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Abstract. The main result of this article is the Representation Theorem which characterizes families 
of rational functions of bounded complexity by appropriate mappings. This de - zripaion is not 
only independent of the characteristic of the underlying field but also of the specific complexity 
measure under consideration. As an application of the Representation Theorem we derive good 
lower complexity bounds. 

1. Introduction 

An important problem in complexity theory is to determine the complexity of 
evaluating a finite set of rational functions. A very powerfsll method to treat that 
problem was introduced by Strassen [12]. He discovered polynomial mappings 
which describe families of functions with bounded complexity. In the meantime 
this idea has been applied and modified in many cases, see, e.g., Borodin-Cook 
[l], Schnorr [8], Schnorr-van de Wiele [9], Heintz-Sieveking [6], Heintz-Schnorr 
[S], ven zur Gathen-Strassen [3]. It is striking that all those articles need restrictions 
with respect to CC complexity measures or the field of coefficients under consider- 
ation, let alone ad4itional more technical assumptions. 

In the present article we present a version of the Representation Theorem which 
does not only include the particular cases mentioned above, but also provides further 
results and holds completely independently of the complexity measure and the 
characteristic of the field. The main technical device in the proof is to rep!ace the 
polynomial mappings, considered so far, by elements of an appropriate algebra (see 
Section 3). 

As far as applications are concerned we restrict our considerations in 
to a simultaneous proof of lower botmds for the complexity of polynomials with 
algebraic coefficients. They turn out to be optimal with respect to the order of 
magnitude. These results have only been established in several special cases with 
specific proofs every time. 

lin a separate article [lo] we give further applications of the 

Theorem and prove lower complexity bounds which old for large classes of 
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polynomials, e.g., for polyno:nials NitJl o-l-toe v&as or multiples of 
given polynomials. We use thr foWWi~g model of computation (see, e.g., Strassen 

[I I], Borodin-Munro [2]). 
Let G be a field with prims! eld E, xl, l . . , & iA Tdeterrninates and G(x) the field 

of rational functions in zl, . . . , x,, . A covputation sequence p in G(-u) is a sequence 

P=(r,,... , rk) E G(# where fo: i\lf i * ,. . . ,k either r;E’Gu(x,,..*,Xn) or 
ri=Qor/ with lsj, Isi and c E{**,-,*, / j a~cl rl * 0 in case of division. A set 

1 .*,..*,fm)CG(-) f x is said to bi: conlputed by p if (fi , . . . ,fm} c {rl , . . . , rk}. Let F 
be a subfield of G. We call an cperat\,p c = yi 0 r, a F-nonscalar operation if rj and 

Q E G(x)\F and o= * or if rl 1: G(x)\F and 0 = /. We consider the complexity 

measures 
L&?) := # of F-nonscalar operatiOIls in /?, 
L+(p) := # of additions or sdsractiotl: in /3, 
L,,,(p) := # of all arithmetic c)peratioPs in P* 
For F = G the measure LF is : ust f)le Ostrowsky complexity, LE is essentially the 

measure which taunts all multiplicative opr?rations. For any complexity measure 
L E { LF, L+, L,,,} and fi , . . . ,fm -5 G(a) we define the complexity 

Ufi,=**,fm) :=min{@P cOmputea{f,,..., ,* f 11 l 

Before discussing the details we describe briefly the main ideas which lead to the 
Representation Theorem. First ~,f a\1 \F; e combine generic computations for the 
complexity measures under consideration into one recursion scheme (see (2.1)) 
which, by specification of its free Parameters, allows every family ($1, . . . , fm) of 
functions with complexity say s s to be represented. 

The use of generic computations is a corl:mon technique for this subject but a 
more detailed analysis leads to te ;hsical complication.;. Therefore \;Le replace that 
recursio- scheme (2. _ ) by anoth :r &erne (2.5) which also allows all families 

(4 1, e . . ,jh) with complexity s t 10 be represented and is better adapted to our 
futher consideration. Next we expaf” d rational fr nctions Into power series and obtain 
the desired mappings which deSQQ,e families with coinplexity L(,? from the 
coefficients of the power series eQausions of certain fun,:tions defined by that 
recursion scheme (2.5). 

