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Isospin-violating dark matter (IVDM) has been proposed as a viable scenario to reconcile conflicting 
positive and null results from direct detection dark matter experiments. We show that the lowest-order 
dark matter-nucleus scattering rate can receive large and nucleus-dependent corrections at next-to-
leading order (NLO) in the chiral expansion. The size of these corrections depends on the specific 
couplings of dark matter to quark flavors and gluons. In general the full NLO dark-matter-nucleus 
cross-section is not adequately described by just the zero-energy proton and neutron couplings. These 
statements are concretely illustrated in a scenario where the dark matter couples to quarks through 
scalar operators. We find the canonical IVDM scenario can reconcile the null XENON and LUX results and 
the recent CDMS-Si findings provided its couplings to second and third generation quarks either lie on 
a special line or are suppressed. Equally good fits with new values of the neutron-to-proton coupling 
ratio are found in the presence of nonzero heavy quark couplings. We also derive the structure of the 
scattering amplitude to all orders in the chiral expansion and show the best fit points at NLO are robust 
against higher order corrections provided the chiral expansion is itself well-behaved. CDMS-Si remains in 
tension with LUX and XENON10/100 but is not excluded.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

To date, the dominant component of the matter in the Milky 
Way has only been detected through its gravitational interactions. 
However, a number of experiments around the world are currently 
seeking to directly detect this Dark Matter (DM). The aim is detect 
the recoil energy deposited by an incident DM particle as it scat-
ters on a nuclear target, producing a characteristic spectrum [1].

At present, the field of DM direct detection is in an uncertain 
and exciting state with a number of experiments finding evidence 
of such a signal [2,3], and others seeming to exclude these same 
signals with null observations [4–7]. An apparent reconciliation 
however may be achieved by allowing the coupling of the DM to 
protons, f p , to differ from its coupling to neutrons, fn . While such 
isospin-violating Dark Matter (IVDM) has been studied by many 
authors [8–10], it has become especially intriguing given the lat-
est results from CDMS-Si [11], which are naïvley at odds with the 
limits from XENON100 [6] and LUX [7]. For example, the authors 
of [12] surveyed many different possible astrophysical and micro-
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physical possibilities for DM and concluded that only IVDM or 
inelastic down-scattering significantly reduce the tension between 
CDMS-Si and XENON100. After LUX, similar conclusions are found 
in Refs. [13,14], with “Xenophobic” WIMP couplings still providing 
a reconciliation of existing results, albeit under increasing pressure.

In this paper we study the phenomenological implications of 
chiral NLO corrections to IVDM in light of the recent results by 
LUX [7]. We do that using heavy baryon chiral effective field the-
ory, as originally developed in Ref. [15]. We note that there are 
many examples in the literature where low-energy probes (e.g., 
photons) of hadrons are understood within the framework of chi-
ral effective field theory (see for example, [16–20]). In the case of 
dark matter scattering off of a target, the dark matter is the exter-
nal probe of the nucleons, as is done in Refs. [18–20].

The chiral corrections to WIMP-nucleus cross section have been 
studied in Refs. [18,19] assuming scalar WIMP-quark interactions 
(for axial interactions see [20]). In contrast to the one-nucleon-
level effective field theory (EFT) developed in Ref. [21], the chiral 
EFT approach includes two-body effects and is particularly well 
suited to connect the phenomenological bounds on WIMP-nucleus 
cross sections to the WIMP-quark short-distance couplings, con-
trolling other aspects of WIMP phenomenology (indirect detection, 
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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production at colliders). In [19] it was found that for generic 
isospin-conserving WIMP-quark couplings the magnitude of the 
NLO effects is of the size expected from chiral power counting 
∼ mπ/(1 GeV) ∼ 10%. However in the case of isospin-violating 
couplings at the canonical IVDM point r ≡ fn/ f p � −0.7, where 
the signal for Xe is suppressed at LO by several orders of mag-
nitude, it was found that the chiral corrections wash out the LO 
cancelation generically, and move the “Xenophobic” point to other 
regions in the parameter space of WIMP-quark couplings. In this 
letter we explore in detail these points. The primary conclusions 
of this work can be summarized as:

• For IVDM and a scalar dark matter-quark operator scenario 
fitting data with only LO effects included can lead to qualita-
tively incorrect conclusions. We illustrate this with specific ex-
amples in which a LO fit resolves the tension between CDMS-
Si and LUX, though an NLO fit does not (and vice versa). In 
particular, simply setting r � −0.7 is neither necessary nor 
sufficient to reduce the sensitivity of Xenon based detectors.

• The proton and neutron couplings to DM, f p, fn , are not suf-
ficient to describe the scattering amplitude at NLO, which 
instead depends on two additional parameters λθ , λs (to be 
defined below).

• This approach is a crucial missing step in matching quark op-
erators onto nucleon operators with non-trivial implications 
for annihilation and collider signals of DM.

