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Abstract. The main result of this article is the Representation Theorem which characterizes families
of rational functions of bounded complexity by appropriate mappings. This d- - cription is not
only independent of the characteristic of the underlying field but also of the specific complexity
measure under consideration. As an application of the Representation Theorem we derive good
lower complexity bounds.

1. Introduction

An important problem in complexity theory is to determine the complexity of
evaluating a finite set of rational functions. A very powerful method to treat that
problem was introduced by Strassen [12]. He discovered polynomial mappings
which describe families of functions with bounded complexity. In the meantime
this idea has been applied and modified in many cases, see, e.g., Borodin-Cook
[1], Schnorr [8], Schnorr-van de Wiele [9], Heintz-Sieveking [6], Heintz-Schnorr
[5], ven zur Gathen-Strassen [3]. It is striking that all those articles need restrictions
with respect to ti.c complexity measures or the field of coefficients under consider-
ation, let alone additional more technical assumptiors.

In the present article we present a version of the Representation Theorem which
does not only include the particular cases mentioned above, but also provides further
results and holds completely independently of the complexity measure and the
characteristic of the field. The main technical device in the proof is to replace the
polynomial mappings, considered so far, by elements of an appropriate algebra (see
Section 3).

As far as applications are concerned we restrict our considerations in this article
to a simultaneous proof of lower bounds for the complexity of polynomials with
algebraic coefficients. They turn out to be optimal with respect to the order of
magnitude. These results have only been established in several special cases with
specific proofs every time.

In a separate article [10] we give further applications of the Representaiicn
Theorem and prove lower complexity bounds which hold for large classes of
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polynomials, e.g., for polyno:aials With 0-1-coefficients, diviscrs or multiples of
given polynomials. We usz thc followjyg model of computation (see, e.g., Strassen
[11], Borodin-Munro [2]}.

Let G be a field with primef e!d E, Xis - - -» Xn :ndeterminates and G(x) the field
of rational functions in x,, . .., x,. A ¢gmputation seGuence 8 in G(x) is a sequence
B=(r,...,rn)eG(x)* where for ajy i=1,...,k either ,e Gu{x,,...,x,} or
ri=rjon with 1<j, I<i and <« e{¥, _ *,/} and %0 in case of division. A set
{fi,...,fm}< G(x) is said to b: compyted by B if {f,,..., fut<{r,...,n}. Let F
be a subfield of G. We call an cperatigq r: =r; ° r, a F-nonscalar operation if r; and
rne G(x)\F and o= or if r,zG(x)\F and °=/. We consider the complexity
measures

Lg(B)=# of F-nonscalar operatigys in g,

L.(B)=# of additions or subtractjons in B,

L.(B):=# of all arithmetic operagjons in B.

For F = G the measure L is 'ust thg Ostrowsky complexity, L is essentially the
measure which counts all multiplicagjve operations. For any complexity measure
Le{Lr,L,, Ly} and f,,...,fn = G(x) we define the complexity

L(fy, ..., f»)=min{L{B)| B computes{,,...,fi.}}.

Before discussing the details we d¢sepjpe briefly the main ideas which lead to the
Representation Theorem. First of al] we combine generic computations for the
complexity measures under considerggion into one recursion scheme (see (2.1))
which, by specification of its free Pargmeters, allows every family (f,,...,f,) of
functions with complexity say < * {Q ¢ represented.

The use of generic computations is a Coramon technique for this subject but a
more detailed analysis leads to te :njcal complications. Therefore we replace that
recursio~ scheme (2..) by anoth:r gcheme (2.5) which also allows all families
(fis-...Jm) with complexity <t :0 y represented and is better adapted to our
futher consideration. Next we expar'd pgtional ftnctions into power series and obtain
the desired mappings which descripe families with complexity <t from the
coefficients of the power series eXpgpsions of certain functions defined by that
recursion scheme (2.5).

In Section 3 we analyse the algebryjc properties of those mappings. It turns out
that in the case of the characteristic - ) = 0 they are given by polynomials while
in the general case we can describe thm by elements in a tensor product of a ring

of polynomials over the rational numy¢rs and a full polynomial ring over the prime
field E of G.