In Section 3 we analyse the algebrajc properties of those mappings. It turns out 
that in the case of the characteristic * 6) = 0 they are given ky polynomials while 
in the general case we can describe t)lk?m &y elements in a tensor product of a ring 
of polynomials over the rational numbers and a full polynomial ring over the prime 
field E of G. 

rsis 

Let /3 be a computation for f, , . . l ,J, E G(x) with F(P) = t. We can transform 
P by collecting uncounted steps into the following re rsion scheme: 

. := x -n+j i (j=l,...,n), 
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T;:=y,‘+ ii’ v;pj, T;:zy:‘+ ‘i’ v;e, 
j=-?I+1 j=-n+l 

&:=ziTi * Tr+(l-zi)T:/Ty (i= 1, *. . , t), 

fp = T+, ==yt+p -+ i V,,&j4 (p = : I.. ) m). 
j=--n+l 

Pi (i=l,..., t) are the results of the nonscalar steps, the parameters yi, yr, yi E G, 
v;, vg, vii E F express the uncounted scalar steps and zi E (0, 1) gives the type of the 
ith nonscalar operation. This scheme is known as “generic computation”. 

In a similar way we can transform a computation p with L+(p) = t into a recttrsion. 
We collect uncounted steps into terms of the form 

i-l i-l 

s;:= J( n p;:i, s;:= y; n p;;, 
j=-n+l j=-ni-I 

with yi, yy E G, u;, ug E Z and express :he counted additions/subtractions by 

Pi := S:+ ZiSy with Zi E {+l, -1). 

We combine these recursion schemes to the folIowing generalized generic computa- 
tion scheme where the parameters u;, u: range over H, all others over G. 

Given m, n, t E IV, define forj = 1, . . . , n, P-n+j := Xj and for i = 1, . . . , t + m define 
t(i):= min{i- 1, t} and 

r(i) 
s;:= y;, fl p;;i, 

j=-n+l 

r(i) 
sy := yy, fl p”;, 

j=-n+l 

i(i) t(i) 

T;:=y;*+ C v#, T; := yp c v;4., 
j=-n+l j=-n+i 

(2.1) 

This recursion scheme contains 

r:=2 
( 

i (n+i-l)+ *y (n+t) 
> 

=(t+2m)(t+2n-l)-2m(n-1) (2.2) 
i=l i=f+l 

exponents u, the same number of parameters v and say s’ parameters y. Clearly, 
this recursion defines for every choice (i, 6, $) E 2’ x G’ x 6” rational functions 

p,(6,6, S>(x), s@, 6, j)(x), . . . E G(x) provided there is no division by zero. We 
call a choice admissible if all these functions are defined and not the zero element 
of G(r). The construction of that recursion scheme easily yields this: if L E 
[I+, IL,, L,,,} is a complexity measure and .fi , . . . , .f, E G(x) are functions with 

U&f, 9 l - . , fm) s t then there is a choice ( ,I?, f ) of parameters in (2.1) such that 

holds. Moreover, this remains valid if we restrict the parameters U, v to certain sets 
(L) c E’ x G’ depending on the complexity measure under consideration: 
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To model computations p with L&3) s t it is enough to choose in (2.1 j parameters 

(Ii, 6) E M( LF) := {o}r x F. (2.3a) 

Likewise, parameters 

(8, 6) E M( L,) := Z’ x {o}c (2.3b) 

allow computations p with L,(p) s t to be modelled. Finally, we can model 
computations p with L&3) 6 t. Here it is enough to choose 

(4 8 E WA,,) (2.3cj 

which consists of all pairs (3,6) E {0,1)’ x {O, I}’ e Z’ x G’ where for all i at most 
one of the UL equals 1 and ditto for the t(& ub, v& This set contains at most 
(t + m + 1)4(‘+m) elements. 

From these observations the proof of the following lemma is quite simple. 

