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mitochondria into the cytosol, triggers formation of the apoptosome resulting
in activation of caspases. This paper reviews the evidence for and against the redox state of cytochrome c
regulating apoptosis, and possible mechanisms of this. Three research groups have found that the oxidized
form of cytochrome c (Fe3+) can induce caspase activation via the apoptosome, while the reduced form (Fe2+)
cannot. It is unclear whether this is due to the oxidized and reduced forms of cytochrome c having: (i)
different affinities for Apaf-1, (ii) different abilities to activate Apaf-1 once bound, or (iii) different affinities
for other components of the cell. Experiments replacing the Fe of cytochrome c with redox-inactive metals
indicate that cytochrome c does not have to change redox states to activate caspases. In healthy cells,
cytosolic cytochrome c is rapidly reduced by various enzymes and/or reductants, which may function to
block apoptosis. However, in apoptotic cells, cytosolic cytochrome c is rapidly oxidized by mitochondrial
cytochrome oxidase, to which it has access due to permeabilization of the outer membrane. Regulation of the
redox state of cytochrome c potentially enables regulation of the intrinsic pathway of apoptosis at a relatively
late stage.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction
The intrinsic pathway of apoptosis is mediated by various stimuli
that cause the release of cytochrome c from mitochondria into the
cytoplasm, triggering caspase activation [1,2]. Though the release of
cytochrome c from mitochondria is irreversible, recent evidence
suggests that the execution phase of apoptosis is highly regulated
even after cytochrome c release [3,4]. There are several possible levels
of such regulation and the redox state of cytosolic cytochrome c may
be one of them [5]. This paper reviews the evidence for and against the
redox state of cytochrome c regulating apoptosis, and possible
mechanisms by which such regulation might be brought about.

2. The apoptosome

Once released from mitochondria, cytochrome c participates in
assembling a multimeric, caspase-9-activating complex — the apopto-
some. Studies on reconstituted apoptosomes using purified proteins
indicate that Apaf-1, cytochrome c, pro-caspase-9 and dATP/ATP are the
necessary and sufficient components of the complex, though some
additional proteins may be involved (such as XIAP, Hsp70 and Aven)
; CARD, caspase recruitment
iNOS, inducible nitric oxide

-chromosome-linked inhibitor
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[6,7]. Apaf-1 is a cytosolic protein existing as an inactive, monomeric,
closed conformation until the apoptotic signal – appearance of cyto-
chrome c in cytosol – is received. Cytochrome c binds to the WD40
domains of Apaf-1, stabilizing an open conformation of Apaf-1 that
hydrolyses dATP or ATP bound to the nucleotide-binding domain. This is
followed by nucleotide exchange, which triggers oligomerisation into a
heptamer of 7 Apaf-1molecules, which is then capable of recruiting and
activating pro-caspase-9 via the CARD domains of Apaf-1 and pro-
caspase-9 [8]. It has been proposed that cytochrome c interacts only
transiently with Apaf-1 triggering assembly of the apoptosome as some
laboratories have been unable to find any cytochrome c in immunopre-
cipitated apoptosomes [3,9]. However, Zou et al. [10] did find significant
amounts of cytochrome c in themature apoptosome, although less than
the amounts of Apaf-1 and caspase-9.

3. Early evidence on cytochrome c redox state and apoptosis

Cytochrome c exists in interconvertible reduced (haem Fe2+) or
oxidized (haem Fe3+) forms. The structures of these two forms (see
Fig. 1) are similar [11,12] but there are significant differences [13]
leading to different physical properties of compressibility, stability,
solvent accessibility, radius of gyration and maximum linear dimen-
sion [14]. The reduced form of cytochrome c also binds less to anions,
and binds less tightly to negatively charged membranes [15].