The remainder of this paper is organized as follows. In Section 2
we review and update our results on scalar-mediated DM-quark in-
teractions, including now the momentum dependence in the two-
body amplitude. In Section 3 we study the degradation in sensitiv-
ity experienced by a Xenon target at NLO and compare the effect 
of chiral corrections for Xenon, Silicon and Germanium targets. 
In Section 4 we discuss parameter degeneracies and the role of 
hadronic and nuclear uncertainties. Then in Section 5 we compute 
the best-fit and excluded regions from the CDMS-Si, XENON, and 
LUX experiments respectively. There we find that the well-known 
r = −0.7 only maintains a partial compatibility provided either that 
the strange and heavy quark couplings in the effective low-energy 
theory are sufficiently suppressed, or that these couplings lie on a 
line corresponding to an approximate degeneracy in the total recoil 
rate. In addition, we also find new regions of partial compatibility 
for which fn/ f p is significantly different from −0.7. Finally in Sec-
tion 6 we discuss the implications of these findings for future DM 
data, including direct detection and collider searches.

2. Setup

Below the scale of the heavy quarks, the scalar interaction of 
WIMPs (denoted by X) with light quarks is given by the effective 
Lagrangian [19]

Leff =
∑

q=u,d,s

λq

vΛ2
X Xmqqq + λθ

vΛ2
X Xθ

μ
μ , (1)

where Λ is a generic new physics scale, v = (
√

2G F )−1/2 is the 
electroweak scale and θμ

μ is the trace of the energy–momentum 
tensor. The effect of WIMP couplings to heavy quarks is encoded 
in the coefficient λθ = (2/27) 

∑
Q λ̃Q − (8/9)λ̃G , and also in the 

couplings of the light quarks through the relation λq = λ̃q − λθ . 
Here λ̃q,Q and λ̃G are the short-distance couplings of dark matter 
to light quark, heavy quarks, and the gluon field strength.

At leading order (LO) in chiral EFT, the four quark-level cou-
plings λu,d,s,θ collapse into two independent combinations, i.e. the 
zero momentum transfer matrix elements of Leff in the proton and 
neutron, f p,n ,

f p,n = 1

vΛ2

[
σπ N(λ+ ± λ−ξ) + λsσs + λθmp

]
,

λ± = (λumu ± λdmd)/(mu + md), (2)

where σπ N = ((mu + md)/2)〈p|ūu + d̄d|p〉, ξ = 〈p|ūu − d̄d|p〉/
〈p|ūu + d̄d|p〉, σs = 〈p|mss̄s|p〉, and the upper (lower) sign refers 
to p (n).1 These relations are valid up to small isospin-breaking ef-
fects of order (mu − md)/ΛQCD . Working to LO in chiral EFT, it is 
convenient to trade fn,p for σp ≡ 2kXμ2 f 2

p /π and r ≡ fn/ f p (μ is 
the WIMP-proton reduced mass and kX = 1/2(2) for Dirac (Majo-
rana) fermions). To LO the WIMP-nucleus differential rate is then 
given by:

dR

dE R

LO

= σpρ0

2μ2mX

∣∣(Z + (A − Z)r
)

F (E R)
∣∣2 × η(E R ,mX ,mA), (3)

where mX and mA are the WIMP and target nucleus masses, F (E R )

is the one-body nuclear form factor, ρ0 is the local DM mass den-
sity, and η(E R , mX , mA) is the flux factor involving an integral over 
the local WIMP velocity distribution [24–27]. This is the familiar 
result used in phenomenological applications. Note that any value 
of σp and r can be obtained by an appropriate choice of the quark 
couplings λi/Λ

2. However, in the limit ξ → 0 only r = 1 is possible 
for all choices of λi , as seen from Eq. (2).

As discussed in Ref. [19], at next-to-leading order (NLO) one 
needs all four λu,d,s,θ parameters to describe the scattering rate. 
The λu,d,s,θ couplings appear in the recoil energy dependence of 
neutron and proton matrix elements, as well as a new two-body 
contribution to the amplitude (A2(E R)). In order to make contact 
with the existing phenomenology we choose as independent pa-
rameters the “standard” quantities σp and r, as well as the rescaled 
strange and gluonic (heavy quark) couplings λs,θ ≡ λs,θ /λu . With 
this choice, the NLO WIMP-nucleus differential rate reads

dR

dE R

NLO

= σpρ0

2μ2mX

∣∣[Z(1 + sp E R) + (A − Z)(r + sn E R)
]

F (E R)

+ A2(E R)
∣∣2 × η(E R ,mX ,mA), (4)

where

sp = fu[r, λs,θ ]
(
su

p + fd[r, λs,θ ]sd
p + ss

pλs
) · A, (5)

sn = fu[r, λs,θ ]
(
su

n + fd[r, λs,θ ]sd
n + ss

nλs
) · A, (6)

A2(E R) = fu[r, λs,θ ]
[(

tu + fd[r, λs,θ ]td
)

Fππ (E R)

+ tsλs Fηη(E R)
] · A, (7)

and the common factor of A arises in sp,n from q2 = 2mA E ∝ A. 
The quantities fu,d[r, λs,θ ] arise in the change of variables from 
λu,d to f p and r. fd is the ratio λd/λu expressed in terms of 
the independent variables r, λs,θ . Similarly, fu represents the ra-
tio λu/(vΛ2 f p) expressed in terms of r, λs,θ . The explicit form of 
fu,d depends not only on r, λs,θ but also on the hadronic matrix 
elements appearing in (2):

fu = 1 + ξ − r(1 − ξ)

2ξ [δ f + 2mu
mu+md

σπ N ] , δ f = λsσs + λθmp, (8)

