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Abstract

Nonlinear Black–Scholes equations have been increasingly attracting interest over the last two decades, since they provide more
accurate values by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio,
large investor’s preferences or illiquid markets (which may have an impact on the stock price), the volatility, the drift and the option
price itself.

In this paper we will focus on several models from the most relevant class of nonlinear Black–Scholes equations for European
and American options with a volatility depending on different factors, such as the stock price, the time, the option price and its
derivatives due to transaction costs. We will analytically approach the option price by transforming the problem for a European
Call option into a convection-diffusion equation with a nonlinear term and the free boundary problem for an American Call option
into a fully nonlinear nonlocal parabolic equation defined on a fixed domain following Ševčovič’s idea. Finally, we will present
the results of different numerical discretization schemes for European options for various volatility models including the Leland
model, the Barles and Soner model and the Risk adjusted pricing methodology model.
c© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The interest in pricing financial derivatives – including pricing options – arises from the fact that financial
derivatives can be used to minimize losses caused by price fluctuations of the underlying assets. This process of
protection is called hedging. There is a variety of financial products on the market, such as futures, forwards, swaps
and options. In this paper we will concentrate on European and American Call and Put options.

We recall that a European Call option is a contract where at a prescribed time in the future, known as the expiry date
T , the owner of the option, known as the holder, may purchase a prescribed asset, known as the underlying asset S(t),
for a prescribed amount, known as the exercise or strike price K . The opposite party, or the writer, has the obligation
to sell the asset if the holder chooses to excercise his right. Therefore, the value of the option at expiry, known as the
pay-off function, is V (S, T ) = (S − K )+. Reciprocally, a European Put option is the right to sell the asset with the
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pay-off function V (S, T ) = (K − S)+ (see e.g. [1]). While European options can only be exercised in T , American
options can be exercised at any time until the expiration, which complicates their pricing process significantly.

Option pricing theory has made a great leap forward since the development of the Black–Scholes option pricing
model by Fischer Black and Myron Scholes in [2] in 1973 and previously by Robert Merton in [3]. The solution of
the famous (linear) Black–Scholes equation

0 = Vt +
1
2
σ 2S2VSS + r SVS − r V, (1)

where S := S(t) > 0 and t ∈ (0, T ), provides both the price for a European option and a hedging portfolio that
replicates the option assuming that (see [4]):

• The price of the asset price or underlying derivative S(t) follows a Geometric Brownian motion W (t), meaning
that S satisfies the following stochastic differential equation (SDE):

dS(t) = µS(t)dt + σ S(t)dW (t).

• The trend or drift µ (measures the average rate of growth of the asset price), the volatility σ (measures the standard
deviation of the returns) and the riskless interest rate r are constant for 0 ≤ t ≤ T and no dividends are paid in that
time period.

• The market is frictionless, thus there are no transaction costs (fees or taxes), the interest rates for borrowing and
lending money are equal, all parties have immediate access to any information, and all securities and credits are
available at any time and any size. That is, all variables are perfectly divisible and may take any real number.
Moreover, individual trading will not influence the price.

• There are no arbitrage opportunities, meaning that there are no opportunities of instantly making a risk-free profit.

Under these assumptions the market is complete, which means that any asset can be replicated with a portfolio
of other assets in the market (see [5]). Then, the linear Black–Scholes equation (1) can be transformed into the heat
equation and analytically solved to price the option [1].

One can argue that these restrictive assumptions never occur in reality. Due to transaction costs (see [6–8]), large
investor preferences (see [9–11]) and incomplete markets [12] they are likely to become unrealistic and the classical
model results in strongly or fully nonlinear, possibly degenerate, parabolic diffusion-convection equations, where
both the volatility σ and the drift µ can depend on the time t , the stock price S or the derivatives of the option price
V itself. In this paper we will be concerned with several transaction cost models from the most relevant class of
nonlinear Black–Scholes equations for European and American options with a constant drift µ and a nonconstant
volatility σ̃ 2