2.1. Let L E { LF, L+, L,,,} be a compkxity measure and fi, . . . , fm E G(x) 
nontrivial jbnc?iens with L( fi , . . . , fm) 6 tS T?I en there is an admissible choice 

(~,&U”)EMI(L)XG~‘~Z”XG~~G~ 

for the parameters of the recursion (2.1) such that 

fp(-d=pt+,(u,v,Y)(x) (lu=L--40. (24 

CM goal is to describe functions of bounded complexity. Lemma 2.1 is a first 
step in that direction. 8ut though the definition of the recursion scheme (2.1) is 
quite natural the solutions Pi of (2.1) are only partially defined with respect to the 
parameters u, o, y and thus several technical complications arise for a more detailed 
analysis of the Pi- 

To avoid these problems our next step is to replace the recursion (2.1) by the 
recursion (2.5) below which has solutions for every choice of its parameters and 
again allows a result similar to Lemma 2.1 to be proved. In that scheme the parameters 
u range over 2, the parameters v over 6 and the w’s over H which denotes an 
extension field of G of infinite cardinalitf. 

Givenm,n,tEN,defineforj=l,..., n,R_,,+~:=Ii-wjOXjandfori-!., . . . . t+rn, 

define t(i) := min{ i - 1, t} and 

[ 

l(i) 
v; :r= 1+ W[, 1 V;Wi,(Rj-I.1 . 3 j=--n+l 1 

[ i(i) vy := l+ Wyi 1 U~Hljz(Rj-Bj $ 
I.=-n+l 1 (2.5) 

i/V:-l)+WiT(V-l)]. 
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Finally, define for JA = 1,. . . , pn,O, := w,_,;&,+~. This scheme (2.5) contains again 
P (see (2.2)) exponents U, the same number of parameters tr and 

s:=8(1i-m)+2r: (2.6) 

parameters w. 

reposition 2.2. For every choice ( 5 6, C) E Z’ x CY x G" of parameters recursion (2.5 j 
defines functions 

Ri(i, 6, G)(x), U[(ti, 6, 6)(x,, . . . , Qi(i, 6, t+)(x) E H(x). 

For the proof of this proposition and for later use observe the following fact. 

roposition 2.3. For every choice of the parameters it holds that 

Ri(6, $9 6)(O) = 1 ( 
. 
i=-n+l,..., t+m), 

Ui(Q 6, $)((q = l * * ;s: Vr(& 23, G)(O)= 1 (i= I,..., t+m), 

QJ6, 6, $)‘o) = wt+P,2 (CL = 1, -. . , m). 

The next proposition connects both recursions. The pi are defined by (2.1), the 

Qp by (W= 

Proposition 2.4. Given an admissible choice ( u", I?,$) E Z' x G’ x G”’ of parameters for 
(2.1 j there is a hypersu$ace K s: M” with coeficients in G with rhe following oroperty : &. 

For every A E H”\ K we can choose 6 E N” such that for p = 1, . . . , m 

f,+Jtj: 6$)(x)= Q&i, 6, +)(x-h). 

Proof. Let (i, 6, $) be admissible for (2.1) and kt Pi, Si, etc. denote the functions 
defined by (2.1) with that choice. Then all these functions are well defined and 
nontrivial E G(x). We can represent these functions as quotients of po!ynomials 
E G[x] and the product of all these polynomials is a nontrivial polynomial k E G[x]. 
Because H is infinite the zeros of k form a hypersurface K 5 H” and for all h E H”\M 
the values Pi(h) (i=-n+l,..., tively S:(h),. e., T:(h) (i= 1,. l l , 

t + m) are d&red and f0. A straightforward induction shows that the norxred 
functions 

p,(x+ A) 
R,(x):=-- 

S:(x+h) $yx+h) 

Pi(A) 4 
Ui( x) := 

S;(A) ’ 
U!(x) := 

S;(A) ’ 

Vi(x) := 
Tf(x+A) T;(x+ A) 

T;(h) ’ 
v;(x) ;= 

T;(A) 
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are solutions of the recursion (2.5) if we choose the parameters (u, v) in (2.5) as 
(fi, u”) and define the w’s as follows: 

0 

Wjo l - a-$ (j=l,...,n), 

.i 
01 

1 
Wil := - 

T;(A)’ 

0 I? 
Wil l - *-j&-j (i=l,...,t+rr;), 

0 

wiz:=&(~) (i=-n+l,...,t+m) and 

0 S;(h) 
wi3 := _fi3 P,(A ) 9 $i4 ‘= ji4 

S;(A) T:(A) * T;(h) 
e(A) 3 GiS'= jiS 

Pi(h) ’ 

pi(h) T;(A)’ ‘i7 ‘= !i7 i E (i=l,...,t+m). 

