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Purpose: In high precision photon radiotherapy and in hadrontherapy, it is crucial to minimize the occur-
rence of geometrical deviations with respect to the treatment plan in each treatment session. To this end,
point-based infrared (IR) optical tracking for patient set-up quality assessment is performed. Such track-
ing depends on external fiducial points placement. The main purpose of our work is to propose a new
algorithm based on simulated annealing and augmented Lagrangian pattern search (SAPS), which is able
to take into account prior knowledge, such as spatial constraints, during the optimization process.
Material and methods: The SAPS algorithm was tested on data related to head and neck and pelvic cancer
patients, and that were fitted with external surface markers for IR optical tracking applied for patient set-
up preliminary correction. The integrated algorithm was tested considering optimality measures
obtained with Computed Tomography (CT) images (i.e. the ratio between the so-called target registration
error and fiducial registration error, TRE/FRE) and assessing the marker spatial distribution. Comparison
has been performed with randomly selected marker configuration and with the GETS algorithm (Genetic
Evolutionary Taboo Search), also taking into account the presence of organs at risk.
Results: The results obtained with SAPS highlight improvements with respect to the other approaches: (i)
TRE/FRE ratio decreases; (ii) marker distribution satisfies both marker visibility and spatial constraints.
We have also investigated how the TRE/FRE ratio is influenced by the number of markers, obtaining sig-
nificant TRE/FRE reduction with respect to the random configurations, when a high number of markers is
used.
Conclusions: The SAPS algorithm is a valuable strategy for fiducial configuration optimization in IR optical
tracking applied for patient set-up error detection and correction in radiation therapy, showing that tak-
ing into account prior knowledge is valuable in this optimization process. Further work will be focused on
the computational optimization of the SAPS algorithm toward fast point-of-care applications.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

In high precision photon radiotherapy and in hadrontherapy
(HT), the theoretical geometrical selectivity of the treatment (par-
ticularly enhanced in charged particle therapy) requires specific
technological and methodological efforts to minimize the occur-
rence and size of geometrical deviations with respect to the treat-
ment plan at each treatment session. In HT, in particular when
active scanning beam delivery is applied, inter- and intra-fractional
uncertainties may produce severe consequences in dose deposition
patterns, thus frustrating highly conformal treatment plans
designed to treat deep-seated solid tumor in critical sites.

Beside in-room X-ray imaging and image registration methods,
valuable tools for inter- and intra-fractional deviations mitigation
consist of infrared (IR) optical tracking and point-based registra-
tion [1–4]. Surface tracking methods have also been used in radio-
therapy [5–7] but in HT, patients are usually immobilized with a
thermoplastic mask that prevents the tracking camera from visual-
izing the patient’s surface directly. In this case, surface-based
methods are not suitable for the target registration and this is
why we focused on point-based tracking.

Point based IR optical tracking in radiation oncology is based on
the real-time detection of the 3D position of a set of external mark-
ers placed on patient’s skin. Fast iterative estimation of the 6� of
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freedom rigid transformation is obtained by minimizing the mea-
sured marker displacements with respect to corresponding refer-
ences coming from the treatment plan dataset obtained with
Computed Tomography (CT): this technique allows the compensa-
tion of geometrical deviation mainly due to patient set-up errors.
The root mean square (RMS) of the distance between correspond-
ing markers, defined as fiducial registration error (FRE) [8] repre-
sents the metric for the estimation of the corrective
transformation of patient position, under the usual assumption
that FRE minimization implies minimizing geometrical deviations
affecting the target of the treatment. The distance between the real
target position and its corresponding reference position is defined
as target registration error (TRE) [9]. TRE cannot be directly calcu-
lated, since it is not possible to know the real position of the target.
However, statistical predictors can be applied to estimate TRE size
as a function of residual FRE and of the geometric distribution of
markers on patient surface. Under the hypothesis that optical
tracking is efficacious in registering corresponding surface surro-
gates of the target achieving a minimum FRE, there is the need
to identify, by means of appropriate optimization methods, the
optimal marker configuration that minimizes the corresponding
value of TRE. The final goal is to obtain a higher accuracy in target
repositioning [10].

Several authors have faced the issue of optimal marker place-
ment by proposing different optimization methods.

Liu et al. [11] described a floating optimization based on genetic
algorithm and obtained a 50% TRE reduction with respect to a ran-
dom marker configuration. Nevertheless, the methods turned out
to be computational expensive, due to the large number of param-
eters to be optimized and to the continuity of the search space that
slows down the execution of the algorithm. Moreover, marker vis-
ibility constraints imposed by the optical tracking system (OTS)
were not taken into account.