1 For the nucleon sigma-terms we use the lattice QCD ranges σπ N = 45(15) MeV, 
σs = 45(25) MeV (from the review [22]). ξ can be related to y ≡ 2〈p|s̄s|p〉/〈p|ūu +
d̄d|p〉 through an analysis of baryon masses in the SU(3) limit [23], leading to ξ =
(1 − y)0.197 = 0.18(1).
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Table 1
Numerical values of the coefficients entering the NLO amplitude. The uncertainty in the combination of low-energy constants F/(F + D) ∈ [0.3, 0.5] affects su,d

N at the 5% level 
and ss

N at the 20% level [19]. The dimensionful two-body coefficients tu,d,s have been estimated through a nuclear shell model calculation in Ref. [19], and are in principle 
subject to larger uncertainties.

su
p sd

p su
n sd

n ss
p,n tu td ts

−0.116 −0.192 −0.096 −0.232 −0.472 −0.63 MeV −1.27 MeV 0.070 MeV

Fig. 1. Left panel: Xenon degradation factors. Solid lines represent DNLO(r, λs, λθ ) (Eq. (13)) with λθ = λs = 0 (blue line), λθ = 0.1 (red line), λθ = −0.1 (green line), and 
λθ = −0.025 (purple line). The dashed blue line represents DLO(r). DLO(r) and DNLO(r, 0, 0) are nearly degenerate, as explained in the text. Note that for other values of λs

and λθ the degradation factor at NLO has a sizable shift. Middle panel: Dependence of the position of the minimum of DNLO, denoted by rmin, on λθ , with λs = 0. Benchmarks 
discussed further in the text are also shown. Right panel: Dependence of the value of DNLO(rmin) on λθ with λs = 0. Note that at rmin the values of the degradation factor are 
nearly independent of λθ . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
fu fd = (r − 1)δ f − mu
mu+md

σπ N [1 − ξ − r(1 + ξ)]
2ξ [δ f + 2mu

mu+md
σπ N ] md

mu+md
σπ N

. (9)

Note that there is an apparent singularity in the above expres-
sions when the denominators vanish. This corresponds to the limit 
f p → 0. In that case the fractional correction diverges, but that’s 
simply because we are factoring out f p . The coefficients appear-
ing in sp,n and A2(E R) are known from the NLO EFT analysis 
of Ref. [19] and are reported in Table 1.2 Extending the work in 
Ref. [19], within the shell model we include here the recoil energy 
dependence of the two-body amplitude:

Fππ (E R) = Fexp
[(

1.20 − 1.83A−1/3 + 4.60A−2/3) · |q|],
|q| = √

2mA E R , (10)

Fηη(E R) = FBessel
[(

0.74 + 1.04A−1/3 − 1.93A−2/3) · |q|]. (11)

In the above expressions we have Fexp(q) = exp(−q2 R2
0/6) with 

R0 ≡ [0.3 + 0.91(mA/GeV)1/3] fm, and FBessel(q) = 3((sin(qrn) −
qrn cos(qrn))/(qrn)3) × e−(qs)2/2 with rn ≡ A1/3 fm, s = 1 fm. This 
form was found by computing for closed shells (A = 4, 16, 40, 80,

140) and then fitting the result with one-body form factors with 
A-dependent rescaling of the argument.

3. Degradation factors beyond leading order

Scalar-mediated interactions induce coherent WIMP-nucleus 
scattering, which for f p ∼ fn implies the well-known overall fac-
tor of A2 in the cross-section. In general, for f p �= fn interference 

2 Note that the numerical values of tu, td, ts depend on the nuclear matrix el-
ements Nππ (0) and Nηη(0) [19]. In Ref. [19] these were computed within the 
shell model, using an unconventional cut on relative nucleon distance of dc = 21/2 ·
0.5 fm, leading to Nππ (0) = −0.91A and Nηη(0) = 0.0061A. Here we use the more 
conventional cut dc = 0.5 fm, resulting in Nππ (0) = −1.19A and Nηη(0) = 0.0048A.
effects can suppress the cross-section relative to the case f p = fn , 
and a useful measure of this suppression is provided by the so-
called degradation factor [28–31]. The original references worked 
to LO in ChPT and their definition can be cast in terms of the in-
tegrated rates R̄ as

DLO(r) = RLO(r,σp)

RLO(1,σp)
, R ≡

Emax
R∫

Emin
R

dE R
dR

dE R
, (12)

with experiment-dependent integration limits Emin/max
R . Note that 

for a given isotope DLO ∝ [Z + (A − Z)r]2 and one can use either 
the integrated or the differential rate, as the energy-dependence 
cancels in the ratio. This is not true anymore to NLO, so we gener-
alize the definition of degradation factor as follows

DNLO(r, λs, λθ ) = RNLO(r,σp, λs, λθ )

RLO(1,σp)
, (13)

and note that while the dependence on σp drops in the ratio, DNLO

depends not only on r, but also on λs,θ .
Inspection of Eqs. (4) through (9) shows that DNLO is still a 

quadratic form in r. However, as illustrated below, for a given tar-
get the location of the minimum and the value at the minimum 
are affected in a non-trivial way by the chiral corrections.