:= σ̃ 2(t, S, VS, VSS). Under these circumstances (1) becomes the following nonlinear Black–Scholes
equation, which we will consider for European options:

0 = Vt +
1
2
σ̃ 2(t, S, VS, VSS)S2VSS + r SVS − r V, (2)

where S > 0 and t ∈ (0, T ).
Studying (1) for an American Call option would be redundant, since the value of an American Call option equals

the value of a European Call option if no dividends are paid and the volatility is constant (for details see [13]). In order
to make the model more realistic, we will consider a modification of (2) for American options, where S pays out a
dividend q Sdt in a time step dt :

0 = Vt +
1
2
σ̃ 2(t, S, VS, VSS)S2VSS + (r − q)SVS − r V, (3)

where S > 0, t ∈ (0, T ) and the dividend yield q is constant.

2. Volatility models with transaction costs

The Black–Scholes model requires a continuous portfolio adjustment in order to hedge the position without any
risk. In the presence of transaction costs it is likely that this adjustment easily becomes expensive, since an infinite
number of transactions is needed [14]. Thus, the hedger needs to find the balance between the transaction costs that
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are required to rebalance the portfolio and the implied costs of hedging errors. As a result to this “imperfect” hedging,
the option might be over- or under-priced up to the extent where the riskless profit obtained by the arbitrageur is
offset by the transaction costs, so that there is no single equilibrium price but a range of feasible prices. It has been
shown that in a market with transaction costs, there is no replicating portfolio for the European Call option and the
portfolio is required to dominate rather than replicate the value of the option (see [8]). Soner, Shreve and Cvitanič
prove in [15] that the minimal hedging portfolio that dominates a European Call is the trivial one (hence holding one
share of the stock that the Call is written on), so that efforts have been made to find an alternate relaxation of the
hedging conditions to better replicate the payoffs of derivative securities.

2.1. Leland’s model

Leland’s idea of relaxing the hedging conditions is to trade at discrete times [6], which promises to reduce the
expenses of the portfolio adjustment. He assumes that the transaction cost, κ

2 |∆|S, is proportional to the monetary
value of the assets bought or sold. Here, κ denotes the round trip transaction cost per unit dollar of the transaction and
∆ the number of assets bought (∆ > 0) or sold (∆ < 0) at price S. Leland then deduces that the option price is the
solution of the nonlinear Black–Scholes equation (2) with the modified volatility

σ̃ 2
= σ 2 (1 + Le sign(VSS)) , (4)

where σ represents the original volatility and Le the Leland number given by

Le =

√
2
π

κ

σ
√

δt
,

where δt denotes the transaction frequency (interval between successive revisions of the portfolio). It follows from (4)
are that the more frequent the rebalancing (δt smaller), the higher the transaction cost and the greater the value of V .

It is known that VSS > 0 for European Puts and Calls in the absence of transaction costs. Assuming the same
behaviour in the presence of transaction costs, the Eq. (2) becomes linear with an adjusted constant volatility
σ̃ 2

= σ 2(1 + Le) > σ 2.
Several authors (e.g. Hoggard et al. in [16], Parás and Avellaneda in [17]) discuss Leland’s model for general pay-

off functions dropping the assumption of the convexity of the resulting option price. From the binomial model making
use of the algorithm of Bensaid et al. (see [18]), Parás and Avellaneda derive the same volatility (4) as Leland, and
state that in case VSS < 0 and Le > 1 the problem (2) becomes mathematically ill-posed and has no solution for
general pay-off functions. For the case VSS > 0 and Le > 1 they propose several hedging strategies.

In [7] Boyle and Vorst derive from the binomial model that as the time step δt and the transaction cost κ tend to
zero, the price of the discrete option converges to a Black–Scholes price with the modified volatility of the form

σ̃ 2
= σ 2

(
1 + Le

√
π

2
sign(VSS)

)
. (5)

Just like Leland, Boyle and Vorst assume convexity of V , so that σ̃ 2
= σ 2(1 + Le

√
π/2) and (2) turns into a linear

equation.

