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Abstract

We study fermions, such as gravitinos and gauginos in supersymmetric theories, propagating in a five-dimensional b
where the fifth-dimensional component is assumed to be an interval. We show that the most general boundary condition at
endpoint of the interval is encoded in a single complex parameter representing a point in the Riemann sphere. Upon in
a boundary mass term, the variational principle uniquely determines the boundary conditions and the bulk equations of motio
We show the mass spectrum becomes independent from the Scherk–Schwarz parameter for a suitable choice of one
boundary conditions. Furthermore, for any value of the Scherk–Schwarz parameter, a zero-mode is present in the mass spectr
and supersymmetry is recovered if the two complex parameters are tuned.
 2004 Published by Elsevier B.V.Open access under CC BY license.
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A common feature of five-dimensional supersy
metric models are fermions propagating in the bulk
the extra dimension. In order to extract physical p
dictions at low energies, the four-dimensional m
spectrum of those fermions has to be known. For
stance, supersymmetry breaking is determined by
mass spectrum of the gravitino, the existence o

E-mail addresses: g.v.gersdorff@desy.de(G. von Gersdorff),
luigi.pilo@pd.infn.it (L. Pilo), quiros@ifae.es(M. Quirós),
antonio.riotto@pd.infn.it(A. Riotto),
veronica.sanz-gonzalez@durham.ac.uk(V. Sanz).
0370-2693 2004 Published by Elsevier B.V.
doi:10.1016/j.physletb.2004.08.012

Open access under CC BY licen
zero mode signalling unbroken supersymmetry. S
ilarly, when gauge multiplets propagate in the bu
supersymmetry breaking is intimately linked to t
existence of gaugino zero modes. In particular if
persymmetry breaking is implemented by non-triv
twist conditions, or Scherk–Schwarz mechanism[1],
it acts in the same way both in the gravitino and
gaugino sectors.

The aim of this Letter is to study fermions prop
gating in a flat five-dimensional space–time, with co
ordinates(xµ, y), where the compact fifth dimensio
(with radiusR) has two four-dimensional boundari
se.

https://core.ac.uk/display/81995333?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/physletb
mailto:g.v.gersdorff@desy.de
mailto:luigi.pilo@pd.infn.it
mailto:quiros@ifae.es
mailto:antonio.riotto@pd.infn.it
mailto:veronica.sanz-gonzalez@durham.ac.uk
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


G. von Gersdorff et al. / Physics Letters B 598 (2004) 106–112 107

-

i-
o
ile
n-
he
ries
tro-
the
es
ns
in-

ry
inu-
by

a as
us-
,
ld)
ces
ses
ary

h
to

ach
s
ts:
on-
et
of

f
his
the

nd

d-
n

ap-
.

the
ry
-
t

tric
ic-
ent
ci-
er
ing

p-
rd-

tion
op-
ct
n-

u-

y

in-
red
located aty = 0 andy = πR. Often this space is con
structed as the orbifoldS1/Z2, identifying points on
the circle related by the reflection of the fifth coord
natey → −y. Fields with odd parity with respect t
the Z2 reflections are zero at the fixed points, wh
the normal derivative of even fields is forced to va
ish. The treatment of fermions is complicated in t
presence of brane actions localized at the bounda
In the orbifold approach, these brane actions are in
duced with a delta-function distribution, peaked at
location of the orbifold fixed point. The latter induc
discontinuities in the wave functions of the fermio
which take different values at the fixed point and
finitesimally close to it[2,3]. A possible way to avoid
these jumps is to give up the rigid orbifold bounda
conditions and instead enforce the fields to be cont
ous, while the boundary conditions are determined
the boundary action itself. This is called theinterval
approach and leads to physically equivalent spectr
those of the orbifold approach without any need of
ing, as the latter, singular functions.1 To summarize
in the orbifold approach one imposes fixed (orbifo
boundary conditions while the brane action indu
jumps, whereas in the interval approach one impo
continuity and the brane action induces the bound
conditions.

In this Letter we will follow the interval approac
and show how the boundary action can give rise
consistent boundary conditions for the fermions. In
a forthcoming publication[4] we will give a detailed
treatment of how to translate the two pictures into e
other. In a manifoldM with a boundary the dynamic
is determined by two equally important ingredien
the bulk equations of motion and the boundary c
ditions (BC’s). An economical way to determine a s
of consistent BC’s together with the bulk equations
motion is the action principle:2 under a variation o
the dynamical fields the action must be stationary. T
in general translates into two separate conditions:
vanishing of the variation of the action in the bulk a
the vanishing of the variation at the boundary∂M.
Contributions to the action variation at the boun
ary come from integration by parts of bulk variatio

1 The interval approach is sometimes called “downstairs”
proach while the orbifold approach is called “upstairs” approach

2 For an alternative approach see[5].
.

and, if present, from varying the boundary part of
action (see[6] for a recent application to symmet
breaking). In the following we will consider the five
dimensional (5D) manifoldM as the direct produc
of the four-dimensional Minkowski spaceM4 and the
interval[0,πR].