In Fig. 1 we illustrate the impact of chiral corrections on the 
degradation factor, using as a benchmark the Xenon target (sum-
ming over isotopes). In the left panel we show both DLO (dashed 
line) and DNLO versus r for λs = 0 and λθ = 0, ±0.1. A few 
salient features emerge: first, in the absence of 2nd and 3rd gen-
eration couplings (in the low-energy theory) the NLO corrections 
are %-level and do not significantly affect the degradation factors.3

3 This can be understood as follows: in the region r ∼ −1 one finds fd ∼
−mu/md ∼ −1/2, which combined with the numerical values in Table 1 simulta-
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Fig. 2. Double ratio of total rates R̄NLO(Xe)/R̄NLO(Si) (left panel) and R̄NLO(Xe)/R̄NLO(Ge) (right panel) versus r, for λs = 0, σπ N = 45 MeV, and λθ = 0, −0.025, ±0.1. Also 
shown is the double ratio for σπ N = 60 MeV and λs,θ = 1 (dashed red). Note the degeneracy of this curve with the one for σπ N = 45 MeV and λθ = 0.1. Such degeneracies 
are described in further detail in Section 4. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
However, as one “turns on” the WIMP coupling to strange and θμ
μ , 

even at a level of 10% of the light quark couplings, the results 
change dramatically, with an O (1) shift in the value of r for which 
the degradation factor has a dip (compared to the well-known LO 
case r � −0.7). The bulk of the shift is caused by the two-body 
correction A2 in Eq. (4), as one can verify using Eqs. (4) through 
(9) and typical recoil energies of O (10) keV. That the NLO correc-
tions depend on λθ may at first seem strange, since they do not 
have any such explicit dependence. Such a dependence is induced 
through our choice of independent parameters (namely λd ≡ λd/λu

depends not only on r, but also on λs and λθ ).
Varying λs while keeping λθ = 0 produces similar results. In 

fact, neglecting the small slope corrections, the effect of λs,θ is 
degenerate, as they appear in the linear combination δ f = σsλs +
mpλθ . Finally, we note that sizable shifts in the minimum location 
arises when varying the nucleon sigma term σπ N . We will discuss 
in greater detail these degeneracies and hadronic uncertainties in 
Section 4.

Given the sensitivity to the strange quark and θ
μ
μ couplings 

demonstrated above, it is interesting to track the location and 
depth of the “dip” in the degradation factor as a function of λs,θ . 
We illustrate this variation in the middle and right panels of 
Fig. 1. One can see that at NLO the dip can occur at virtually any 
value of r (even positive values!) provided we adjust λθ accord-
ingly. In the middle panel we indicate six benchmark scenarios 
A, B, C, D, E, F in the r, λθ plane. We chose them in such a way 
that A is the canonical IVDM scenario (r = −0.7, λs = λθ = 0) 
while B and C are perturbations around it. The last three bench-
marks correspond to plausible reconciliation of XENON/LUX with 
CDMS-Si. Values of r are r = −0.7 for A, B and C , r = +0.15 for 
D , r = −1.45 for E , and r = −1 for F . We will come back to these 
benchmark scenarios in the Section 5. The right panel of Fig. 1
shows that for most values of rmin the degradation is close to 10−4, 
suggesting that indeed there is a manifold of “Xenophobic” cou-
plings in which XENON/LUX exclusion regions might be consistent 
with signals claimed in experiments using Ge or Si targets.

To make the latter point plausible, however, one needs to 
check that Xenon degradation at NLO is not accompanied by 
excessive degradation in other targets. To this end, we plot in 
Fig. 2 the ratio of integrated rates R̄NLO(Xe)/R̄NLO(Si) (left panel) 

neously suppresses both the slopes sp,n and A2, i.e. the entire NLO corrections. In 
the region r �= −1 the suppression comes from the overall factor fu , that gets sup-
pressed by a factor of ξ ∼ 0.18 compared to its value at r ∼ −1.
and R̄NLO(Xe)/R̄NLO(Ge) (right panel) versus r, for λs = 0 and 
λθ = 0, −0.025, ±0.1. In obtaining these plots we use experiment-
specific energy windows, corresponding to LUX ([3, 30] keV), 
CDMS-Si ([7, 100] keV), and CDMS-Ge ([2, 100] keV). While the 
fine details might change when using different energy thresholds, 
Fig. 2 strongly supports the existence of a manifold of “Xenopho-
bic” couplings consistent with current data.

Based on these results, we expect two qualitative changes in the 
phenomenology of IVDM: (1) turning on sizable nonzero strange 
quark and/or θμ

μ couplings with r = −0.7 generically worsens the 
compatibility of CDMS-Si and XENON/LUX such that these cou-
plings are excluded, and (2) new regions of compatibility arise in 
which r �= −0.7. In other words: the notion of “Xenophobic” cou-
plings extends beyond the r = −0.7 point. Compatibility regions 
might be obtained for any value of r, by turning on specific cou-
plings of the WIMP to heavy quarks or gluons. This makes the 
IVDM scenario far richer, but of course more model-dependent. In 
Section 5 we investigate these possibilities further with a more de-
tailed examination of the CDMS-Si, CDMS-Ge, XENON10/100, and 
LUX data.