2.2. Barles’ and Soner’s model

Barles and Soner derived a more complicated model by following the utility function approach of Hodges and
Neuberger [19], that was further developed by Davis et al. in [20]. They use an exponential utility function and prove
– using the theory of stochastic optimal control [21] – that as ε and κ go to 0, V is the unique (viscosity) solution of
(2) where

σ̃ 2
= σ 2

(
1 + Ψ(er(T −t)a2S2VSS)

)
, (6)

with a = κ/
√

ε and Ψ(x) denotes the solution to the following nonlinear ordinary differential equation

Ψ ′(x) =
Ψ(x) + 1

2
√

xΨ(x) − x
, x 6= 0, (7a)
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with the initial condition

Ψ(0) = 0. (7b)

The analysis of this ordinary differential equation by Barles and Soner in [8] implies that

lim
x→∞

Ψ(x)

x
= 1 and lim

x→−∞
Ψ(x) = −1. (8)

This property allows the treatement of the function Ψ(·) as the identity for large arguments and therefore the volatility
becomes

σ̃ 2
= σ 2(1 + er(T −t)a2S2VSS). (9)

2.3. Risk adjusted pricing methodology

In this model, proposed by Kratka and improved by Jandačka and Ševčovič in [22], the optimal time-lag δt between
the transactions is found to minimize the sum of the rate of the transaction costs and the rate of the risk from an
unprotected portfolio. That way the portfolio is still well protected and the modified volatility is now of the form

σ̃ 2
= σ 2

1 + 3
(

C2 M

2π
SVSS

) 1
3

 , (10)

where M ≥ 0 is the transaction cost measure and C ≥ 0 the risk premium measure.
Note that these nonlinear models are all consistent with the linear model if the additional parameters for transaction

costs vanish (Le, Ψ(·), M). We will study these models – more precisely Eqs. (2) and (3) where the volatility is given
by the Eqs. (4), (6), (9) and (10) – for both European and American Call options. The European Call option is the
solution to (2) on 0 ≤ S < ∞, 0 ≤ t ≤ T with the following terminal and boundary conditions:

V (S, T ) = (S − K )+ for 0 ≤ S < ∞

V (0, t) = 0 for 0 ≤ t ≤ T

V (S, t) ∼ S − K e−r(T −t) as S → ∞.

(11)

For the American Call option the ‘spatial’ domain is divided into two regions by the free boundary S f (t), the stopping
region S f (t) < S < ∞, 0 ≤ t ≤ T , where the option is exercised or dead with V (S, t) = S − K and the continuation
region 0 ≤ S ≤ S f (t), 0 ≤ t ≤ T , where the option stays alive and (2) is valid under the following terminal and
boundary conditions (see e.g. [13]):

V (S, T ) = (S − K )+ for 0 ≤ S ≤ S f (T )

V (0, t) = 0 for 0 ≤ t ≤ T

V (S f (t), t) = S f (t) − K for 0 ≤ t ≤ T

VS(S f (t), t) = 1 for 0 ≤ t ≤ T

S f (T ) = max(K , r K/q).

(12)

The existence of a viscosity solution to (2) for European options with the volatility given by (6) has been proved by
Barles and Soner in [8]. However, in general an exact analytical solution leading to a closed expression is not known
neither for European nor for American options in a market with transaction costs.

The focus of this paper is the numerical solution of the problem. This is achieved by initially analytically
approaching the solution for the European Call by transforming (2) with (11) into a forward-in-time parabolic problem.
In the section thereafter both a classical and a compact finite difference scheme will be specified and used to solve the
transformed problem. Finally, different volatility models will be compared to each other.

The numerical solution and the comparison study for American options will be discussed in detail in the thesis of
the first author, though in this work restricted to the transformation of the free boundary problem (3) with (12) into
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a parabolic equation defined on a fixed spatial domain. This new problem will be numerically solved and evaluated
in [23].