Because the reduced and oxidized forms of cytochrome c have
different physical and biochemical properties, one may ask whether
they are equally capable of activating the apoptosome. However,
shortly after the discovery of the role of cytochrome c in apoptosis
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Fig. 1. Schematic representations of structures of oxidized (right) and reduced (left) horse heart cytochrome c (drawn with the program Molscript). The peptide backbone is
represented as a white line except where it is alpha-helical when it is represented as green ribbon. The haem is seen edge on in the centre with iron atom in red. Reprinted with
permission from [13]. Copyright (2008) American Chemical Society.
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there were two reports apparently showing that the redox state of
cytochrome c was not important for caspase activation through the
apoptosome [16,17].

Kluck et al. [17] found that the haem Fe of cytochrome c could be
replaced by a redox-inactive Cu or Zn with little effect on its pro-
apoptotic function (50% reduced activity). However, the efficacy of
redox-inactive cytochrome c shows only that cytochrome c does not
have to change redox states to be effective. Kluck et al. [17] also found
that oxidation of the cytochrome c in the cell-cytosolic extracts with
6 mM ferricyanide inhibited caspase activation. But they went on to
show that this inhibition occurred directly on the caspases (and
possibly Apaf-1) rather than via the redox state of cytochrome c.
Indeed it has been shown that the caspases are inactivated by
oxidation, probably at the active-site cysteine residue [18–20]. Thus
although Kluck et al. [17] showed that cytochrome c does not have to
change redox states to be effective, they were unable to test whether
the reduced and oxidized forms were equally effective.

Interestingly Kluck et al. [17] found that there was a threshold of
cytochrome c concentration to cause caspase activation (no activation
by 20 nM cytochrome c); while at higher concentrations there was lag
time before caspase activation (of 3 h at 40 nM cytochrome c, but just
15 min at 80 nM cytochrome c). In the conditions they used the
cytochrome c was largely reduced (at least initially). We have found
that this lag phase is decreased by keeping the cytochrome c oxidized
(by adding cytochrome c oxidase) [21]. This may indicate that the
oxidized and reduced forms of cytochrome c have different kinetics of
activation of the apoptosome, or that the redox state of cytochrome c
is changing during the incubation.

Hampton et al. [16] showed that cytochrome c added to cytosolic
extracts was rapidly reduced, and this reduction was enhanced by
addition of dithiothreitol (DTT). DTT is routinely used in assays of
caspase activation to prevent their inactivation by oxidants. This
complicates the analysis of the role of cytochrome c redox state in
caspase activation, because agents that maintain caspases in the
reduced state (such as DTT or reduced glutathione) also reduce
cytochrome c, and agents that oxidize cytochrome c, (H2O2 or
ferricyanide) also oxidize (and inhibit) the caspases. The finding that
cytosol rapidly reduces cytochrome c lead Hampton et al. [16] to
conclude that even if the redox state of cytochrome c affected caspase
activation it would be irrelevant in the cells because cytochrome c in
the cytosol would always be strongly reduced. However, we have
found that while homogenates of healthy cells reduce added
cytochrome c, those of apoptotic cells oxidize cytochrome c probably
due to the cytochrome c oxidase of the cytochrome c-permeable
apoptotic mitochondria [21].
Although Kluck et al. [17] and Hampton et al. [16] concluded that
cytochrome c did not need to change redox states to activate caspases,
they did find that activation was dependent on subtle structural
features of cytochrome c. Kluck et al. [17] showed that yeast
cytochrome c was unable to activate the caspases, although it has a
very similar structure to the mammalian and fish cytochrome c that
does activate. Hampton et al. [16] showed that biotinylated cyto-
chrome c or cytochrome without the haem were incapable of
activating the caspases. And they showed that (physiologically) high
ionic strength inhibited cytochrome c-induced caspase activation,
indicating that the interaction of cytochrome c with the apoptosome
was largely ionic. Since the redox state of cytochrome c changes its net
charge as well as a variety of subtle structural features [14] that affect
its binding to proteins and membranes, the redox state might at least
in principle affect its binding to the apoptosome.