An interesting strategy to deal with complex optimization prob-
lems is to resort to methods that are able to incorporate prior
knowledge in the search of the best solution, usually by adding a
suitable set of constraints. This is typically possible by applying
algorithms belonging the AI and to the statistical learning tradi-
tion, such as neural networks, genetic algorithms and simulation
annealing [12,13].

These strategies lie at the intersection of data analysis and
knowledge-based system, an area that is known as ‘‘intelligent
data analysis’’ or IDA [14–17]. IDA, since the late 90s, has produced
several interesting studies and tools with a noteworthy number of
applications in medicine and biology [18–21].

In the area of optimal marker placement, an IDA approach has
been implemented by Riboldi et al. [22], who combined genetic
algorithm (GA) with Taboo search (TS) in a method called Genetic
Evolutionary Taboo Search (GETS). They proposed a permutation
encoding with the goal to characterize candidate solutions and
make the search space discrete. Consequently, the execution time
of the algorithm turned out to be reduced with respect to the
approach described in [11]. Taboo search allowed the algorithm
to reject marker configurations, which would have featured critical
visibility for the OTS cameras and to exclude irradiation field areas
from the surface available for marker placement. The results
obtained on data coming from ten prostate patients showed an
average 26.5% reduction of TRE (compared to a random marker
Table 1
The table shows the prior knowledge incorporated into the search, represented by the con

Prior knowledge Constraints

Spatial constraints Irradiation field areas on the mask surface Boundaries for
Marker dimension (cm) Marker spatial

Visual constraints Marker dimension (pixel) Marker visibilit
configuration), against the 19.4% obtained when a quasi-Newton
method was applied. Limitations of the GETS algorithm reside in
the fact that possible overlap of markers, commonly occurring
when a high marker number is used, is not taken into account.
As another example of knowledge-driven approaches, in the frame
of image-guided neurosurgery, Shamir et al. [23] described a col-
laborative framework that allows the surgeon to optimally plan
marker location on routine diagnostic images before preoperative
imaging, and to select during surgery the fiducial markers and
the anatomical landmarks that minimize the target registration
error (TRE). The optimal fiducial marker configuration selection
can be performed on diagnostic image dataset interactively, by
monitoring target selection on a visual Estimated TRE (E-TRE)
map, which is automatically updated when the surgeon adds and
deletes candidate markers and targets. Data coming from five
patients were used and results showed a reduction of the average
TRE from 4.7 mm to 3.2 mm.

As a whole, methods previously described exhibit limitations
related to a long execution time [11] incomplete constraints about
marker placement [22] and the requirement of invasive procedures
for the selection of additional anatomical landmarks [23].

The current spread of the clinical centers dedicated to the
hadrontherapy and the increasing availability of this therapy
worldwide demands new approaches, more accurate and repeat-
able than the previous ones, with the aim of identifying a standard
procedure that ensures the highest precision in tumor localization.

In this paper, we present a novel IDA algorithm that answers to
these issues by integrating two different optimization methods:
simulated annealing (SA) and pattern search (PS). We have named
the algorithm ‘‘SAPS’’. Simulated annealing was selected for its
capability of avoiding the entrapment in local minima; pattern
search provides reduction of execution time required by SA to con-
verge to a global minimum. Some knowledge-based features of the
GETS algorithm [22] have been included in the SAPS algorithm:
marker visibility constraints, a priori definition of the surface
allowed for marker placement and permutation encoding of candi-
date solutions. In addition, we have introduced specific constraints
that prevent markers overlapping. Table 1 summarizes how the
prior knowledge has been converted in specific constraints for
the marker placement.

SAPS has been tested on data collected on thirteen head-
and-neck and pelvic cancer patients who were treated with proton
therapy. Results show that constrained optimization allows us to
improve TRE minimization with respect to random fiducial configu-
rations and to those obtained by the GETS algorithm, especially
when the number of markers is high. The SAPS algorithm lends itself
as a valuable and clinically applicable alternative to improve the
accuracy of target localization when IR optical tracking is applied.

2. Methods: data registration techniques and optimization
algorithms

2.1. Patient population

The SAPS algorithm was tested on a set of clinical data collected
at the National Centre of Oncological Hadrontherapy (CNAO Foun-
dation) in Pavia, Italy [24]. The patient cohort included 6 head and
neck and 7 pelvic cancer patients, who were fitted with external
straints imposed on the marker placement.