3. Analytical solution

3.1. Transformation of the European Call option

In order to be able to solve the problem (2) subject to (11) numerically, we perform a variable transformation (see
e.g. [1,24]):

x = ln
(

S

K

)
, τ =

1
2
σ 2(T − t) u(x, τ ) = e−x V (S, t)

K
.

Differentiation yields:

Vt = uτ τt S = −
1
2
σ 2Suτ ,

VS = ux xS S + u = ux + u,

VSS = uxx xS + ux xS =
1
S
(uxx + ux ).

Plugging these derivatives into (2) leads to

0 = −
1
2
σ 2Suτ +

1
2
σ̃ 2S(uxx + ux ) + r S(ux + u) − ruS,

and a final multiplication by −
2

Sσ 2 gives

0 = uτ −
σ̃ 2

σ 2 (uxx + ux ) − Dux , (13)

where D =
2r
σ 2 and σ̃ 2 depends on the volatility model, x ∈ R and 0 ≤ τ ≤ T̃ =

σ 2T
2 . Model (4) becomes

σ̃ 2
= σ 2(1 + Le sign(uxx + ux )), (14a)

model (6)

σ̃ 2
= σ 2

(
1 + Ψ

(
e

2rτ

σ2 a2 K ex (uxx + ux )

))
, (14b)

model (9)

σ̃ 2
= σ 2

(
1 + e

2rτ

σ2 a2 K ex (uxx + ux )

)
(14c)

and model (10)

σ̃ 2
= σ 2

1 + 3
(

C2 M

2π
(uxx + ux )

) 1
3

 . (14d)

Now u(x, τ ) solves (13) on the transformed domain x ∈ R, 0 ≤ τ ≤ T̃ subject to the following initial and boundary
conditions resulting from (11):

u(x, 0) = (1 − e−x )+ for x ∈ R,

u(x, τ ) = 0 as x → −∞,

u(x, τ ) ∼ 1 − e−Dτ−x as x → ∞.

(15)
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3.2. Transformation of the American Call option

The purpose of converting the free-boundary problem for the nonlinear Black–Scholes equation (3) subject to
(12) into a quasilinear parabolic equation defined on a fixed domain is the minimization of the error resulting from
the discontinuity of VSS , which is achieved by only considering the domain where (3) holds. Following the idea of
Ševčovič in [25] we change the variables to:

τ = T − t, x = ln
(

%(τ)

S

)
⇔ S = e−x%(τ), %(τ ) = S f (T − τ)

and construct a portfolio Π (x, τ ) = V (S, t) − SVS(S, t) by buying ∆ = VS shares S and selling an option V .
Differentiating Π with respect to x and τ gives us

Πx = VS Sx − Sx VS − SVSS Sx = S2VSS

and

Πτ = VS Sτ + Vt tτ − Sτ VS − S(VSS Sτ + VSt tτ )

= −Vt −
%′(τ )

%(τ )
S2VSS + SVSt

= −Vt −
%′(τ )

%(τ )
Πx − S∂S(−Vt ). (16)

Substituting

−Vt =
σ̃ 2

2
S2VSS − r(V − SVS) − q SVS =

σ̃ 2

2
Πx − rΠ − q SVS

from (3) into (16) and using the fact that −S∂S = ∂x , we get

Πτ =
σ̃ 2

2
Πx − rΠ − q SVS −

%′(τ )

%(τ )
Πx + ∂x

(
σ̃ 2

2
Πx − rΠ

)
+ S∂S(q SVS)

=

(
σ̃ 2

2
−

%′(τ )

%(τ )
− r + q

)
Πx − rΠ +

1
2
∂x (̃σ

2Πx ).