4. Later evidence that cytochrome c redox state does
affect apoptosis

Pan et al. [22] found that addition of oxidized cytochrome c to cell
extracts induced apoptotic activity (measured by nuclear fragmenta-
tion), whereas addition of reduced cytochrome c had no effect.
Furthermore, addition of cytochrome c reductase completely blocked
the ability of the added oxidized cytochrome c to induce apoptotic
activity. This activity was also inhibited by ascorbate, glutathione,
cysteine and N-acetyl-cysteine, which are all capable of reducing
cytochrome c. This work indicated that reduced cytochrome c was
incapable of inducing apoptosis (at least at the concentrations, time
and ionic strength used).

Suto et al. [23] found that addition of oxidized cytochrome c to a
cytosolic extract resulted in processing and activation of both caspase
9 and caspase 3, whereas addition of reduced cytochrome c had no
effect on either processing or activation of either caspase. They also
found that addition of glutathione or cysteine to reduce the
cytochrome c inhibited the ability of added oxidized cytochrome c
to activate the caspases.

Similarly, we [21] found that cytochrome c added to cytosolic
extracts was partially reduced, but if the cytochrome c was further
reduced by adding cytochrome c reductase, ascorbate, DTT or TMPD
then caspase activation was partially inhibited, whereas when the
cytochrome cwas oxidized by adding cytochrome c oxidase the rate of
caspase activation was stimulated. Loading cytochrome c reductase
into cells or incubating cells with ascorbate plus TMPD to reduce
intracellular cytochrome c strongly inhibited staurosporine-induced
apoptosis and caspase activation but not cytochrome c release,
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indicating that reduction of cytosolic cytochrome c blocks caspase
activation [21]. Furthermore, we found that mitochondria from
apoptotic cells (but not healthy cells) are capable of fully oxidizing
cytosolic cytochrome c via cytochrome oxidase. In contrast to previous
work, cell homogenates (containingmitochondria) rather than cytosols
were used, and this approach revealed an important difference between
healthy and apoptotic cells: rapid oxidation of added cytochrome c in
homogenates of cells undergoing apoptosis and rapid reduction of
cytochrome c in homogenates of normal, non-apoptotic cells. It was also
found that cytochrome c oxidation was carried out by mitochondrial
cytochrome oxidase as the oxidation was prevented when cytochrome
oxidase was inhibited by azide or if mitochondria were removed from
the homogenate. Thus permeabilization of the outer mitochondrial
membrane during apoptosis may have a function not only in the release
of cytochrome c but also in facilitating its oxidation via cytochrome
oxidase, thus maximizing activation of caspases.

The experiments of Pan et al.[22], Suto et al.[23], and Borutaite and
Brown [18] are all consistent in that they show that oxidized
cytochrome c induces caspase activation in cytosols, whereas reduced
cytochrome c has little or no capacity to activate the caspases. But to
what extent are these results consistent with the earlier results of
Kluck et al. [17] and Hampton et al.[16], and subsequent work with the
reconstituted apoptosome where cytochrome c is likely to be reduced
due to the presence of DTT? It is difficult to knowwhether these results
are consistent without comparing the kinetics of apoptosome activa-
tion with known concentrations and redox states of cytochrome c,
and at similar ionic strengths, and over similar time scales. These
kinetics are known to be complex (Kluck et al. [17]), which might in
part reflect changes in the redox state of cytochrome c. The reduced
and oxidized forms of cytochrome cmayalso compete for binding and/
or activation of the apoptosome, so that the amount of activation may
depend on the time and concentrations involved. For example, if the
reduced form of cytochrome c binds to Apaf-1 with lower affinity than
the oxidized form, this block on activation might be overcome simply
by increasing the concentration of cytochrome c added to (potentially
unphysiologically) high concentrations (or by reducing the ionic
strength). Only careful experiments measuring the kinetics of the
reconstituted apoptosome will resolve these issues.
Fig. 2. Regulation of apoptosis by the redox state of cytosolic cytochrome c. Cytochrome c is o
it binds to Apaf-1 forming the apoptosomewhich activates pro-caspase-9 leading to apoptosi
superoxide, ascorbate, reduced glutathione (GSH), some chemicals such as tetramethylphen
cytosolic NAD(P)H oxidases). This reduced cytochrome c cannot activate the apoptosome, a
5. Redox state of cytosolic cytochrome c