Effect

the search space Avoiding markers placement that affect the treatment
constraint Preventing markers overlap

y constraint Preventing incorrect marker recognition by the OTS system



Table 2
The table shows patient’s data as anatomical areas to be treated and the number of
markers in the random configuration: elements in the first row identify the head-
and-neck patients and elements in the second row identify the pelvic patients.

Number of markers

5 6 7

Head-and-neck Pat12, Pat13 Pat1, Pat3 Pat2, Pat9
Pelvis Pat4, Pat8 Pat6, Pat10, Pat11 Pat5, Pat7
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surface markers for IR optical tracking applied for patient set-up
preliminary correction and continuous monitoring during beam
delivery. The number of markers used for each patient is reported
in Table 2. Target registration error was calculated for the Planning
Target Volume (PTV): PTV is a geometrical concept which takes
into consideration the net effect of all the possible geometrical
variations and inaccuracies, and it ensures that the prescribed dose
is actually absorbed in the clinical target volume (CTV) [25]. We
adopt the PTV because it represents the standard model used in
treatment planning evaluation and the recommended tool to shape
dose distribution. Moreover, in hadrontherapy differences between
PTV and CTV dimensions are negligible and they do not influence
the calculation of the TRE.

Particle beam treatment planning system (Syngo PT Planning,
version VB10, Siemens, Germany) was applied on 3 mm thickness
CT slices for anatomical structures delineation (target, organs at
risk, skin) and treatment planning. Contours data were saved as
DICOM-RT structures.

2.2. Data analysis

Within Matlab (MATLAB R2012a, Mathworks, Inc., Natick, MA,
USA), contours were extracted from the DICOM file and specific
anatomical landmarks (center of the PTV and OARs) were selected
to be included in the procedure for marker configuration optimiza-
tion. The patient skin surface model, available in the DICOM-RT
structure file, was used as the set of spatial position potentially
available for marker placement. The model is described by the
matrix S 2 RNp�3 such that ST ¼ fp1; . . . ; pNp

g where the vector pj

contains the coordinates of the jth point with j = 1, ... ,Np and Np is
the total number of points.

From the surface model S, the irradiation fields were removed,
as incompatible with marker placement. By knowing the geometry
of the optical tracking system set-up in the treatment room, sur-
face areas on which markers would have been invisible to the
OTS cameras were identified and excluded from the set of available
marker positions.

2.3. Target registration error

The expression of the expected value of TRE, obtained by West
et al. [26] is given by:

TRE2ðrÞ
D E

¼
FRE2
D E
Nm � 2

1þ 1
3

X3

k¼1

d2
k

f 2
k

 !
ð1Þ

where Nm > 2 is the number of fiducial points (or fiducials), r is the
vector of target position coordinates measured with respect to the
centroid of fiducials, fk is the RMS distance of the fiducials from
the kth principal axis of the fiducials configuration and dk is the dis-
tance of the target from the same axis. The objective function of the
iterative optimization procedure was the TRE/FRE ratio, which
depends only on the number of fiducials and on their spatial distri-
bution with respect to the target [9,10,26]. According to Riboldi
et al. [22], the assumption is that for a given FRE, which results from
the intrinsic accuracy in marker 3D localization performed by the
OTS, TRE can be minimized if a marker configuration with the min-
imum TRE/FRE ratio is applied.

2.4. Simulated annealing and pattern search

The SAPS algorithm combines simulated annealing (SA) and
pattern search (PS), described in Sections 2.5 and 2.6, respectively.
SA initializes the search for the best configuration of the markers
and PS refines the results provided by SA. This choice has been
made to avoid the entrapment of the optimization process in local
minima and, at the same time, to grant convergence in a relatively
short time to the global minimum.

Optimal marker configurations found by the SAPS algorithm
were compared to the random configuration that was applied for
the treatment. The differences provided by the optimal marker
configuration were quantified in terms of the TRE/FRE ratio and
spatial distribution of markers, also when SAPS and GETS perfor-
mance were compared. Repeated simulations provided informa-
tion concerning the repeatability of the optimal solution and the
execution time of both algorithms. Moreover, we performed a sen-
sitivity analysis of the algorithm performance as a function of the
number of available markers and the inclusion of additional targets
(typically the OARs). SAPS algorithm implementation and statisti-
cal analysis were performed in Matlab.