2. Recursions for functions of boundey complexity

Let 8 be a computation for f,, .- . fn€ (G (x) with Le(B)=t. We can transforin
B by collecting uncounted steps into ¢pe fol'owing recursion scheme:

ln_n_',j::x]' (j=1,...,n)7
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i~1 i-1
Ti=yi+ Y o;P, Ti=y/+ ¥ ovjP,

j=—n+1 j==—n+1

Pe=zTi*x T/+(1-2)TY/T)  (i=1,...,1),

fu =Tp= Veru T Z Vst P (=1 ...,m).
j=-n+1
P, (i=1,...,t) are the results of the nonscalar steps, the parameters y!, y?, yi€ G,
v, Uy, U; € F express the uncounted scalar steps and z; € {0, 1} gives the iype of the
ith nonscalar operation. This scheme is known as “‘generic computation”.
In a similar way we can transform a computation 8 with L. () = t into a recursion.
We collect uncounted steps into terms of the form

i—1 i—1
Si=yi T P  S'=y! T P&,
j=—-n+1 j=—n+l
with y;, yi € G, uj;, uj;e Z and express the counted additions/subtractions by
P,:=S;+zS] withz;e{+1,-1}.

We combine these recursion schemes to the foliowing generalized generic computa-
tion scheme where the parameters uj;, uj range over Z, all others over G.

Given m, n, teN, define forj=1,...,n, P_,,;i=x;andfori=1,..., t+ m define
t(i)==min{i—1, t} and

(i) (i)

Si=yh I P, st=yn 11 P,
Jj=-—n+1 j=—n+1
1(i) (i)
Ti=yo+ ¥ 0P, Ti=yp+ ¥ vjP, (2.1)
Jj=—n+l j=—n+i

P yl3S +,V-4S’ +.V.5T'* T”"‘)’.a ,/ T”"')’;/T'

This recursion scheme contains

+m
(Z (n+i-1)+ 'Z (n+t)) =(t+2m)(t+2n—-1)-2m(n—1) (2.2)
i=t+1

exponents u, the same number of parameters v and say s’ parameters y. Clearly,
this recursion defines for every choice (i, 5, y)e€ Z"x G" x G* rational functions
P.(4, 0, y)(x), Si(4, 3, y)(x),...€ G(x) provided there is no division by zero. We
call a choice admissible if all these functions are defined and not the zero element
of G(r). The construction of that recursion scheme easily yields this: if Le
‘Lp,L,, L.} is a complexity measure and f,,...,f,€ G(x) are functions with
L(f,,...,[n)=<t then there is a choice (4, v, y) of parameters in (2.1) such that

fp,(x)zl)l+u(ﬁ9 13,}‘;)(1') (F’=ls"',m)

holds. Moreover, this remains valid if we restrict the parameters u, v to certain sets
M(L)c= Z"x G" depending on the complexity measure under consideration:
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To model computations 8 with L() < t itis enough to choose in (2.1) parameters

(4, 8)e M(Lg)={0} X F". (2.3a)
Likewise, parameters
(4, 5)e M(L.}=2Z"x{0} (2.3b)

allow computations B8 with L,(B)<t to be modelled. Finally, we can model
computations B8 with L(B) =<t Here it is enough toc choose

('2, 6) € M(Ltot) (230)

which consists of all pairs (4, v) €{0, 1} x{0, 1}" =Z"x G" where for all i at most
one of the uj; equals 1 and ditto for the uj, v, vj. This set contains at most
(t+m+1)*"*™ elements.

From these observations the proof of the following lemma is quite simple.