We therefore obtain

0 = Πτ +

(
%′

%
(τ) + r − q −

σ̃ 2

2

)
Πx −

1
2
∂x (σ

2Πx ) + rΠ , (17)

defined on x ∈ R+, 0 ≤ τ ≤ T . The terminal condition from (12) in the original variables (S, T ) becomes the intitial
condition in the new variables (x, 0)

Π (x, 0) = V (S, T ) − SVS(S, T ) =

{
−K for S > K ⇔ x < ln

%(0)

K
0 otherwise

(18a)

and the boundary conditions from (12) transform to

Π (x, τ ) = 0 as x → ∞, 0 ≤ τ ≤ T (18b)

Π (0, τ ) = −K for 0 ≤ τ ≤ T . (18c)

To complete the system of equations that enables the computation of the portfolio Π we need to use the last two
conditions of (12) to obtain an expression at the free boundary position %(τ). Differentiating and evalutating V at the
free boundary gives us

VS(S f (t), t)S′

f (t) + Vt (S f (t), t) = S′

f (t).
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Using (12), we conclude that

Vt (S f (t), t) = 0 for 0 ≤ τ ≤ T .

Computing (3) at the point (S f (t), t) or at (0, τ ) in the transformed variables yields:

0 = Vt (S f (t), t) +
1
2
σ̃ 2Πx (0, τ ) + (r − q)S f (t)VS(S f (t), t) − r V (S f (t), t)

=
1
2
σ̃ 2Πx (0, τ ) + r K − q%(τ).

Assuming that r ≥ q for simplicity, we get the last condition:

%(τ) =
1

2q
σ̃ 2Πx (0, τ ) +

r K

q
with %(0) =

r K

q
, (18d)

where 0 ≤ τ ≤ T and σ̃ 2 depends on the volatility model we choose. The volatility (4) from the Leland model
becomes

σ̃ 2
= σ 2 (1 + Le sign(Πx )) , (19a)

for (6) we get

σ̃ 2
= σ 2(1 + Ψ(erτ a2Πx )), (19b)

for (9) we obtain

σ̃ 2
= σ 2(1 + erτ a2Πx ) (19c)

and for (10)

σ̃ 2
= σ 2

1 + 3
(

C2 M

2π
Πx%(τ)e−x

) 1
3

 . (19d)

This transformed problem (17) subject to (18) with the corresponding volatilities (19) is solved by the split step
finite-difference method proposed by Ševčovič in [25] and elaborated on in [23]. The solution in the European case is
specified below.

4. Numerical solution

4.1. Finite-difference schemes

There are several numerical methods of solving (13) subject to (15). This work’s emphasis is on the finite-difference
schemes, thus other methods will not be mentioned here.

To apply finite-difference schemes to the transformed problem (13) subject to the conditions (15) with the
corresponding volatilities (14) we start by replacing x ∈ R and τ ∈ [0, T̃ ] by a bounded inverval x ∈ [−R, R],
R > 0. We discretize the new computational domain by a uniform grid (xi , τn) with xi = ih and τn = nk, where h
is the space step, k is the time step, i ∈ [−N , N ], −R = −Nh, R = Nh, n ∈ [0, M] and T̃ = Mk. We denote the
approximate solution of (13) in xi at time τn by U n

i ≈ u(xi , τn) and treat the initial and boundary conditions (15) in
the following way:

U 0
i = (1 − e−ih)+,

U n
−N = 0,

U n
N = 1 − e−Dnk−Nh .

(20)

For a more appropriate treatment of the boundary conditions so-called articifial boundary conditions [26] can be
introduced to limit the unbounded spatial domain of (13). We bear in mind that we say a scheme is of order (m, n) if
its truncation error is of order O(km

+ hn).
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To discretize (13) we introduce the following notation for the forward difference quotient with the spatial step
size h:

D+

h U n
i :=

U n
i+1 − U n

i

h
≈ ux (xi , τn),

where we leave out the error termO(h). Similarly, the backward difference quotient with respect to the spatial variable
is denoted as

D−

h U n
i :=

U n
i − U n

i−1

h
≈ ux (xi , τn)

and the central difference quotient as

D0
hU n

i :=
U n

i+1 − U n
i−1

2h
≈ ux (xi , τn).

For the second spatial derivative we introduce the standard difference quotient

D2
hU n

i :=
U n

i+1 − 2U n
i + U n

i−1

h2 ≈ uxx (xi , τn)

with the error term O(h2). Note that central differences in the time variable are never used in practice because they
always lead to bad numerical schemes, that are inherently unstable (see [1]).