During apoptotic cytochrome c release, the mitochondrial mem-
brane potential is known to depolarize, followed by repolarization (if
caspases are inhibited) over a time course of about 1 h [24,25]. During
the depolarization the cytosolic cytochrome c is presumably oxidized,
and thus capable of activating the apoptosome. It is not clear what
mediates the repolarization, but may involve upregulation of some
cytochrome c reducing activity, either in the mitochondria or cytosol.
One possibility is the high NADH-cytochrome c oxidoreductase
activity of the outer mitochondrial membrane, which is limited by
NADH supply from glycolysis. In preliminary experiments we found
that this activity can strongly reduce cytosolic cytochrome c when
mitochondria are added together with NADH (unpublished data).

iNOS and nNOS are found in the cytoplasm and can reduce
cytochrome c at a rate over a hundred-fold greater than the rate at
which they produce NO [26,27]. nNOS-expressing neurons are
selectively protected from cell death induced by a variety of insults
[28,29] and iNOS-induction is known to protect avariety of tissues. One
mechanism of this protection might be reduction of cytosolic
cytochrome c by NOS. However, once the mitochondria are permea-
bilized to cytochrome c, cytochrome oxidase is able to potently oxidize
cytosolic cytochrome c. We and others have shown that NO and
hypoxia synergistically inhibit cytochrome oxidase [30–33]. Thus
NO and hypoxia potentially block apoptosis by inhibiting cyto-
chrome oxidase, resulting in reduction of cytosolic cytochrome c
(the reduction being partly due to complex III of the permeabilized
mitochondria).

Other cytosolic enzymes known to reduce cytochrome c include
P450s, P450 reductases, b5, b5 reductases and neuroglobin. Neuroglo-
bin is a recently found protein of the globin family [34]. Its expression
level is high in neurons and retina — cells that are also relatively
resistant to apoptosis. The biological function of neuroglobin is not
entirely clear but it has been shown that upregulation of this protein
protects neurons from hypoxic and ischemic damage [35]. Recently it
was found that neuroglobin can rapidly reduce cytochrome c and it
was proposed that the protective effect of neuroglobin against
apoptosis in neurons might be mediated by this means [36].
xidized by mitochondrial cytochrome oxidase (COX) and in this oxidized form (Cyt. cox)
s. Cytosolic cytochrome c can be reduced (Cyt. cred.) by various reductants which include
ylenediamine (TMPD) and reducing enzymes (cytochromes b5, P450, NOS, neuroglobin,
nd therefore does not promote apoptosis.
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Cytosolic cytochrome c can also be reduced by ascorbate,
glutathione, cysteine and superoxide, and can be oxidized by H2O2

[5]. But it is unclear whether these rates are fast enough in cells to
compete with the enzyme catalysed rates. Cytochrome c release
during apoptosis can cause increased mitochondrial superoxide
production, which dismutates to hydrogen peroxide (via superoxide
dismutase) and this can oxidize cellular glutathione (via glutathione
peroxidase) [37]. Since the superoxide and glutathione can reduce
cytosolic cytochrome c, while the hydrogen peroxide can oxidize, it
is unclear what effect this stimulated mitochondrial oxidant
production will have. Apoptosis can be regulated by many different
redox molecules acting at different sites in the cell [5,38,39]. It is
possible that once cytochrome c is released into the cytoplasm it
comes into equilibrium with the ‘cytosolic redox state’ i.e. the system
of oxidants and antioxidants that are broadly in equilibrium with
reduced/oxidized glutathione. However, it seems more likely that
reduction and oxidation of cytochrome c in the cytoplasm is
dominated by specific enzyme catalysed reactions, such as that of
cytochrome oxidase.