Lemma 2.1. Let Le{Lf, L., L.} be a complexity measure and f,,...,f,c G(x)
nontrivial functions with L(f,,...,fn)<t Then there is an admissible choice

(h,8,5)e M(L)xG* <Z'xG"xG*
Jfor the parameters of the recursion (2.1) such that

JuX) =P (u0,y)(x) (n=1,...,m). (2.4)

Our goal is to describe functions of bounded complexity. Lemma 2.1 is a first
step in that direction. But though the definition of the recursion scheme (2.1) is
quite natural the solutions P; of (2.1) are only partially defined with respect to the
parameters u, v, y and thus several technical complications arise for a more detailed
analysis of the P,.

To avoid these problems our next step is to replace the recursion (2.1) by the
recursion (2.5) below which has solutions for every choice of its parameters and
again allows a result similar to Lemma 2.1 to be proved. In that scheme the parameters
u range over Z, the parameters v over G and the w’s over H which denotes an
extension field of G of infinite cardinality.

Given m, n, teN, define forj=1,...,n, R_,.j=1+wgx;andfori=1,...,t+m
define t(i):==min{i—1, ¢t} and

£

1() , 1) 3
U= 11 RS U= T RS,

ji=n+1 j= =+l
1)
Visl+lwh ¥ ojwp(R—1) |,
Jj=—n+1
1(i) .
Vi=i+|wl Y viwp(R —1) |, (2.5)
Jor—n+1

Ri=1+[wis(Ui =D+ w (U] —1)+wis(V} * Vi-1)
+wie(Vi/ Vi-1)+ wir(Vi— 1)]
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Finally, defire for p =1,...,m,Q, =w,,,,R,,,. This scheme (2.5) contains again
r (see (2.2)) exponents u, the same number of parameters v and

s=8(t+m)+2n (2.6)

parameters w.

Proposition 2.2. For every choice (i, 3, W)€ Z" x G’ x G* of parameters recursion (2.5)
defines functions

R,-(l;, 5’ Pf))(X), U:(ﬁ; 6’ V:’)(X), R ] Qi(l;, '39 '%)(x)e H(x)-
For the proof of this proposition and for later use observe the following fact.

Proposition 2.3. For every choice of the parameters it holds that
R;(4, 5 w)(0)=1 (i=-n+1,...,t+m),
Ui(d, 6, w)(O0) =+ - = Vi(d, 5, W) 0)=1 (i=1,...,t+m),

Qp.("i 61 ‘:’)"0) =W ([.L = 1, caey m).

The next proposition connects both recursions. The P, are defined by (2.1), the
Q. by (2.5).

Proposition 2.4. Given an admissible choice (i, 0, y) € Z" x G" x G* of parameters for
(2.1) there is a hypersurface K < H" with coefficients in G with rhe following property.
For every A € H"\K we can choose w € H* such that for p. =1,..., m

P, (i, 8, §)(x) = Q. (&, 8, W)(x—A).

Proof. Let (#, 0, y) be admissible for (2.1) and let P, S}, etc. denote the functions
defined by (2.1) with that choice. Then all these functions are well defined and
norntrivial £ G(x). We can represent these functions as quotients of polyinomials
€ GIx] and the product of ail these polynomials is a noutrivial polynomial k € G[x].
Because H is infinite the zeros of k form a hypersurface K ¢ H" andforall A € H"\K
the values P,(A) (i=—n+1,..., t+») respectively Sj(A),..., Ti(A) (i=1,...,
t+m) are defined and #0. A straightforward induction shows that the nornied
functions

._&(x+)\) von Si{x+A) e .=S:-’(x+)t)
Rl(x)'- R(A} 9 Ul(x)'— S:(A) 2 Ul(x)' S:’(A) b
! __T_:(_x_i_k_) " .=m
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are solutions of the recursion (2.5) if we choose the parameters (u, v) in (2.5) as
(&, §) and define the w’s as follows:

o . 1 ,

o=t Gt
ol

i1 T:(A)’

Bmh (it e,
TOTI(A)

wp=P(() (i=-n+1,...,t+m) and

o o SiA) o o Si(A) o o TUA)*Ti(A)
Wi3:=J’i3‘I',_(—AS, Wi4-=}’i4rl_u—), Wis = Yis P.(}) >

Co_ T L. T
W.-s-—ympi(“ﬂ,(“, i7°= Yi7 P.(1)

(i=1,...,t+m).