Most of the resulting schemes lead to systems of equations that can be written in matrix form:

AnU n+1
= BnU n

+ dn, (21)

where

U n
=


U n

−N+1
...

U n
0
...

U n
N−1

 ∈ R2N−1, An
=



a0 a1 0 · · · 0

a−1
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . a1

0 · · · 0 a−1 a0

 ∈ R(2N−1)×(2N−1),

Bn
=



b0 b1 0 · · · 0

b−1
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . b1

0 · · · 0 b−1 b0

 ∈ R(2N−1)×(2N−1)

and

dn
=


b−1U n

−N − a−1U n+1
−N

0
...

0
b1U n

N − a1U n+1
N

 ∈ R2N−1.

The vector dn can be calculated with the boundary conditions (20) and the matrices An and Bn are triagonal, so that
the resulting systems can be solved with linear effortO(N ) using the Thomas algorithm [27]. We further suppose that

1∑
i=−1

ai =

1∑
i=−1

bi = 1,
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which is satisfied by any consistent scheme after normalization of the coefficients (cf. [28]).
There are different ways of treating the volatility. Düring suggests in [29] a smoother approximation of uxx for the

nonlinear part by choosing:

uxx (xi , τn) ≈
U n

i+2 − 2U n
i + U n

i−2

4h2 := D2
2hU n

i

with the truncation error ofO(h2). We will treat the nonlinearity explicitly in all the schemes and denote the volatility
correction for Leland’s model with the volatility (14a) by

sn
i =

√
2
π

κ

σ
√

δt
sign

(
D2

2hU n
i + D0

hU n
i

)
, (22a)

the volatility correction for Barles’ and Soner’s model with the volatility (6) by

sn
i = Ψ

(
eDτn+xi a2 K (D2

2hU n
i + D0

hU n
i )
)

, (22b)

the volatility correction in case of treating Ψ(·) as the identity with the volatility (9) by

sn
i = eDτn+xi a2 K

(
D2

2hU n
i + D0

hU n
i

)
, (22c)

and the volatility correction for the Risk Adjusted Pricing Methodolody with the volatility (10) by

sn
i = 3

(
C2 M

2π
(D2

2hU n
i + D0

hU n
i )

) 1
3

. (22d)

One problem with sn
i is the calculation at the boundary, since theoretically we need U n

∈ R2N+3 to be able to calculate
sn

N−1 and sn
−N+1. This calculation involves U n

−N−1 and U n
N+1, which are outside the computational domain. Düring

states in [29] that the influence of the nonlinearity at the boundary is not significant and can be therefore neglected for
large R. We will assume that

U n
−N−1 = 0 and U n

N+1 = 1 − e−Dnk−(N+1)h (23)

for these ghost or auxiliary values (see [30]) and hence denote

sn
=
(
sn
−N+1, . . . , sn

0 , . . . , sn
N−1

)>
∈ R2N−1.

The ordinary differential Eq. (7) is solved with the ode45 function in MATLAB, which is based on an explicit
Runge–Kutta (4, 5) one-step solver, the Dormand–Prince pair [31]. The values between the calculated values for sn

are obtained by a cubic spline interpolation (see Fig. 1).
In the following we introduce both a classical and a compact finite-difference scheme and present the numerical

results.

4.1.1. Crank–Nicolson method
This classical finite-difference scheme computes the solution better than the forward and backward difference

methods due to its superior order of (2, 2) (cf. [4,30]). We approximate the second spatial derivative by D2
hU n

i and
D2

hU n+1
i except in the nonlinear volatility term sn

i . Bringing (13) into the form of a convection-diffusion equation
with a nonlinear term

uτ = sn
i (uxx + ux ) + (1 + D)ux + uxx , (24)

where sn
i is (22) depending on the model, and replacing all the derivatives in (24) by their corresponding finite-

difference quotients we get:

D+

k U n
i + D−

k U n+1
i = sn

i

(
D2

hU n
i + D0

hU n
i

)
+ sn

i

(
D2

hU n+1
i + D0

hU n+1
i

)
+ (1 + D)

(
D0

hU n
i + D0

hU n+1
i

)
+ D2

hU n
i + D2

hU n+1
i . (25)
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This is equivalent to

U n+1
i − U n

i

k
=

sn
i

2

(
U n

i+1 − 2U n
i + U n

i−1

h2 +
U n

i+1 − U n
i−1

2h

)
+

sn
i

2

(
U n+1

i+1 − 2U n+1
i + U n+1

i−1

h2 +
U n+1

i+1 − U n+1
i−1

2h

)
+ (1 + D)

U n
i+1 − U n

i−1 + U n+1
i+1 − U n+1

i−1

4h

+
U n

i+1 − 2U n
i + U n

i−1 + U n+1
i+1 − 2U n+1

i + U n+1
i−1

2h2 .

Rearranging leads to the linear system (21) with the following coefficients:

a−1 = sn
i

(
−

r

2
+

µ

4

)
−

r

2
−

λµ

4
,

a0 = 1 + r(1 + sn
i ),

a1 = sn
i

(
−

r

2
−

µ

4

)
−

r

2
+

λµ

4
,

b−1 = sn
i

(r

2
−

µ

4

)
+

r

2
+

λµ

4
,

b0 = 1 − r(1 + sn
i ),

b1 = sn
i

(r

2
+

µ

4

)
+

r

2
−

λµ

4
,

where

λ = −(1 + D), α =
λh

2
, r =

k

h2 , µ =
k

h
.

The Crank–Nicolson scheme is unconditionally stable in the linear case [30].

4.1.2. Rigal compact schemes

In [28] Rigal develops two-level three-point finite difference schemes of order (2, 4) that are stable and non-
oscillatory and give more efficient and accurate results than implicit fourth-order schemes. Düring follows Rigal’s
ideas and generalizes his results for a nonlinear Black–Scholes equation in [29]. A general two-level three-point
scheme for the problem (24) can be written as:

D+

k U n
i = (1 + sn

i )

((
1
2

+ A1

)
D2

hU n
i +

(
1
2

+ B1

)
D0

hU n
i

)
+ (1 + sn

i )

((
1
2

+ A2

)
D2

hU n+1
i

+

(
1
2

+ B2

)
D0

hU n+1
i

)
+ D

(
1
2

+ B1

)
D0

hU n
i + D

(
1
2

+ B2

)
D0

hU n+1
i , (26)

where A1, A2, B1 and B2 are real constants which should be chosen in such a way that they eliminate the lower
order terms in the truncation error. Note, that if these constants are equal to zero, then (26) reduces to the classical
Crank–Nicolson scheme (25) of order (2, 2). If we choose

B1 =
1 + 4r2α2

12βr
,

B2 = −
1 + 4r2α2

12βr
,

A1 = −
1

12kβ
(−2h2

+ 6̃λ2k2 B2 − k 2̃λ2
− 12kβ2 B2),

A2 = −
1

12kβ
(2h2

+ 6̃λ2k2 B2 + k 2̃λ2
+ 12kβ2 B2),
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Fig. 1. Solution to Eq. (7) using ode45 (solid line) and the identity function (dotted line).

with β := 1 + sn
i and λ̃ := −(1 + sn

i + D), plug into the Eq. (26) and rearrange the U n
i s, then our coefficients become

a−1 = −
12rβ2

− 2β + r λ̃2h2
+ r 3̃λ4h4

+ 6r λ̃hβ − λ̃h − r 2̃λ3h3

24β
,

a0 =
10β + 12rβ2

+ r λ̃2h2
+ r 3̃λ4h4

12β
,

a1 = −
12rβ2

− 2β + r λ̃2h2
+ r 3̃λ4h4

− 6r λ̃hβ + λ̃h + r 2̃λ3h3

24β
,

b−1 =
12rβ2

+ 2β + r λ̃2h2
+ r 3̃λ4h4

+ 6r λ̃hβ + λ̃h + r 2̃λ3h3

24β
,

b0 =
−10β + 12rβ2

+ r λ̃2h2
+ r 3̃λ4h4

12β
,

b1 =
12rβ2

+ 2β + r λ̃2h2
+ r 3̃λ4h4

− 6r λ̃hβ − λ̃h − r 2̃λ3h3

24β
.