From this we get for g = 1, . . . , m 

respectively, 

Qp( G, i, *)(x -A) = P,+,(x). Cl 

By Proposition 2.4 we can replace in Lemma 2.1 the P,+, by the Qp. This yields 
the following lemma. 

.5. Let L E { LF, L, , L,,,} be a complexity measure and f, , . . . , fm E G(x) 
functions with L( f, , . . . , fm) c t. lihen there are a (5 d) E M(L) (see (2.3)) and a 
hypersurface K s H n with coeficients in G with the property that for every A E IT’\ K 

there is a $ E H” such that 

f,(x)=QJtI,6,6)(x-A) (j~=l,..., m). (2.7) 

roof. Suppose all fp are nontrivial. By Lemma 2.1 there is a choice (g, 6,g) E 
(L) x GS’ admissible for the recursion (2.1) with 

fp(x) = P,+,@, $9 j?(x) (P = 1, l l l 9 4. 

y Proposition 2.4 there is a hypersurface K 5 H” and given A E H”\K there is a 
WE ’ with +,(i, 6, j)(x) = Q,JG, 8, $)(x-A) which yields 

f,(x) = (i, 6, $)(x-A) (p = 1,. . *, m). 

in (2.5) that also holds if some of the fp are trivial. El 
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For a more detailed analysis we switch from rational functions to power series. 
We call A E H” admissible for g E H(x) if there are polynomials h, k E H[x] with 
h(h)#Oandg=kfh.Gi~enh=(h,,...,h,)~H”admissibleforg,,...,g,~H(x) 
we can expand these functions into power series E H[[x - A]] 

&(X1 = C &.v,,...p,,(A)(XI -A*)“’ ’ ’ ’ fxn -An)r”t (2.8) 
zq ,..., I$,20 

and we denote, given d E N, by 

:= (It p,v ,,..., “,,(A) I/L = 1, . . . , m, VI+ l l l + Vn s d) e Hmc”f“‘, (2 9) . 

the vector built from the coefficients up to degree d of these series (2.8). 
From Propositions 2.2, 2.3 and the definition of the QIL in (2.5) we have the 

following proposition. 

Proposition 2.6. (i) Given (u, 8, ti) E Z’ x G’ x H”, A := 0 E H n is admissible for all 
functions Ri(u, 6, G)(X), Ui(ti, 6, G)(X),..., O,(u, 6, G)(X). 

(ii) In the corresponding power series expansions 

Q&t 4 $(x1 = C Qp,v ,,..., v,,@, d +)x? l 9 9 xf, 
VI *..., u,,ao 

the coeficients define totally de$ned -functions Qcc,y,,.__,y,, : 2’ x G’ x H” + H. The same 
holds for the other functions Ri, Ui, etc. given by (2.5). 

Given d EN we introduce the mapping 
trill 

@d:~‘xGrxH”+Hm’ cl ’ 

(u, V, w)*(O,,~ ,,..., v,,(~, V, W)IP=~,*--~ n; VI+* l •+U,sd)~ (2.10) 

which maps every choice of parameters for recursion (2.5) into the coefficient vector 
of the corresponding functions O,( u, v, w)(x). Now we can reformulate Lemma 2.5 
in terms of power series. This yields the following lemma. 

Lemma 2.7. Let L E { LF, L,, L,,,} be a complexity measure and f, , . . ., fm E G(X) 
functions with L( f, , . . . , fm) s t. Then there are (6, 6) E (L) (see (2.3)) and Q 

h_ypersurface K s H n with the following properties: 
(i) Every A E H”\K is admissible for f,, . . . , fm. 