4. Parameter degeneracies, hadronic uncertainties, and higher 
order corrections

In this section we provide an analytic description of how 
the dominant NLO chiral corrections affect direct-detection phe-
nomenology. This explains the observed degeneracies in the λs,θ

parameter space and allows us to assess the impact of hadronic 
and nuclear uncertainties, and higher order corrections. While in 
the numerical studies we use the full NLO corrections, in this 
section we obtain an approximate analytic solution by keeping 
only the dominant NLO effects. This means we: neglect (i) all 
slope terms compared to the two-body corrections (sq

N E R  tu,d,s); 
(ii) ignore the strange contribution to 2-body amplitude (ts  tu,d); 
(iii) and drop terms of O (ξ) compared to terms of O (1). With 
these assumptions we find that the NLO corrections are controlled 
by the quantity �:

dR

dE R

NLO

∝ ∣∣[Z F (E R) + A�Fππ (E R)
]

+ r
[
(A − Z)F (E R) − A�Fππ (E R)

]∣∣2
, (14)

� = 1

2ξ [ δ f + 2mu ]
σπ N mu+md
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·
[

tu

σπ N
− td

σπ N

mu + md

md

(
δ f

σπ N
+ mu

mu + md

)]
. (15)

Setting F (E R) = Fππ (E R) = 1 (which is a good approximation for 
light WIMPs) we obtain for the location of the minimum

rmin = − Z̄

1 − Z̄
· 1 + �

Z̄

1 − �

1− Z̄

, Z̄ = Z/A, (16)

where the first factor is the LO result and the second factor rep-
resents the NLO shift. After appropriate averaging over multiple 
isotopes, the above expressions explain quite accurately the cor-
rections we observe in our parameter scan.

In particular, the above expressions explain very peculiar de-
generacies observed when one scans in both the WIMP-quark 
couplings λθ,s and in the hadronic and nuclear matrix elements 
σπ N , tu,d (see Figs. 2, 3). All the degeneracies derive from the rela-
tion

�[λs,θ , σπ N ,σs, tu,d] = constant. (17)

For fixed hadronic matrix elements, this constraint describes a sub-
surface in the space of couplings, independent of r. Allowing for 
hadronic uncertainties puffs the surface out into a sub-volume. 
For example, keeping λs = 0 and σs, tu,d fixed to their central val-
ues, we obtain very similar results for the three following choices: 
(1) σπ N = 45 MeV, λθ = −0.15; (2) σπ N = 30 MeV, λθ = +0.1; 
(3) σπ N = 60 MeV, λθ = −0.1. They correspond to very close val-
ues of � = 0.147, 0.144, 0.152, respectively. More generally we 
show in Fig. 3 the full extent of these degeneracies, using both 
the full NLO results and the approximate formula Eq. (14) (dashed 
lines), both appropriately averaged over isotopes. The left panel 
shows contours of fixed rmin (where R̄NLO(Xe)/R̄NLO(Si) is mini-
mized for fixed couplings λθ and λs). Here one finds a range of val-
ues for rmin. The right panel shows contours of R̄NLO(Xe)/R̄NLO(Si)
evaluated at rmin. Here one finds the double ratio to have only 
O (1) variation across the plane, demonstrating the existence of 
other values of r, λs and λθ having equally good suppression of 
the relative rate as compared to the canonical IVDM scenario. In 
comparing the two panels note the approximate analytic and full 
numerical expressions have good agreement for contours of rmin, 
whereas for the double ratio R̄NLO(Xe)/R̄NLO(Si)[rmin] there is also 
good agreement over much of the panel, except in the region 
where rmin becomes large. These two seemingly contrasting fea-
tures can be easily understood. The point is that the numerator 
of the double ratio is a quadratic form in r and �, with slightly 
different coefficients between the exact and approximate expres-
sions. Since the value of the quadratic form at the minimum is 
suppressed (with only one isotope it would be zero) through a 
cancellation between terms that are each large, small differences 
in the coefficients between the full and approximate expressions 
lead to larger variation in the value of the minimum, especially as 
rmin becomes large.4

An approximate degeneracy also passes through the canonical 
IVDM point having r = −0.7 and λs = λθ = 0. This point has � = 0, 
which selects δ f � −0.118 MeV. One finds almost perfect degener-
acy in the degradation variable along this line, provided λs < O (1). 

4 This can be understood in more detail. Indeed consider a quadratic function 
V (r) = ar2 + br + c. The position of the minimum and value at the minimum are: 
rmin = −b/(2a) and V (rmin) = c − b2/(4a). If we know the coefficients a, b, c only 
approximately: a1 = a(1 + ε1), b1 = b(1 + ε2), c1 = c(1 + ε3), then the approximate 
formulas for rappr

min = rmin(1 +ε2 −ε1) and V (rmin)appr = V (rmin)(1 +ε3) +ar2
min(ε1 −

2ε2 + ε3) and thus if ar2
min � V (rmin) the value at the minimum cannot be re-

solved by an approximate formula. In reality in right panel of Fig. 3 the ratio of two 
quadratic equations is minimized, but the conclusions from our toy model apply.
Values of couplings along this line will provide as good a fit to the 
direct detection data as the canonical point. For larger values of λs
the slope terms become important and the degeneracy weakens.

This analysis illustrates an important point: hadronic uncer-
tainties affect the extraction of quark-WIMP couplings from phe-
nomenologically interesting regions in the σp –r plane. In turn, this 
affects other aspects of WIMP phenomenology such as indirect de-
tection or collider searches.