From this we get for u=1,...,m

P.,(x+A)

Q. (&, 6, W)(x) = Wy 2Risp (X) = Py () P. (A)

= t+u (x + A )a
respectively,
Q}L(&a 59 ﬁ)(x_A);-PI-#p.(x)' O

By Proposition 2.4 we can replace in Lemma 2.1 the P,,, by the Q,. This yields
the following lemma.

Lemma 2.5. Let Le{Lg L., L,,} be a complexity measure and f,,...,[,€ G(x)
SJunctions with L(f,,...,f,)<t Then there are a (i, ) M(L) (see (2.3)) and a
hypersurface K < H" with coefficients in G with the property that for every A € H"\ K
there is a we H°® such that

L,(xX)=Q, (4, w)(x—A) (u=1,...,m). (2.7)

o o

Proof. Suppose all f, are nontrivial. By Lemma 2.1 there is a choice (4, 3, y) e
M(L)x G* admissible for the recursion (2.1) with

Ju(x) =P, (0,6, 5)(x) (u=1,...,m).

By Proposition 2.4 there is a hypersurface K < H" and given A € H"\K there is a

we H* with P, (i, 6, §)(x) = Q,(d, 8, w)(x — 1) which yields
fu(x)=Qy,(u°’ 69 ‘:))(x_A) (I‘L‘—'l,"':m)'
By the definition of the Q, in (2.5) that also holds if some of the f,, are trivial. [
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For a more detailed analysis we switch from rational functions to power series.
We call A € H" admissible for ge H(x) if there are polynomials b, k€ H[x] with
h(A)#0and g=k/h.Given A =(A,,...,A,)€ H" admissible for g, ..., g, € H(x)
we can expand these functions into power series € H[[x —A1]]

gn(x)= Z - 8um,,..., v,,(’\)(xl —AI)V' et (xn —’\n)"" (2'8)

Visens ¥y =0
and we denote, given d €N, by
C(g#I"’:la""m; A’d)
= (gp..v.....,v..(A)ll" =lL....mupy+---t+y, < d) € Hm(":d)’ (29)

the vector built from the coefficients up to degree d of these series (2.8).
From Propositions 2.2, 2.3 and the definition of the Q, in (2.5) we have the
following proposition.

Proposition 2.6. (i) Given (1,5, W)eZ"'xG"x H®, A:=0e€ H" is admissible for all
functions R;(d, 6, w)(x), Ui(d, 6, w)(x),..., Q.(& &, w)(x).
(ii) In the corresponding power series expansions

Qu, 6, W)(x)= T Quup, (b 5 W)y - - X1,
0

VY preea ¥ =

.....

holds for the other functions R;, U, etc. given by (2.5).

Given d eN we introduce the mapping
¢d :Zr % Gr X Hs -> Hm(u;d)
(4, 0, W)= (Quy,...., (o, W) |u=1,... .05+ - -+v,<d), (2.10)

which maps every choice of parameters for recursion (2.5) into the coefficiciit vector
of the corresponding functions Q, (, v, w)(x). Now we can reformulate Lemina 2.5
in terms of power series. This yields the following lemma.

Lemma 2.7. Let Le{Lg, L., L.} be a complexity measure and f,,...,fn€ G(x)
functions with L(f,,...,f.)<t Then there are (1,0)e M(L) (see (2.3)) and a
hypersurface K < H" with the following properties:

(i) Every A € H"\K is admissible for f,, ..., fu.

(ii) For every A € H"\K and every d eN we have

c(f“ |l" =1,...,m; A, d)eim ‘pdl«;;x«.:»xu"'

Proof. If we choose #, 4, K, A and w according to Lemma 2.5 we have

£u(x)=Q,(h 5, W)(x=A) (w=1,...,m).
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It follows from Proposition 2.6 that A is admissible for Q,(d#, 4, w)(x—A) and
therefore for the f,(x), too. Now we expand both sides of (2.7) into power series
and compare coefficients up to degree d. This yields

c(flu=1,...,m; A d)=c(Q.(4 7, w)lu=1,...,m;0,d)
and by (2.10) the right-hand side equals ®,(4, &, w) which is in im @, . . ... O

The last step in this section is to eliminate the hypersurface K. This can be done
if we replace im @), . .~€ H™"4" by its Zariski closure with respect to poly-
nomials over the field H.