6. Mechanisms by which the redox state of cytochrome c may
regulate apoptosis

As pointed out above, experimental evidence indicates that the
redox activity of cytochrome c is not necessary for apoptosome
formation or activation of caspases (i.e. it does not have to CHANGE
redox states). However, there remain at least three possible mechan-
isms by which the redox state of cytochrome c might influence
activation of the apoptosome:

(a) The reduced and oxidized forms of cytochrome c might have
different binding affinities for Apaf-1. To be consistent with the
results above, the reduced form of cytochrome c would need to
have a lower affinity or on rate for binding to Apaf-1. Binding of
cytochrome c to Apaf-1 involves many residues on different
areas of the surface, particularly lysine residues around the haem
edge [13,40,41], and the relative positions of these residues does
change with redox state [13], but as the binding is mainly
electrostatic it is hard to know whether this will have much
affect on the affinity.

(b) The reduced and oxidized forms of cytochrome c might have
different abilities to activate Apaf-1 (after binding). Binding of
cytochrome c to Apaf-1 causes hydrolysis of bound dATP to dADP,
followed by nucleotide exchange with free dATP, which then
allows activation of the apoptosome, whereas if the nucleotide
exchange does not occur the apoptosome becomes irreversibly
inactivated. The reduced form of cytochrome c might bind to
monomeric Apaf-1, but he incapable of causing dATP hydrolysis or
exchange, thus blocking activation, and potentially leading to
inactivation.

(c) Reduced cytochrome c might be less capable of activating the
apoptosome because it preferentially binds to other cell compo-
nents (proteins, membranes, DNA) thus leaving less free to bind to
the apoptosome. Cytochrome c has a net positive charge and is
known to bind to DNA, to negatively charged membranes, and to a
variety of cytosolic proteins (such as cytochrome b5 and the IP3
receptor). The redox state of cytochrome cmight affect the affinity
of binding to these components. Cytochrome c also binds to ATP
and this is known to block its activation of Apaf-1 [42], so if the
reduced form of cytochrome c bound more ATP this might explain
its inability to activate.

The redox state of cytochrome c might also regulate apoptosis
upstream or downstream of caspase activation. According to the work
of Kagan et al. [43,44], the oxidized form of cytochrome c can pero-
xidize mitochondrial cardiolipin, which apparently favours cyto-
chrome c release from the mitochondria. Since the reduced form of
cytochrome c is unlikely to be capable of oxidizing cardiolipin, this
might be one way in which the redox state of cytochrome c regulates
apoptosis, although such regulation would be prior to cytochrome c
release. Kagan's group have also provided evidence that once released
from mitochondria the oxidized form of cytochrome c can peroxidize
phosphatidylserine on the inside of the plasma membrane [45,46].
This oxidized form of phosphatidylserine is apparently preferentially
exported to the outer leaflet of the plasma membrane, where it
provides an ‘eat-me’ signal to phagocytes. Here again, since the
reduced form of cytochrome c is unlikely to be capable of oxidizing
phosphatidylserine, this might be one way in which the redox state of
cytochrome c regulates apoptosis, although such regulation would be
at the level of phosphatidylserine exposure.

7. Conclusions

Accumulating evidence suggests that the balance between reductive
and oxidative pathways in cells determines the redox steady-state of
cytochrome c (Fig. 2), and through thismay regulate caspase activation by
the apoptosome (as discussed in [32]). Apoptosis mediates programmed
cell death, host defence and some pathology. Regulation of apoptosis is
also important to the development of cancer and its treatment. Indeed
there is evidence that activation of caspase-9 by cytochrome c is blocked
in some cancer cells [47]. Therefore, understanding how apoptosis is
regulated at various levels may have important clinical implications.
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