(ii) For every A E H”\K and every d E N we have 

If we choose zi’, z?, K, A and w according to emma 2.5 we have 

fp.(x) = (z.i, 6, $)(x-A) (p = 
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It follows from Proposition 2.6 that A is admissible for Qp ($,I?, 6)(x - A) and 
therefore for the j;(x), too. Now we expand both sides of (2.7) into power series 
and compare coefficients up to degree d. This yields 

c(f,IcL=1,.*., m;A,d)=c(Q,Ju,&ti)Ip=l,..., m;O,d) 

and by (2.10) the right-hand side equals @& 6, 6) which is in im @~~j,;IxluOIxHI. III 

The last step in this section is to eliminate the hypersurface K. This can be done 

if we replace im @C,ltdIx,;IxHI E H”’ “?‘) by its Zariski closure with respect to poly- 

nomials over the field H. 
The rational functions fP E G(x) have representations fp = k,lh with polynomials 

IQ (JU = 1, l . . , m), h E G[x] and ?I( A ) # 0 for all admissible A. Then the coefficients 
of the (x - A )-expansions of the fP have a representation 

4f,/p=L..,m;M) 

= (h(h))-'""'(g,.,,....,",,(A)I~ = 1,. .., m; vl+= l l + v,, s d) (2.11) 

with polynomials gp,v ,,_.., ,,(A 1 E WA I- 
Let q denote a polynomial of degree say y over the field H which vanishes on 

im @d I{&C{tJ)XH\ l 
Then by Lemma 2.7 we have for all A E H”\K 

q(c(f,]p=l,..., m;A,d))=O. (2.12) 

On the other hand we get by (2.11) with some polynomial + over H 

q(c(jJcL = 1, l . l 
, m; A, d)) = (h(A))-Y’“+“~(A). 

By (2.12) q has to be the zero polynomial and this implies that c(& I p = 

1 9*..9 m; A, d) belongs to the Zariski closure of im @dlr,,rXccJxHS whenever A is admiss- 
ible for all fp(p = 1,. . . , m). 

This version of Lemma 2.7 is the first part of the desired theorem. For the 
convenience of the reader we present it in an (almost) self-contained form. 

eorem .8 (Representation Theorem Part 1). Givers m, n, t E N dejne r := 
(t+2m)(t+2n-l)-2m(n-l), s:=$(t+m)+2n. Let G be afield with primefield 
E, H an extension field of infinite cardinality and G(x) the Jield of rational functions 
in indeterminates x, , . . . , x, over G. Then there exists a family 

@=(?p,v ,,._.. JP=L•,m; ~I,-.=,48~) (2.13) 

of totally defined functions: Z’ x G’ x H” + H and for every complexity measure L E 
(LF, L,, L,,,} a set M(L)ch’xG’, where M(L,)={O}‘x F’, M(L+)=Z’x(O): 

(L,,,) c (0,l)’ x (0, I)“, # M (L,,,) s (t + m + 1)4(‘+m) with the following property: 
For every complexity measure LE (LF, L,, L,,,) and every m rational functions 

f f l,***, m (x) with complexity L( f, , . . . , fm ) s t there is a (I.!, 6) E 
for all A E admissible for f, , . . .y fm and all d E N 

c(fp ICC = 1, l l ’ 9 m; A, d) E im @dl&&(,,‘* (2.14) 
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Here c(f,Ip=l,..., m; h, d) denotes the coeficient vector of the power series 
expansion defined in (2.9), @d the mapping built from the family Qi according to (2.10) 
and the bar on the right-hand side denotes the Zariski closure with respect to polynomials 

over the jeld H. 

3. Algebraic properties o 

Part 1 of the Representation Theorem describes families of functions of bounded 
complexity in terms of the mapping & which is given by coefficients of the power 
series expansions of the Qp defined by recursion (2.5). To analyse the algebraic 
properties of that mapping we re-examine that recursion. 

Let B denote the ring of all total functions Z’ x G’ x H” + H. From Proposition 
2.6 we know that all Ri, U:, . . . , V:!, QP given by (2.5) can be expanded into power 
series in x and the coefficients define functions in B, i.e. we can read them as power 
series in B[[x]]. 

In B[[x]] we have the usual ring operations +, -, *. Furthermore we know by 
Proposition 2.3 that all series Ri, Ui, Uy, !‘I, V” have absolute terms = 1 and 
therefore they are units in B[[x]]. For a unit S E B[[x]] the inverse series S-’ is 
defined and we can build general powers: 

Proposition 3.1. Given a! E z and S = 1 + C _, S, E B[[x]] where S,, denotes the 
homogeneous part of degree v, the series S” is well defined by the formula 

S” =1+c i a! c 
( 0 

P’ . 