The rational functions f, € G(x) have representations f, = k,/h with polynomials
k. (=1,...,m), he G[x] and h(A) # 0 for all admissible A. Then the coefficients
of the (x — A)-expansions of the f, have a representation

c(fulp=1,...,m;,d)
=(h(A) " Uguro o.M p=1,...,m; v+ -+v,<d) (2.11)

with polynomials g, ,, ..(A)e G[A].
Let g denote a polynomial of degree say y over the field H which vanishes on
im @, . . .. Then by Lemma 2.7 we have for all A e H"\K

q(e(fulp=1,...,m;2,d))=0. (212)
On the other hand we get by (2.11) with some polynomial g over H
g(c(fulp=1,...,m; A, d))=(h(A)) """ VG(A).

By (2.12) § has to be the zero polynomial and this implies that c¢(f, |p =
1,..., m; A, d) belongs to the Zariski closure of im &, , . ., whenever A is admiss-
ible for all f,(n=1,...,m).

This version of Lemma 2.7 is the first part of the desired theorem. For the
convenience of the reader we present it in an (almost) self-contained form.

Theorem 2.8 (Representation Theorem Part 1). Given m, n, teN define r:=
(t+2m)(t+2n-1)-2m(n—1), s:==8(t+m)+2n. Let G be a field with prime field
E, H an extension field of infinite cardinality and G(x) the field of rational functions
in indeterminates x,, . .., x, over G. Then there exists a family

¢=(Qu,v| ..... v,,|#‘=19"'9m; V|,...,V,,GN) (2-13)

of totally defined functions: Z" x G" x H* > H and for every complexity measure L ¢
{Lr, L., Lo} a set M(LY<Z"xG", where M(Lg)={0}"x F", M(L,)=2Z"x{0}",
M({L,)<={0,1}" x{0,1}, #M (L)< (t+m+1)*"""™ with the following property:
For every complexity measure Le{Lg, L., L.} and every m rational functions
Jis oo fm€ G(x) with complexity L(f,, ..., fn)<tthereis a (i, )€ M(L) such that
Jor all A € H" admissible for f,, ..., f,and all d €N

c(fulu=1,...,m;A,d)eim P, . .. (2.14)
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Here c(f,|n=1,...,m; A, d) denotes the coefficient vector of the power series
expansion defined in (2.9), @, the mapping built from the family ® according to (2.10)
and the bar on the right-hand side denotes the Zariski closure with respect to polynomials
over the field H.

3. Algebraic properties of ®

Part 1 of the Representation Theorem describes families of functions of bounded
complexity in terms of the mapping @, which is given by coefficients of the power
series expansions of the Q, defined by recursion (2.5). To analyse the algebraic
properties of that mapping we re-examine that recursion.

Let B denote the ring of all total functions Z" x G" x H* > H. From Proposition
2.6 we know that all R;, Uj, ..., Vi, Q, given by (2.5) can be expanded into power
series in x and the coefficients define functions in B, i.e. we can read them as power
series in B[[x]].

In B{[x]] we have the usual ring operations +, —, *. Furthermore we know by
Proposition 2.3 that all series R;, U}, U/, V!, V" have absolute terms =1 and
therefore they are units in B[[x]]. For a unit Se B[[x]] the inverse series S~' is
defined and we can build general powers:

Propositior 3.1. Given acZ and S=1+) ,_, S, B[[x]] where S, denotes the
homogeneous part of degree v, the series S® is well defined by the formula

v !
S =1+ Y ( » (a) ¥ ——'p'—'S‘;" ces sg.,). (3.1)
v=1 \p=1 \P/ pi+-+p,=p P1:"" " Pou:
Lo+ +ep,=v

From that it follows easily by induction that for fixed # €Z" the coefficients of
the power series expansions of the R;(#, v, w)(x), Ui(u, v, w)(x), ..., Q. (i, ¢, w)(x)
are polynomials in the remaining variables v, w with coefficients in the prime
field E.