2.5. Simulated annealing

Optimal marker placement is a complex combinatorial optimi-
zation problem: such problems can be solved by SA, a heuristic
algorithm that refers to a stochastic procedure grounded on the
analogy with the physical process of heating a material and then
slowly lowering the temperature to decrease defects and to mini-
mize the system energy [27,28]. In our case, candidate solutions
of SA are the possible configurations of surface markers. As imple-
mented in the GETS algorithm [22] candidate solutions are defined
by means of permutation encoding: at step i the configuration of Nm

points is defined in the following equation

xi ¼ IDi;1; IDi;2; . . . . . . . . . ; IDi;Nm

� �
ð2Þ

where each element IDi,j represents the ordinal position of the cor-
responding marker j in the list of points encompassing the skin sur-
face model S. Points of S are ordered in the frontal plane so that
consecutive IDs in the list correspond to contiguous points in the
model. By adopting this encoding, the search space of solutions
becomes discrete and the complexity of the algorithm is signifi-
cantly reduced.

The initial guess x0 is randomly chosen. Then, with fixed tem-
perature (T), the algorithm makes a random step in the neighbor-
hood of the current value of the solution (xi) and a solution xnew

is generated by sampling from a multivariate normal probability
density distribution centered in xi:

xnew ¼ round½mvnrndðxi;RÞ� ð3Þ

The matrix R is a function of T: as the temperature decreases,
the algorithm reduces the search space width in order to converge
to a minimum. The covariance terms, which represent the correla-
tion between markers, are defined according to the constraint that
the markers must not overlap.

A crucial aspect of our approach stands in its capability of
including constraints, which can be generated on the basis of the
knowledge available on the specific problem.

1. Each configuration must satisfy the marker visibility constraint, as
implemented in the GETS algorithm [22]: configurations exhib-
iting an inter-marker distance lower than a given threshold are
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rejected, in order to avoid that multiple markers are recognized
as a single marker by the OTS. Inter-marker distance is measured
on the camera image planes (three cameras are installed in the
treatment room), by backprojecting the 3D markers position
(estimated at each iteration) through the known OTS camera cal-
ibration parameters. The inter-marker distance threshold was
fixed to 3 pixels in order to ensure the correct recognition of each
marker in all the possible experimental configurations. The con-
straint is given by:
min
j;l;k

kTk SðIDi;jÞ
� �

� Tk SðIDi;lÞ
� �

k
� �

P 3 pixels con

j; l ¼ 1; . . . ;Nm; k ¼ 1;2;3 ð4Þ

where Tk denotes the projection matrix (from physical space to
image plane) of the kth camera and S(IDi,j) denotes the row of the
matrix S related to the jth marker of the ith configuration.
2. In the SAPS algorithm, we also introduced a marker spatial con-

straint, defined as:

min
h

SðIDi;j; hÞ � SðIDi;l; hÞ
� �

P 10 mm con

j; l ¼ 1; . . . ;Nm; h ¼ x; y; z ð5Þ

This constraint is necessary to avoid marker overlap on the
patient’s mask. It requires that the minimum distance between
the centroids of two neighboring markers is equal to 10 mm in
each dimension, since the radius of each marker is 5 mm.

The value of the objective function f(xnew), where f is the TRE/
FRE, ratio is compared with f(xi).The algorithm accepts the new
iterate according to the rule of Metropolis, with an acceptance prob-
ability given by:

P0 ¼
1 if Df < 0

exp �Df
T

� 	
if Df P 0

(
ð6Þ

where Df = f(xnew) � f(xi). Let us observe that xnew is accepted also
when f increases, but with a probability P0 depending on T: this fea-
ture guarantees that the algorithm is able to explore more widely
the space of possible solutions and consequently avoids being
trapped in local minima.

T represents the control parameter in SA since it affects the
region width of solutions investigated by the algorithm. We set
the initial temperature T0 equal to 150 �C and we define T as a var-
iable with an oscillating behavior in the initial phase with the final
goal to explore a wider region in lower time.

After the initial phase, temperature decreases gradually as the
algorithm proceeds, according to a cooling schedule: the reanneal-
ing interval (Lk) is set equal to 250 points and T decreases according
to the following formula

Tk ¼ Tk�1 � ak ð7Þ

where k is the kth iteration and 1 > a > 0 is a parameter that,
together with Lk, determines the rate of T decrease.

The adopted stopping criterion is based on the maximum num-
ber of iterations, which is set equal to 200 (the so called stall iter-
ation limit): this strategy guarantees a reasonable computational
time. Actually the algorithm could be stopped before the final opti-
mal solution has been reached [28,29].