YZI p=l P 
, sp. . . gn 

flI+“‘+pu=p p,! l l l py. > 
. (3.1) 

From that it follows easily by induction that for fixed u” E Z’ the coefficients of 
the power series expansions of the Ri(i, v, w)(x), Ui($, v, w)(x), . . . , QJS, 0, W)(X) 

are polynomials in the remaining variables v, w with coefficients in the prime 
field E. 

But how do they depend on the exponents u? 
In (3.1) the exponent cy occurs only in the term 

a 0 1 
=-a!(cu-l)“‘(ct!-p+1) 

P l P’ 
(3.2) 

and this is a polynomial in QI with coefficients in Cl!. Therefore it seems that the 
coeficients of the Ri( u, v, w)(x), etc. belong to some substructure of which is 

combined from polynomials in u over Cl! and polynomials in v, w over E. This 
structure can be defined as given in the following. 

Let I, be the subring of Q[ u] which consists of all polynomials that map h’ into 
Z. Observe that gi n p E N the “binomial polynomial” (z) i 
a! denotes one of indeterminates collected in u. 
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We form the tensor product 

A :-= r,@ E[v, w]. (3.3) 

With the natural operations, A is a commutative ring with unity and without zero 
divisors, which is an I,- and an E[ v, WI-algebra too and which allows a valuation 

de&t Q zc min max(deg, gi + deg., hi) 1 Q = C gi 0 hi E I,, 0 E [ v, W] , (3.4) 
i i 

where deg, and deg,, respectively, denote the usual degree in I, and E[ v, w] 
respectively. 

emark. This ring A behaves in essential properties like a ring of polynomials and 
in case the prime field E is Q it is actually the polynomial ring Q[u, v, w] with the 
usual degree valuation. Readers not familiar with tensor products may restrict 
themselves to that case. 

Every element Q = Ci gi @ hi E A defines a function E B by 

Z’XG’XH”S(~,C,~)H~~~($~~~~(~,$)EH, 

where the multiplication on the right-hand side is the natural action of Z on the 
field H. It is easy to see that this mapping is independent of the representation of 
Q by elementary tensors. In this sense A is a subring of B. This ring A is the proper 
structure to describe the mapping @+ 

6.2 (Representation Theorem Part 2). Let A := IU 0 E [ v, w] denote the ring 
defined in (3.3), (3.4) where u and v collect r indeterminates each, w collects s 
indeterminates. Then the functions Qp,y,,_._,,, of the family Q, in (2.13) belong to A and 
the following degree bound holds: 

degA Qlr.lz,....,u,, S(4t+5)(v,+* ’ =+v,)+1 

(p=l,..., m; v,~ . . . . v,EN). 

The first step in the proof is given in Proposition 

(3.5) 

3.3. 

For indeterminates u, v, w the recursion (2.5) dejines power series 

v, w)(kJl(u, v, wk), .- l 3 QJu, v, ~Kd~A[bll~ 

he proof rests on the following observations: for j = 1,. . . , n we have 

herefore the assertion is true the basis of th ecursion (2.5) and these K_n+i 
are units with absolute term 1 compute the i, Ui ,..., Vy (i=l,..., t+mj 
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from these we have to perform the ri g operations +, -, *. Furthermore we have 

to take powers like Rj”;l or (Vy)? Proposition 2.3 ensures that all these series have 
absolute term = 1. Therefore (see (3.1) j these operations can be performed by in A 
well-defined operations on the coefficients. Finally, it follows from the formula 

Q,(u, ~9 w)(x) = wt+cl,z !$+Ju, u, w)(x), (2.9, that the assertion holds for the 
$ too. cl 

It remains to prove the degree bound (3.5). For a power series 

S = c S,,,....,,X;J l l l x> E A[[x]] 
L’I ,...* u,, z=:Q 

we denote by 

the homogeneous part of degree Y with respect to x and define by the valuation 
degA on A: 

degA & := max{degA Sy, . . . ",, 1 v1 + l l l + v,, = u}. (3 6) . 