But how do they depend on the exponents u?

In (3.1) the exponent a occurs only in the term

(a)=-l—a(a—1)---(a—p+l) (3.2)
e/ p!
and this is a polynomial in a with coefficients in Q. Therefore it seems that the
coefficients of the R;(u, v, w)(x), etc. belong to some substructure of B which is
combined from polynomials in u over @ and polynomials in v, w over E. This
structure can be defined as given in the following.

Let I, be the subring of @[u] which consists of all polynomials that map Z" into
Z. Observe that given p €N the “binomial polynomial” (7)) in (3.2) belongs to I, if
a denotes one of the indeterminates collected in w.
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We form the tensor product
A=1,®E[v, w]. (3.3)

With the natural operations, A is a commutative ring with unity and without zero
divisors, which is an I,- and an E[v, w]-algebra too and which allows a valuation

degA ¢ = min{m_ax(degu 8i +degv.w hl) I ¢= Z gi®hl' € Iu® E[v, W]}, (3-4)

where deg, and deg,, respectively, denote the usual degree in I, and E[v, w]
respectively.

Remark. This ring A behaves in essential properties like a ring of polynomials and
in case the prime field E is @Q it is actually the polynomial ring Q[u, v, w] with the
usual degree valuation. Readers not familiar with tensor products may restrict
themselves to that case.

Every element ¢ =), ,.r gi® h; € A defines a function € B by
Z'xG"x H*> (i, 5, W)~ gi(1i) - hi(3, W)€ H,
where the multiplication on the right-hand side is the natural action of Z on the
field H. it is easy to see that this mapping is independent of the representation of

¢ by elementary tensors. In this sense A is a subring of B. This ring A is the proper
structure to describe the mapping &,.

Theorem 3.2 (Representation Theorem Part 2). Let A:=I,® E[v, w] denote the ring
defined in (3.3), (3.4) where u and v collect r indeterminates each, w collects s

indeterminates. Then the functions Q, ,,... ., of the family ® in (2.13) belong to A and
the following degree bound holds:

degA Qp..p.. ..... V,,s(4t+5)(yl+. * '+Vn)+1

(n=1,...,m;v,,...,v,€N). (3.5)
The first step in the proof is given in Proposition 3.3.

Proposition 3.3. For indeterminates u, v, w the recursion (2.5) defines power series

Ri(u, v, w)(x), Ui(u, v, w)(),..., Qu.(u, v, w)(x) e A[[x]].

Proof. The proof rests on the following observations: for j=1,..., n we have
R_p+i(u, v, w)(x) =1+ w;ox; € A[[x]].

Therefore the assertion is true for the basis of the recursion (2.5) and these K_y+j
are units with absolute term 1. To compute the R;,, U/,..., V! (i=1,...,t+m)
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from these we have to perform the ring operations +, —, *. Furthermore we have
to take powers like R} or (V7). Proposition 2.3 ensures that all these series have
absolute term =1. Therefore (see (3.1)) these operations can be performed by in A
well-defined operations on the coefficients. Finally, it follows from the formula
Qu(u, v, w)(x)=w, 2R, (u, v, w)(x), (2.5), that the assertion holds for the
Qu.toe. O

It remains to prove the degree bound (3.5). For a power series

S= ¥ S,..xie-xteAllx]]

Upyeees ¥y =0
we denote by

S,= Y S Xt o xmn (veN)

vyt ty, =

the homogeneous part of degree v with respect to x and define by the valuation
deg, on A:

dega S, =max{deg, S,,..., |+ -+ v, = v} (3.6)
By the definition of the ring operations in A[[x]] and by (3.1), (3.2) the estimations

given in Proposition 3.4 are easy to verify.