Finally, the above expressions also show how the effect of chi-
ral corrections on the location of the minimum is amplified. For 
example a typical chiral correction � ∼ 0.15 implies that for both 
Ge and Xe the second factor in Eq. (16) is about 1.8 and nearly the 
same for both elements because they each have Z̄ � 0.4. The am-
plification arises from the factors of Z̄ , 1 − Z̄ and from the fact that 
the corrections to numerator and denominator have the opposite 
sign.

It is legitimate at this point to ask how higher order chiral cor-
rections affect the above analysis. In order to address this point we 
have derived the structure of the WIMP-nucleus cross-section to all 
orders in the chiral expansion. The derivation involves the following 
steps:

• Note that the WIMP-nucleus scattering amplitude A to all or-
ders in the chiral expansion is linear in the short-distance 
parameters: A = ∑

i λiAi . Here each individual Ai admits a 
chiral expansion: Ai =ALO

i +ANLO
i + ....

• Next, perform the change of variables λu,d,s,θ → f p(0), r =
fn(0)/ f p(0), ̄λs,θ = λs,θ /λu described in the discussion preced-
ing Eqs. (8) and (9). Importantly, this shows that the depen-
dence of the full amplitude on r is linear.

• Finally, make the decomposition Ai =ALO
i + �Ai , thus isolat-

ing the LO contribution.

The final result reads:

dR

dE R
∝ f 2

p × ∣∣[Z F (E R) + A�
(1)
χ (E R;λs,θ )

]

+ r
[
(A − Z)F (E R) + A�

(2)
χ (E R;λs,θ )

]∣∣2
, (18)

where �(1,2)
χ encode the chiral corrections to all orders and are 

given by linear combinations of �Ai with coefficients entirely 
fixed by the change of variables λu,d,s,θ → f p(0), r = fn(0)/ f p(0), 
λ̄s,θ = λs,θ /λu . Moreover we find �(2)

χ = −�
(1)
χ + O (ξ). In the small 

recoil limit of interest here and neglecting O (ξ) terms, the above 
expression matches Eq. (14) with � · Fππ (E R) → �

(1)
χ . Now, as 

long as �(1)
χ has a well-behaved expansion, then the corrections 

to the rate and key quantities such as rmin, R(rmin) (controlled by 
Eqs. (14) and (16)) are also well-behaved. For scalar operators, the 
absence of a dynamical enhancement in light nuclei has been con-
firmed by lattice computations [32]. Therefore we conclude that 
our analysis is robust against higher order corrections in the chiral 
expansion.

5. CDMS-Si vs XENON and LUX at NLO

Throughout, we will assume the Standard Halo Model (SHM), 
which posits ρ0 = 0.3 GeV/cm3 and a Maxwell–Boltzmann velocity 
distribution with variance v0 = 220 km/s, earth-dark matter rela-
tive velocity ve = 220 km/s, and escape velocity vesc = 544 km/s. 
In this letter, we will not consider the sizeable uncertainty in the 
details of the local DM halo. The interested reader can consult pre-
vious direct detection studies which have examined in detail the 
astrophysical uncertainties afflicting direct detection experiments 
[33–36,27,37–41,12,42,14]. We summarize below the key features 
of our fitting procedure:
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Fig. 3. These two panels show the behavior of R̄NLO(Xe)/R̄NLO(Si) as a function of λθ and λs . The left panel shows contour lines of constant rmin, where rmin is the location 
of the minimum of R̄NLO(Xe)/R̄NLO(Si) for fixed couplings λθ and λs . The right panel shows contour lines of constant R̄NLO(Xe)/R̄NLO(Si) evaluated at the minimum r = rmin. 
In both panels the solid lines correspond to full expressions. The dashed lines correspond to the approximate expression of Eq. (14) properly averaged over isotopes. In the 
right panel the red colors give the value of the full expression along that contour, whereas the black colors give the value of the approximate expression. Note that good 
agreement between the analytic and full expression for rmin in the left panel. In contrast, in the right panel the difference in the double ratio between the full and analytic 
expression becomes O (1) as rmin gets large; see Section 4 for more details. Central values of the hadronic matrix elements are assumed. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Best-fit CDMS-Si (contours at 68% and 90% CL) and XENON/CDMS-Ge/LUX exclusions (at 90% CL) under differing assumptions labeled on the top of each panel. In all 
cases, we have set λs = 0 and used central values of the hadronic matrix elements. The left-hand panel shows the “conventional” IVDM point, reproducing results found 
in [13]. The middle and right panel show the same r = −0.7 point with small amounts of λθ turned on. Note that for both points the region allowed in the left panel is now 
excluded.
CDMS Si: We use the acceptance from [11] and a total expo-
sure of 140.2 kg-days. We consider an energy interval [7, 100] keV
and bin the data in 2 keV intervals. The 3 candidate events ap-
pear in the first 3 bins. Following [12], we take the normalized 
background distributions from [43] and rescale them so that neu-
trons contribute 0.13 events, Pb recoils 0.08 events, and the surface 
event background 0.41 surface events. To find best-fit regions we 
obtain the likelihood function and simply plot constant values of 
the likelihood that would correspond to 68% and 90% CL region 
under the assumption that the likelihood distribution is Gaussian.