This scheme is known as the R3C scheme [29]. Note that if β = 1 or sn
i = 0 this scheme reduces to the R3B scheme

developed by Rigal [28], which is also unconditionally stable and non-oscillatory in the linear case.

4.2. Comparison study

In this part we compare the different transaction cost models to the model without transaction costs and to each
other. The influence of transaction costs modelled by the volatilities (4), (6), (9) and (10) and computed with the
Crank–Nicolson finite-difference scheme can be seen in Fig. 2. We plot the difference Vnonlinear(S, t) − Vlinear(S, t)
between the price of the European Call option with transaction costs and the price of the European Call without
transaction costs. As expected the numerical results indicate an economically significant price deviation between the
standard (linear) Black–Scholes model and the nonlinear models.

For all calculations we used the following parameters:

r = 0.1, σ = 0.2, K = 100, T = 1 (one year),

R = 1, k = 0.001 h = 0.1.

In all these models the difference is not symmetric, but decreases closer to the expiry date. This is an expected
consequence of the decreasing necessity of portfolio adjustment and hence lower transaction costs closer to the expiry.
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(a) Barles’ and Soner’s model (a = 0.02) vs. linear model. (b) Ψ(x) := x chosen as the identity (a = 0.02) vs. linear model.

(c) Leland’s model (δt = 0.01, κ = 0.05) vs. linear model. (d) RAPM model (M = 0.01, C = 30) vs. linear model.

Fig. 2. The influence of transaction costs (linear vs. nonlinear model).

The difference is maximal at one year to expiry at S ≈ 95, where the nonlinear price is significantly higher than the
linear price. At this point with the given parameters Barles’ and Soner’s model provides the highest price (≈12.4),
followed by Leland’s model (≈11.9), RAPM (≈11.0), the identity (≈10.0) and finally the linear price (≈9.9) (see
Fig. 3).

For each volatility model and each difference scheme we compare the error of accuracy of the above computation
one year to expiry, that is at t = 0 or τ = T̃ = Mk, and denote this `2-error by

err2(Mk) =

(
h

N∑
i=−N

|u(xi , T̃ ) − U M
i |

2

) 1
2

.

For the reference solution u(xi , T̃ ) we compute a solution for each volatility model with the Crank–Nicolson and the
R3C scheme on a very fine grid with k = 0.001 and h = 0.01. For U M

i we use the parameters as indicated above.

We see that in the linear case the compact R3C scheme yields better results than the Crank–Nicolson scheme
in terms of accuracy, even though the error resulting from the Crank–Nicolson scheme is only slightly bigger (see
Table 1). Reducing the spatial step size to h = 0.001 improves the accuracy considerably, though it does increase the
computational time tremendously.
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Fig. 3. Price of the European Call option.

Table 1

`2-error for different models and schemes

Linear Barles and Soner Identity Leland RAPM

err2(Mk) with CN 0.0016 0.0006 0.0031 0.0047 0.0006
err2(Mk) with R3C 0.0009 0.0009 0.0024 0.0056 0.0005

5. Conclusions and outlook

We have compared several transaction cost models and used two difference schemes for the numerical computation
of the option prices. Both the Crank–Nicolson and the R3C scheme provided accurate approximations to the European
Call option price. They are unconditionally stable, non-oscillatory and excellent for the computation – in case of
European options – due to their superiority to standard difference schemes. For the future work another two compact
schemes, known as the Numerov-type (see [32,33]) and the Crandall–Douglas scheme (see [34]), will be generalized
and analyzed for nonlinear Black–Scholes equations. For the computation of the option prices for American options
in an market with transaction costs we refer the reader to [25,23].
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