With the final goal to reduce the computational time, a pattern
search strategy was implemented: starting from the solutions
found by the simulated annealing, we refined the search in the
neighborhood of these solutions, and then we achieved both a fur-
ther reduction of the TRE/FRE ratio and a lower global execution
time.
2.6. Pattern search

Pattern search (PS) is a direct search method, firstly proposed
by Lewis and Torczon [30], for nonlinearly constrained optimiza-
tion as adaption of a bound constrained augmented Lagrangian
method, as proposed by Conn et al. [31]. We will refer to it as aug-
mented Lagrangian pattern search (ALPS).

Unlike optimization methods that use information about the
gradient and higher derivatives to search for an optimal point, a
direct search algorithm scans a set of points belonging to a grid
(mesh) built around the current point and looks for a point where
the objective function is lower than the current value of the func-
tion. The mesh is built starting from a set of vectors {vk} (pattern)
that define the search directions, and from a scalar (mesh size),
which defines the distance between points. The pattern can be
defined according to two different strategies: in the first one, the
pattern is made of Nm + 1 vectors corresponding to Nm basis vectors
and the vector given by the opposite of the sum of the previous
ones; the second strategy considers 2 Nm vectors properly defined.
In our implementation, the first approach was selected. At each
step the algorithm builds the mesh (Mi) centered around the cur-
rent point (xi) according to:

Mi ¼ fxi � Divk; k ¼ 1; . . . ;Nm þ 1g ð8Þ

and polls the points of the mesh by evaluating the objective function
in those points. Di is the mesh size, which depends at each step
upon the poll, according to the following equation:

Diþ1 ¼ sDi ð9Þ

where the initial value of s is set to 1. If the algorithm finds a point
in the mesh where the objective function decreases with respect to
the previous step, the poll is called successful and that point
becomes the center of the new mesh: in this case, the algorithm sets
s > 1 and continues to explore the search space in the new mesh.
Otherwise, the poll is called unsuccessful: the current point does
not change and the search space must be narrowed, i.e. the algo-
rithm sets s < 1 (actually, it is likely that the algorithm is near the
global optimum).

The algorithm proceeds in this way until the stop criterion is
met i.e. when the mesh size D becomes smaller than mesh toler-
ance d [30,32,33]. In the approach we adopted, d is defined as
ðTolMesh=NmÞ2 where the default value of TolMesh is 1e�6.

The ALPS algorithm, in addition to the classical PS, allows one to
deal with the problem of nonlinear constrained optimization: it
replaces the explicit knowledge of derivatives with a stopping
criterion based on the pattern size in a way that preserves the con-
vergence properties of the augmented Lagrangian method [30]. In
general, the mt nonlinear constraints are the following:

ckðxÞ 6 0; k ¼ 1; . . . ;m ð10Þ
ceqkðxÞ ¼ 0; k ¼ mþ 1; . . . ;mt ð11Þ

where c(x) represents m inequality constraints and ceq(x) represents
m equality constraints. In the frame of this approach, we formulate
the minimization problem by resorting to strategy well-known in
statistical learning, i.e. by combining the objective function, the
log-barrier function (for inequality constraints, converted into equal-
ity constraints by means of slack variables) and the quadratic penalty
function (for equality constraints). The augmented Lagrangian is
then defined as

Uðx; k; s;qÞ ¼ f ðxÞ �
Xm

k¼1

kksk logðsk � ckðxÞÞ þ
Xmt

k¼mþ1

kkceqkðxÞ

þ q
2

Xmt

k¼mþ1

ceqkðxÞ
2 ð12Þ



1 2 3 4 5 6 7 8 9 10 11 12 13
Op�mal 0.586 0.474 0.591 0.692 0.673 0.675 0.624 0.633 0.585 0.68 0.598 0.628 0.958
Random 0.879 0.539 0.847 0.69 0.796 0.771 0.775 0.663 0.732 0.792 0.85 0.731 1.012
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Fig. 1. TRE/FRE values obtained for the optimized and the random configuration are listed. With regard to the optimal configuration (shown in blue) we report the mean
calculated on 10 simulations performed by the SAPS algorithm for each patient. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

1 We have applied the Kruskal–Wallis test for all patients, not only for patient 1.
Each group considered in the test is identified by the TRE/FRE values calculated on ten
simulations performed by the SAPS algorithm with a given value of Nm.
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where the components kk P 0 of the vector k are the Lagrange mul-
tiplier estimates; the elements sk P 0 of the vector s are shifts
(slack variables); q > 0 is the penalty parameter.