Proposition 3.4. For power series S, S'€ A[[x]] it holds that

(i) degA(s + S')u = max{degA Sv’ degA S:,}; (3'7)
(ii) dega(S- S’), <max{degs S, +deg,S,_,|0<p=<v}; (3.8)
(iit) for So=1 we have
degA(S_'),,smax{ Y podegaS,| Y op,= v}; 3.9)
o=1 o=1

(iv) for So=1 is

v

dega(S9), =< v+max{ prdega S,
=1

o

Y op,= V}, (3.10)
o=1
where a denotes one of the indeterminates collected in u. (Remember A= I,® E[v, w].)

From these estimations it follows by induction that for the homogeneous parts
R;, of the series R;:

dega R, <(di+1)v (—n+isjsi;Osist+1) (3.11)

holds. For i =0 this is obvious by the definition of the R; (—n+1=<j<0). For the
induction step we assume that (3.11) holds for i — 1. Repeated application of (3.10)
and (3.8) yield deg, U}, <4iv, deg, U}, <4iv. Similarly repeated applications of
(3.7), (3.8) yield deg, V), <4iv,deg, Vi, < 4iv and from this (3.11) follows immedi-
ateiy for i.
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For j=i=t+1, (3.11) yields dega R,+, <(4t+5)v. But the R4, (n=2,...,m)
are computed from R; (j <) in exactly the same way as R,., by merely using other
variabies. Therefore we have

dega Ry, <(4t+5) (u=1,...,m).

Then the formula Q, = Wy, 2R+, (p=1,..., m) of (2.5) immediately yields the
desired bound (3.5). O

4. An application

As an example for applications of the Representation Theorem we prove lower
bounds for the complexity of single univariate polynomials.

Theorem 4.1. Let F< G be fields with prime field E, f(x) =Z'j=0 v.x" € G[x] a
polynomial of degree d = 24 with the property that for x =C,...,d

[F(‘YOa ey YK):F(‘YOS R ) YK—I)]?(d+ 1)3(d+”- (4-1)
Then

min{L(f), L+(f), Ll f), La(f)*}>14d.

These lower bounds are optimal up to a constant factor. This is trivial for Lg,
L., L, and follows for L; from the Paterson-Stockmeyer algorithm [7]. Lower
bounds of the same order may be found, e.g., in [8, 9, 12]. An elcgant proof for L.
is given in [4]. The new things are that these bounds hold for fields of any
characteristic and the uniform proof.

For the proof we need the following lemma which may be found, e.g., in [8].

Lemma 4.2. Given integers d, k, ¢ with d = k a field F and polynomials ¢,, ..., ¥, €
Flz,,..., z.] of degree <, there is a nontrivial polynomial q € Fly,, ..., y,] of degree
<2c*(d+ 1)V with g/ &, ..., ) =0.

We give the proof of Theorem 4.1 only for complexity measures Le {Lr, L., Lo}
(F< G). We choose L, assume that L(f)<isd and apply the Representation
Theorem with m:=n:=1, t:= |{3d] and an arbitrary infinite field H > G. Relation
(2.14) yields

(703 veey yd) €im ¢d|(,ﬁx¢;)+H‘9

where (4, )€ M(L)< Z" x F". Therefore the mapping D), nierer 18 given by d +1
elements ¢, ..., ¥, € Z® F[w]= F[w] of degree less than

4t+5)d+1<(3d+5)d+1=<d’> (d=24)
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which use only
s=8(t+1)+2<5d+10<d (d=24)

variables. Lemma 4.2 for k:=d, ci=d* yields a nontrivial polynomial ge
Fly, ..., 4] of degree <2d**(d +1)?*' < (d +1)*“*" with q(yo, . . ., ¥4) =0. This
q vanishes on im ‘Ddl‘.:,x(;;,,m and we get q(¥o,...., ¥a) =0.

Together with g€ Flyq, ..., y.], deg g<(d+1)*“*" this is a contradiction to
4.1).
The proof for the measure L follows the same line. [

Further applications which yield new results on lower complexity bounds will be
given in a separate paper [10].
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