2π R√
ab

√
EC (2E − EC ), (16)

where E is the total energy and EC is the Casimir energy. The
definition of the Casimir energy is derived by the violation of the
Euler relation

EC = n(E + P V − T S − Φ Q − Ω+ J ), (17)

where the pressure of the CFT is defined as P = E/nV . The total
energy may be written as the sum of two terms

E = E E + 1

2
EC , (18)

where E E is the purely extensive part of the total energy E . The
Casimir energy EC as well as the purely extensive part of energy
E E expressed in terms of the radius R and the entropy S are writ-
ten as

EC = b

2π R
, (19)

E E = a

4π R
S2. (20)

3. Entropy of charged rotating BTZ black hole in Cardy–Verlinde
formula

The Casimir energy EC , defined as Eq. (17), and n = 1 in this
case, is found to be

EC = 1

2

(
J 2

r2+
+ π Q 2

)
. (21)

Additionally, it is obvious that

2E − EC = 2r2+
l2

− π Q 2
(

ln r+ + 1

2

)
. (22)

The purely extensive part of the total energy E E by substituting
Eq. (22) in Eq. (18), is given as

E E = r2+
l2

− π

2
Q 2

(
ln r+ + 1

2

)
(23)

whilst by substituting Eq. (14) in Eq. (20), it takes the form

E E = 4πa
r2+. (24)
R
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Making use of expression (19), Casimir energy EC can also be writ-
ten as

Ec = b

2π R
. (25)

At this point it is useful to evaluate the radius R . By equating the
right-hand sides of (21) and (25), the radius is written as

R = b

π(
J 2

r2+
+ π Q 2)

(26)

while by equating the right-hand sides (23) and (24) it can also be
written as

R = 4πar2+l2

r2+ − π
2 Q 2l2(ln r+ + 1

2 )
. (27)

Therefore, the radius expressed in terms of the arbitrary positive
coefficients a and b is

R = 2r+l
√

ab√
(

J 2

r2+
+ π Q 2)(r2+ − π

2 Q 2l2(ln r+ + 1
2 ))

. (28)

Finally, we substitute expressions (21), (22) and (28) which were
derived in the context of thermodynamics of the charged rotating
BTZ black hole, in the Cardy–Verlinde formula (16) which in turn
was derived in the context of CFT, and we get

SCFT = SBH. (29)

It has been proven that the entropy of the charged rotating BTZ
black hole can be expressed in the form of Cardy–Verlinde formula.

4. Conclusion

The Cardy–Verlinde formula proposed by Verlinde [9], relates
the entropy of a certain CFT to its total energy and Casimir energy
in arbitrary dimensions, which is shown to hold for topological
Reissner–Nordstrom [22] and topological Kerr–Newman [23] black
holes in de Sitter spaces, Taub–Bolt-AdS4 [24], Kerr–(A)dS [25].
There are many other relevant papers on the subject [26–28]. Thus,
one may naively expect that the entropy of all CFTs that have an
AdS-dual description is given as the form (16). However, AdS black
holes do not always satisfy the Cardy–Verlinde formula [29]. For
systems that admit 2D CFTs as duals, the Cardy formula [30] can be
applied directly. This formula gives the entropy of a CFT in terms of
the central charge c and the eigenvalue of the Virasoro operator l0.
However, it should be pointed out that this evaluation is possible
as soon as one has explicitly shown (e.g. using the AdSd/CFTd−1
correspondence) that the system under consideration is in corre-
spondence with a 2D CFT [6,7]. The aim of this Letter is to further
investigate the AdS/CFT correspondence in terms of Cardy–Verlinde
entropy formula. In this Letter, we have shown that the entropy of
the black hole horizon of charged rotating BTZ spacetime can also
be rewritten in the form of Cardy–Verlinde formula.
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