The ALPS algorithm minimizes a sequence of subproblems
defined as

min UðjÞðx; kj; sj;qjÞ; j ¼ 1;2 . . . ð13Þ

Each subproblem has a fixed value of k, s, and q and it is solved pro-
viding a solution with a required accuracy and satisfying the con-
straints. Then the Lagrangian multipliers and the penalty
parameter are properly updated [30,31,34,35]. Let us note that in
our case, we considered only inequality constraints (the visibility
and spatial constraints defined in Section 2.5): such constraints
make the algorithm rather time-consuming.

3. Results

3.1. Optimal versus random configuration

First, we evaluated the performance of the SAPS algorithm in
terms of the TRE/FRE ratio, calculated for each patient and for
the optimized and the random configuration: results are reported
in Fig. 1. Let us note that optimal configurations are characterized
by TRE/FRE values lower than the random ones, except in the case
of the pelvic patient 4. The repeatability of the solutions provided
by the SAPS algorithm is highlighted by the low value of the stan-
dard deviations varying from 0.001 to 0.007 (values are not
reported in the figure).

Differences between patients may be due to several factors,
such as the number of markers, their position with respect to the
target and the width of the available surface for their placement.
The latter factor is important because, with a larger surface model,
the algorithm finds configurations where markers are more distant
from each other leading to a lower TRE/FRE ratio, as also described
in [26]. For example, this occurs in patients 2 and 8 where the
number of points in the surface model is higher than the ones in
the other patients.

3.2. Result dependence on the number of markers

The number of markers (Nm) significantly affects the TRE/FRE
ratio; in order to investigate this issue more in detail, we calculated
a number of optimized solutions with Nm varying from five to ten.
The upper limit was chosen by considering that the placement of
more than ten markers would give raise to a too crowded marker
configuration, especially on head and neck district. Results for
patient 1 are shown in Fig. 2 where we can observe that the TRE/
FRE ratio decreases almost exponentially when the number of
markers increases. The Kruskal–Wallis test1 confirms a significant
difference among the TRE/FRE values obtained with different values
of Nm (p-value <<0.001). Post-hoc comparisons reveal that statistical
significance of TRE/FRE reduction is obtained when at least eight
markers are used.
3.3. SAPS versus GETS algorithm

The performances of SAPS have been compared with those of
GETS algorithm both in terms of TRE/FRE values and average exe-
cution time. Let us remind a crucial feature of SAPS: unlike GETS, a
marker spatial constraint given in Eq. (5) is implemented in order
to prevent markers overlapping in the optimal configuration.

Firstly we compared mean and standard deviation of TRE/FRE
values obtained from ten simulations for each value of Nm

(between five and ten), where the SAPS algorithm has been initial-
ized with Ns random marker configurations for each simulation.
Fig. 2 reports as an exemplifying case the results obtained on
patient 1.

Results show that the SAPS algorithm is able to find marker con-
figurations featuring a lower TRE/FRE ratio for each value of Nm. In
addition, standard deviations for SAPS algorithm have been found
to be lower than those obtained with GETS, with a range between
0.002 and 0.010 for SAPS and between 0.009 and 0.014 for GETS.
Although the improvement is not major, SAPS performed more
effectively and more reproducibly with respect to GETS. Similar
results have been found for the other patients, as shown in Fig. 3.

A multi-way analysis of variance was performed in order to
investigate statistically significant differences between the two
algorithms. Factors were patients, the number of markers and the
two algorithms. Results confirm the trend depicted in Fig. 2: even
if the mean values of the TRE/FRE are comparable, the lower stan-
dard deviations superimposed on the results obtained by SAPS
cause a significant difference between the two methods (p < 0.001).

Moreover we investigated the average execution time for the
two algorithms. Fig. 4 reports the values obtained on patient 1
for a simulation in which Ns = 10 candidate solutions have been
explored.