CDMS Ge: The CDMS Collaboration performed a dedicated anal-
ysis of their detector at low threshold energy [44]. The experiment 
has a signal region from 2 keV to 100 keV. Following [45] and 
[39], we set limits using only one of their Ge detectors – T1Z5 – 
that apparently has the best quality data. We use the efficiencies 
and total exposure provided by the supplemental information to 
[44]. The total exposure of this detector was 35 kg-days. To ac-
count for the finite energy resolution of the detector, the energy of 
the nuclear recoil is smeared according to [46] with an energy res-
olution �E = 0.2

√
E/keV keV [39]. This experiment saw 36 events 

in their signal region whose origin remains undescribed. To set a 
conservative upper limit we attribute all of these events to signal – 
following the experimental collaboration and other theory papers 
[45,39]. Using Poisson statistics a 90% CL signal upper limit of 44 
events is obtained.

For the Xenon10, Xenon100 and LUX experiments we follow 
[47] and convolve the energy-rate dR/dE with a Poisson distribu-
tion in the number of photoelectrons or electrons detected. The 
mean number of electrons expected ν(E) is specific to each ex-
periment, depending on energy-dependent light or electron yields, 
and on scintillation efficiencies.

LUX: The first data release from LUX [7] has an exposure of 
10,065 kg-days. An upper limit of 2.4 signal events for mDM <

10 GeV is reported [48], with up to 5.3 events allowed for larger 
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Fig. 5. Same assumptions as in Fig. 3 with unconventional choices of r that are excluded at LO. Note especially the panel on the bottom right-side which compared to the 
other panels has a different choice of σπ N = 60 MeV. The allowed and excluded regions are practically identical to the panel on the bottom left-side having the same value 
of r. The similarity of these two panels illustrates the interplay of allowed or excluded regions and uncertainties in the hadronic parameters.
masses. We conservatively apply a limit of 2.4 signal events to 
the whole mass range mDM ∈ (5, 30) GeV. We use the acceptance 
provided by [7]. We use the energy-dependent light-yield L y pre-
sented in [48], including a sharp cutoff at 3 keV. We use the 
scintillation efficiency Leff provided by [49]. After convolving, we 
then sum over the S1 signal region (2, 30), finding good agreement 
with the LUX limits [7]. Smearing the number of photoelectrons 
produced with a Gaussian to model the response of the detector, 
as in [47], with a variance of 0.5 PE (photoelectrons), does not ap-
preciably affect our limits.

Xenon10: While the values of the electron yield Q y(E) at low 
energies are controversial, here we simply adopt the collaboration’s 
parameterization from Fig. 1 of [5], assuming a sharp cutoff to 
zero at 1.4 keV nuclear recoil energy. Their signal region is from 
5 electrons to ≈ 35 electrons, corresponding to nuclear recoils of 
≈ 1.4 keV to 10 keV, and has an effective exposure of 6.25 kg-days. 
A limit is obtained using Poisson statistics with 23 events expected 
and 23 detected, allowing 9.2 events.

Xenon100: We use the mean ν(E) characterized by [47]. For 
the scintillation efficiency Leff we use the efficiency used in 
Xenon100’s 225-live-day analysis [6], that can be found in Fig. 1 
of Ref. [50] and includes a linear extrapolation to 0 for E below 
3 keV. The response of the detector is modeled by a Gaussian 
smearing with a mean n and variance 

√
nσPMT with σPMT = 0.5 PE 

[47]. The smearing also includes a photoelectron-dependent accep-
tance, which we parameterize from Fig. 1 of [6]. To get the total 
rate we then sum the differential rate over the signal region – 
which for the analysis in [6] corresponds to S1 ∈ (3, 30) PE – and 
use a total exposure of 225 × 34 kg-days [6]. We then use Pois-
son statistics to obtain a 90% CL upper limit where 1 background 
event is expected and 3 observed.

In general we find our exclusions and best-fit region of LO anal-
ysis for r = 1 – the only point we can compare to – have good 
agreement with those of the experimental collaborations.

Let us now turn to discussing fits to the benchmark points 
shown in Fig. 1. In the three panels of Fig. 4 we present our NLO 
results for r = −0.7 and λs = 0, λθ = 0, ±0.1. Our fit for r = −0.7
and λs = 0, λθ = 0 (Benchmark A) agrees well with the LO fits in 
the literature (see e.g., [12,28], and recently, [13]). The r = −0.7
NLO fit with λθ = λs = 0 is essentially identical to the LO fit, 
since at this benchmark point the NLO corrections are acciden-
tally small. The smallness of NLO corrections for these coupling 
values is discussed previously in Section 3. As one can see from 
all panels in Fig. 4 we find that although these benchmarks have 
the same values of r, they lead to qualitatively different fits as 
expected, with a valid region in the parameter space consistent 
with CDMS-Si signal and LUX bound only for λs = 0, λθ = 0. Even 
a relatively small heavy quark coupling, λθ = ±0.1λu , results in 
a completely excluded region with r = −0.7. Thus for r = −0.7
to remain a possibility for improving the compatibility between 
CDMS-Si and the null LUX searches, one must examine models 
with either (i) strongly suppressed second and third generation 
couplings, or (ii) those lying on the δ f � 0 degeneracy, as de-
scribed in Section 4.