By the definition of the ring operations in A[[x]] and by (3.1), (3.2) the estimations 
given in Proposition 3.4 are easy to verify. 

Proposition 3.4. For power series S, S’ E A[[x]] it holds that 
(i) deg,(S* S’), s max{degA S,, deg, S:); 

(ii) degA(SS’),~max{degAS,+deg,&,_~~O~p~v); 
(iii) for So = 1 we have 

(3.7) 
(3.8) 

deg,(S-I), s max i pa degA S,, (3 9) l 

CT=1 

(iv) for So = 1 is 

degAS”L~ Y+max i pa degA S, 
Cr=l 

(3.10) 

where LY denotes orle of the indeterminates colk’ected in u. (Remember A = I, @ E [ v, w].) 

From these estimations it follows by induction that for the homogeneous parts 
Rjy of the series Rj : 

(3.11) 

holds. For i = 0 this is obvious by the definition of the (-n+I~j~0). For the 

induction step we assume that (3.11) holds for i - 
and (3.8) yield deg, UiVs iv, degA UyV s 4iv. Si 

(3.Q (3.8) yield degA Vi+ 
ateVj for i. 
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Forj=i= t+ 1, (3.11) yields degA R,+,+ (4t+S)v. But the R,,, (p =2,. . . , m) 

are computed from Rj (j < t) in exactly the same way as R,,, by merely using other 

variabies. Therefore we have 

degA b-p,Y - <(4t+5)v (,u = 1,. . . , m). 

Then the formula Qp = JV,+~,~R,+~ (p = 1,. l l , m) of (2.5) immediately yields the 

desired bound (3.5). q 

As an example for applications of the Representation Theorem we prove lower 
bounds for the complexity of single univariate polynomials. 

Theorem 4.1. Let F s G be fields with prime field E, f(x) =xf=, yVxV E G[x] a 
polynomial of degree d 2 24 with the property that for K = C, . . . , d 

[F(yo,. . . , yJ: F(yo,. . ., r,_,)]~(d+1)3’“+“. (4.1) 

Then 

min(lf(f),L+(f), Ldf),Mf)*Piid= 

These lower bounds are optimal up to a constant factor. This is trivial for LF, 
L+, L,,, and follows for LG from the Paterson-Stockmeyer algorithm [7]. Lower 
bounds of the same order may be found, e.g., in [8,9,12]. An elegant proof for L+ 
is given in [4]. The new things are that these bounds hold for fields of any 
characteristic and the uniform proof. 

For the proof we need the following lemma which may be found, e.g., in [8]. 

.2. Given integers d, i, c with d 2 k a field F and polynomials &, . . . , t,bd E 

Fb* 9’.., zk] of degree s c, there is a nontrivial polynomial q E F[ y,, , . . . , yd] of degree 
a2ck(d + l)‘d+” with a’&, . . . , I,$,) = 0. 

We give the proof of Theorem 4.1 only for complexity measures L E { LF, L, , L,,,} 
(F s; G). We choose L, assume that L(f) ~$d and apply the Representation 
Theorem with m := n := 1, t := Lfd J and an arbitrary infinite field H 1 G. Relation 
(2.14) yields 

where (J, 6) E (L) c Z’ x Fr. Therefore the mapping @~J~,,~~~~~~~.~ is given by d + 1 
elements qo, . . . , $Q E Z.0 F[ w] = F[ w] of degree less than 

t+5)d+1&d+5)d+1<d2 (da2 
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which use only 

s=8(t+1)+2 s;d+lOcd (da24) 

variables. Lemma 4.2 for k :- d, c := d2 yields a nontrivial polynomial q E 

F[YO,..- , yd] of degree G2d2”(d + l)d+l <(d + 1)3’d+*’ with q(&, . . . , &,) =O. This 
q vanishes on im @~l++,.~ and we get q( ‘yO, . . . . , yd) = 0. 

Together with q E F[yo, . . . , yJ, deg q c (d + 1)3(d+‘) this is a contradiction to 
(4.1). 

The proof for the measure LG follows the same line. Cl 

Further applications which yield new results on lower complexity bounds will be 
given in a separate paper [IO]. 
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