Firstly, let us note that both the algorithms take a longer time
when the number of markers increases which means that a high



1 2 3 4 5 6 7 8 9 10 11 12 13
SAPS 0.479 0.434 0.485 0.489 0.611 0.553 0.569 0.447 0.535 0.558 0.486 0.447 0.688
GETS 0.496 0.434 0.491 0.497 0.613 0.56 0.575 0.448 0.536 0.567 0.493 0.45 0.696

0.4

0.45

0.5

0.55

0.6

0.65

0.7

TR
E/
FR

E

Fig. 3. TRE/FRE values of optimal configurations obtained by SAPS (shown in blue)
and GETS (shown in red) are listed. We report the mean calculated on 10
simulations performed by the two algorithms for each patient, with a number of
markers equal to 8. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 2. The TRE/FRE ratio calculated for patient 1 with Nm between 5 and 10. Blue
square and red diamond represents the mean of the TRE/FRE values obtained on ten
simulations performed respectively by the SAPS and the GETS algorithm. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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number of markers increases the time complexity of both. The dif-
ference between them is in the average value of their execution
time. They differ by one order of magnitude: this feature can be
easily explained by the fact that during each iteration of the
optimization process, GETS explores a population of Ns candidate
solutions in parallel (due to the implicit parallelism of GA), while
SAPS performs the optimization by exploring all the candidate
solutions sequentially.

Considering that time taken by SAPS is about Ns times that one
taken by GETS and that the presence of spatial constraints in SAPS
makes it more time-consuming, the execution time of the two
algorithms is similar indeed. Of course, it would be useful paralle-
lizing the SAPS algorithm in order to obtain a better running time
with respect to GETS.

3.4. Inclusion of OARs

A set of simulations has been performed by adding as additional
targets the anatomical structures identified as organs at risk. Their
sparing (keeping the dose delivered in these volumes below spe-
cific threshold) is a strict requirement to minimize treatment tox-
icity. Differences, in terms of average TRE/FRE ratio with respect to
the PTV-only condition (where only the PTV as target structure is
considered) turned out to be consistently negligible (<0.1). The
Kruskal–Wallis ANOVA equivalent test applied on the three condi-
tions (PTV-only, PTV + OARs and random configuration) revealed
overall significant differences in the TRE/FRE ratio (p = 0.0035).
Post-hoc comparisons confirmed significantly higher TRE/FRE val-
ues for the random configuration along with no significant differ-
ences between the PTV-only and PTV + OARs conditions.
3.5. Graphical representation of an optimal configuration

In order to provide evidence of the size of fiducials displace-
ment for TRE/FRE optimization, an exemplifying case obtained
for patient 11 is reported in Fig. 5. Contours of skin, target and
OARs are represented along with surface fiducials, with white
markers belonging to the random configuration and red markers
to the optimized configuration.

From the geometrical perspective, the optimization process
tends to displace markers on the boundary points of the skin sur-
face model, as a way to maximize the inter-marker distances and
give raise to a configuration that surrounds the target, thus well
interpreting Eq. (1).
4. Discussion

In this paper, we proposed a method for the optimization of the
configuration of surface fiducials for patient set-up verification and
correction through point-based IR optical tracking. By using the
contouring information from the planning data coming from 13
patients undergoing particle beam therapy in cranial and extra-
cranial area, we demonstrated that patient-specific knowledge-
based fiducials placement optimization leads to significant reduc-
tion of the TRE/FRE ratio. This shows that, for a given residual error
on surface fiducials after point-based registration, accuracy in tar-
get localization can be significantly increased with respect to a ran-
dom placement of fiducials on patient surface.

The optimization problem was faced by means of a new IDA
optimization strategy, which couples simulated annealing for the
initial research of markers’ configurations and pattern search for
solution refinement. The strategy was named SAPS and was com-
pared with previously reported fiducials optimization strategy
based on evolutionary approach, the GETS algorithm proposed in
[22].

The reported results showed that optimal marker configura-
tions consistently give rise to significant lower TRE/FRE values with
respect to the random configurations, which are obtained by not
negligible displacement of fiducials position. The optimization pro-
cess tends to align markers in correspondence of the target and to
maximize the inter-marker distances. This general result fulfils the
cost function parameters (see Eq. (1)) and it is in line with the
guidelines reported in [26], namely to avoid collinear placement
of markers, to keep markers as far apart as possible, to place mark-
ers in such a way that they surround the target and to use as many
markers as possible. With specific reference to the optimal number
of markers to be used, we found that, although in the frame of a
consistent improvement with respect to random configurations,
statistically significance of the SAPS optimization was obtained
when a high number of markers is used. Improvements were
obtained despite the restriction in the available surface where
marker positions could be selected, with specific constraints in
terms of marker visibility from the optical tracking system TVC
configuration and the need to avoid marker placement within
the irradiations fields, due to potential beam range perturbation.