Given this tension with the r = −0.7 solution at NLO, one may 
wonder if new solutions with different values of r arise. This in-
deed seems plausible given the results of Section 3. Inspecting the 
left panel of Fig. 1 we see three choices of parameters that may 
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result in an improved compatibility between LUX and CDMS-Si: 
(1) Benchmark D: λθ = −0.025λu with r = +0.15, (2) Benchmark 
E: λθ = −0.1λu with r = −1.45, and (3) Benchmark F : r = −1
for λθ = +0.1λu . This observation motivates the choice of Bench-
marks D , E and F whose fits are shown in Fig. 5. We see that 
these very different choices of −1.45 � fn/ f p � .15 can result in 
a comparable reduction in tension between the Xenon based ex-
periments and CDMS-Si. In the absence of NLO corrections, these 
benchmarks would be strongly excluded.

Lastly, we choose Benchmark G (λθ = λs = 1 with r = −1) to 
illustrate one of the degeneracies discussed in Section 4. The fit 
with this set of parameters is illustrated in the bottom right panel 
of Fig. 5. This final benchmark is chosen with σπ N = 60 MeV, such 
that it is roughly degenerate with Benchmark F . Upon inspection 
of the fits resulting from the two benchmarks, we see that in-
deed all the experiments have nearly identical sensitivities. This 
final benchmark requires σπ N to be high in order to remain con-
sistent with the constraints from LUX, and is completely excluded 
at 90% CL with σπ N at its central value of 45 MeV.

6. Conclusions

The CDMS-Si data remain intriguing and may point to a DM 
candidate with couplings to quarks that are isospin-violating. For a 
representative case of scalar-mediated DM-quark interactions, we 
have studied the effect of long-distance QCD corrections for IVDM 
models. We use chiral EFT and connect the short-distance coeffi-
cients directly to the DM-nucleus cross section.

At leading order in chiral power counting it is well-known only 
two short-distance parameters appear, r and σp . At next-to-leading 
order, however, for a scalar operator two additional parameters 
appear. We choose for convenience the following independent pa-
rameters r, σp, λs, λθ , that can all take arbitrary values. In the limit 
of light DM particles, the chiral corrections are dominated by the 
two-nucleon amplitude, for which more work beyond the nuclear 
shell model would be highly desirable. We find that for a broad 
set of values of extra parameters λs and λθ qualitative changes for 
IVDM phenomenology occur. These can be divided into two cate-
gories.

In the first category, the standard r = −0.7 value for IVDM 
models generically fails to reconcile the LUX exclusion with the 
CDMS Si best-fit region. This happens because generically the NLO 
corrections wash out the effect of the LO tuning of Xenon signal. 
It should be noted however, that for special scenarios, when in the 
low-energy theory either the DM only has couplings to the first gen-
eration quarks or has couplings lying on the δ f ≈ 0 degeneracy (see 
Section 4), we find that NLO corrections are small, which can be 
seen from the left panel in Fig. 1. This situation is quite special, as 
can be seen from the same figure: by turning up λθ by only 10%
of the value for λu , the value for r shifts by a number of the or-
der of 1. Consistently, in Fig. 4 we see that holding r = −0.7 fixed 
while turning |λθ | from 0 to 0.1 results in a complete exclusion.

In the second category, new values of the parameter r �= −0.7, 
that are excluded by the leading order analysis, can at NLO par-
tially reconcile the LUX and CDMS experiments, though strong 
tension remains. We find that values as low as r = −1.4 can 
be achieved. In fact from Figs. 1 and 2 one can see that almost 
any number r = −∞ to r = ∞ is allowed for given (tuned) val-
ues of the extra parameters λs and λθ . So there is a manifold of 
“Xenophobic” couplings that extends beyond the canonical point 
r = −0.7, λs,θ = 0 (benchmark A). This makes the IVDM scenario 
richer, but more model-dependent. A case in point is provided 
by the comparison of benchmarks points A and G . While leading 
to very similar direct detection phenomenology, they have quite 
distinct short-distance couplings. Benchmark A, having r = −0.7, 
corresponds to λd/λu = λ̃d/λ̃u � −0.5 and λs,θ = 0. On the other 
hand benchmark G , having r = −1, has a much larger relative cou-
pling to the heavy quarks or gluons (λs = λθ = 1) and an even 
larger relative effective coupling to the down quark: λd � −34. In 
terms of ratios of short-distance couplings, λ̃s/λ̃u = 1, λθ/λ̃u = 0.5, 
and λ̃d/λ̃u � −16.5.

To summarize, our main conclusions are the following:

• It is important to include NLO effects when fitting theory 
to experiment. A LO-only based analysis can give wrong re-
sults. We encourage experimental collaborations to include 
NLO computations when performing fits or exclusions.

• At NLO more than 3 parameters appear. This affects the inter-
pretation of a putative positive signal. This is illustrated with 
several examples, where we find at NLO, for example, new val-
ues of r not equal to −0.7 and that are excluded at LO.

• We derive the structure of the scattering amplitude to all or-
ders in the chiral expansion. The scattering rate and best fit 
points at NLO are robust against higher order corrections pro-
vided the chiral expansions of �(1,2)

χ are well-behaved.
• In matching UV quark operators onto nucleon operators, the 

chiral effective theory method provides an important interme-
diate step when going beyond LO.

• Additional experiments may be necessary to break degenera-
cies.

These results invite a more detailed study of implications of 
NLO chiral corrections for IVDM. Particularly, since widely differ-
ent values of the λd , λs and λθ couplings can lead to similar 
direct-detection phenomenology, one expects the constraints and 
signatures arising from colliders will be important to further dis-
tinguish viable scenarios.
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