The comparison of the SAPS algorithm with the previously
reported evolutionary marker optimization algorithm GETS high-
lighted two noteworthy results. First, optimal solutions provided



Fig. 4. The average execution time of a simulation calculated for patient 1 with Nm between 5 and 10 and with Ns = 10. Blue square and red diamond represents the values
obtained respectively by the SAPS and the GETS algorithm. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 5. 3D representation of the patient’s skin (in yellow) with the tumor target and
OARs inside, for patient 11. White points are the markers of the random
configuration, while the red points are the markers of the optimal configuration.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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by SAPS featured consistently lower TRE/FRE ratios, thus behaving
better than GETS; second, the SAPS algorithm turned out to be
much more time-consuming with respect to GETS. These results
are explained by the different computational approaches of the
two algorithms, respectively based on simulated annealing and
genetic algorithms. GA is characterized by implicit parallelism
and can exploit massively parallel architectures, thus optimization
computational costs, but may suffer from disruption and poor con-
vergence properties. As a matter of fact, GA always accepts new
solutions even if they score less than solutions belonging to previ-
ous generations. This leads to loss of good scoring solutions, thus
potentially preventing optimal performance. Conversely, SA fea-
tures good convergences properties and is in some sense immune
to disruption, but parallel computational approaches are not easily
implementable [36]. Therefore, better results were expected from
SAPS, even if at the price of higher computational cost.

In order to investigate the repeatability in the optimal solutions
we performed multiple runs with the two algorithms: the obtained
results highlighted that the SAPS algorithm produced solutions
with lower standard deviations superimposed to the TRE/FRE
ratios and a lower variability in spatial distribution of markers with
respect to the GETS algorithm. The resulting lower variability in
SAPS solutions compared to GETS can be explained by the evolu-
tionary approach underlying the GETS and indicates that optimal
solutions provided by SAPS may be closer to a global optimum. A
further study could concern the introduction of ad hoc initial mar-
ker configurations with the final goal to evaluate and improve both
the effectiveness and the accuracy of the algorithm.

Interestingly, no significant difference in the pattern of optimal
marker configurations was obtained when also OARs were
included in the optimization process. This was true both in cranial
and extra-cranial sites (pelvis). Such result suggests a limited space
of solutions especially in presence of the described visibility con-
straints, even if a higher number of cases is required to conclude
that the optimization of fiducials accounting for one single target
may ensure consistent localization of organs at risk.
5. Conclusions

The SAPS algorithm lends itself as a valuable strategy for fiducial
configuration optimization in IR optical tracking applied for patient
set-up error detection and correction in radiation therapy. More-
over, target registration error can be reduced to approximately half
of the residual fiducial registration error when marker configuration
is optimized, thus granting consistently submillimetric target local-
ization in presence of FRE around 1 mm, which is an acceptable
number including instrumental intrinsic accuracy and marker
manual repositioning accuracy. Of course, we are aware of the fact
that this conclusion is valid only if one assumes that external
fiducials represent reliable surrogate of the target. Any inter- and
intra-fractional relative motion of internal target with respect to
surface fiducials, widely documented in literature [37–39] cannot
be interpreted by any optimization algorithm of external fiducials.
Nevertheless, we believe that in the frame of a combined use of
in-room imaging and IR optical tracking, external fiducials optimiza-
tion may lead to improvement in quality control of irradiation
geometry, thus representing a good practice in radiotherapy clinical
routine.

Future improvements concern the SAPS algorithm optimization
leading to a point-of-care utilization, for providing health practitio-
ners with an immediate feedback describing TRE/FRE values as a
function of changes in marker positioning. Thanks to our approach,
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it is possible to envisage the automated definition of the SAPS con-
straints on the basis of the anatomical features of the specific
patient. Computational optimization can be obtained by paralleliz-
ing the algorithm according to the techniques described in [40]. In
particular, asynchronous SA would ensure significant improve-
ments, by exploiting processors that exchange information
asynchronously to bring the system toward a global minimum, thus
leading to a decision support system that can be used in clinical
practice.

One of the limitations of our study is the small patient cohort that
includes only 13 patients. Let us point out that patients treated in
the CNAO center are few since hadrontherapy is a specific technique
applied only for those cancers where conventional radiotherapy
does not provide significant advantages, such as for radio-resistant
tumors and for those located close to organs at risk. However, the
spread of cases in terms of geometry of thermoplastic masks is
sufficient to draw general conclusions about the capability of our
approach to improve the state of art, i.e. semi-random placements
of markers, as well as previously presented approaches. Anyway,
we plan to widen the cohort in the future work in order to further
validate our results.
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