Since we are mainly interested in supersymme
theories, we will take the fermions to be symplect
Majorana spinors, although a very similar treatm
holds for the case of fermionic matter field asso
ated to Dirac fermions. In particular we will consid
the gaugino case, the treatment of gravitinos be
completely analogous. The 5D spinorsΨ i satisfy the
symplectic-Majorana reality condition and we can re
resent them in terms of two chiral 4D spinors acco
ing to3

(1)Ψ i =
(

ηi
α

χ̄ iα̇

)
, χ̄ iα̇ ≡ εij

(
η

j
β

)∗
εα̇β̇ ,

whereεij = i(σ2)ij and εimεjm = δi
j . Consider thus

the bulk Lagrangian

Lbulk = iΨ̄ γ MDMΨ

(2)= i

2
Ψ̄ γ MDMΨ − i

2
DMΨ̄ γ MΨ,

where the last equation is not due to partial integra
but holds because of the symplectic-Majorana pr
erty, Eq.(1). The derivative is covariant with respe
to theSU(2)R automorphism symmetry and thus co
tains the auxiliary gauge connectionVM . The fieldVM

is non-propagating and appears in the off-shell form
lation of 5D supergravity[7]. A vacuum expectation
value (VEV)4

(3)VM = δ5
M

ω

R
�q · �σ , �q 2 = 1

implements a Scherk–Schwarz (SS) supersymmetr
breaking mechanism[1] in the Hosotani basis[8,9].
The standard form of the SS mechanism, originally
troduced for circle compactification, can be recove
by a gauge transformationU that transforms awayVM

3 We use the Wess–Bagger convention[10] for the contraction
of spinor indices.

4 Consistent with the bulk equation of motiond(�q · �V ) = 0 [7].
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but twists the periodicity condition for fields charg
underSU(2)R on the circle. As we will see later i
the interval a SS breaking term is equivalent to a s
able modification of the BC’s at one of the endpoin
The unitary vector�q points toward the direction o
SS breaking. We supplement the bulk action by
following boundary terms aty = yf (f = 0,π ) with
y0 = 0 and yπ = πR

(4)

Lf = 1

2
Ψ̄

(
T (f ) + γ 5V (f )

)
Ψ = 1

2
ηiM

(f )

ij ηj + h.c.,

whereT (f ) andV (f ) are matrices acting onSU(2) in-
dices,

(5)M(f ) = iσ2
(
T (f ) − iV (f )

)
and we have made use of the decomposition(1). No-
tice that the mass matrix is allowed to have comp
entries. Without loss of generality we take it to be sy
metric, which enforcesT f andV f to be spanned b
Pauli matrices.

The total bulk+ boundary action is then given by

S = Sbulk + Sboundary

(6)=
∫

d5xLbulk +
∫

y=0

d4xL0 −
∫

y=πR

d4xLπ .

The variation of the bulk action gives

δSbulk =
∫

d5x i
(
δΨ̄ γ MDMΨ − DMΨ̄ γ MδΨ

)

(7)−
∫

d4x
[
δηiεij η

j + h.c.
]πR

0 ,

where the boundary piece comes from partial integ
tion. One now has to add the variation of the bou
ary action. Enforcing that the total actionS = Sbulk +
Sboundaryhas zero variation we get the standard Di
equation in the bulk provided that all the bounda
pieces vanish. The latter are given by

(8)
[
δηi

(
εij + M

(f )

ij

)
ηj + h.c.

]∣∣
y=yf

= 0.

Since we are considering unconstrained variation
the fields, the BC’s we obtain from Eqs.(8) are given
by

(9)
(
εij + M

(f )
ij

)
ηj

∣∣
y=yf

= 0.
These equations only have trivial solutions (are ov
constrained) unless

(10)det
(
εij + M

(0)
ij

) = det
(
εij + M

(π)
ij

) = 0.

Imposing these conditions, we get the two comp
BC’s which are needed for a system of two first
der equations. Note that this means that an arbit
brane mass matrix does not yield viable BC’s;
particular a vanishing brane action is inconsiste5

since det(εij ) �= 0.6 However, this does not imply tha
the familiar orbifold BCη1 = 0 (η2 = 0) cannot be
achieved; in the interval approach they correspon
M = σ 1 (M = −σ 1).

The BC’s resulting from Eqs.(9) are of the form

(11)
(
c1
f η1 + c2

f η2)∣∣
y=yf

= 0,

wherec
1,2
f are complex parameters or, settingzf =

−(c1
f /c2

f )

(12)
(
η2 − zf η1)∣∣

y=yf
= 0, zf ∈ C.

Physically inequivalent BC’s span a complex proje
tive spaceCP 1 homeomorphic to the Riemann sphe
In particular,zf = 0 leads to a Dirichlet BC forη2,
and the point at infinityzf = ∞ leads to a Dirichlet
BC for η1. Notice that these BC’s come fromSU(2)R
breaking mass terms. Special values ofzf correspond
to cases when these terms preserve part of the sym
try of the original bulk Lagrangian. In particular whe
both the SS and the preserved symmetry are alig
those cases can lead to apersistent supersymmetry a
we will see. Once(10) is satisfied, the values ofzf in
terms of the brane mass terms are given by

(13)zf = − M
(f )

11

1+ M
(f )
12

= 1− M
(f )

12

M
(f )
22

,

where the second equality holds due to the condi
(10).

The mass spectrum is found by solving the EO
with the boundary conditions(12). To simplify the
bulk equations of motion it is convenient to go fro
the Hosotani basisΨ i to the SS oneΦi , related by the

5 In the sense that the action principle does not provide a con
tent set of BC’s as boundary equations of motion.

6 Notice that this agrees with the methods recently used
Ref. [11].
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transformation

(14)Ψ = UΦ, U = exp

(
−i �q · �σω

y

R

)
.

In the SS gauge the bulk equations read

(15)iγ M∂MΦ = 0.

We now decompose the chiral spinorηi(x, y) in the
Hosotani basis asηi(x, y) = ϕi(y)ψ(x), with ψ(x) a
4D chiral spinor. Settingϕ = Uφ we get the following
equations of motion in the SS basis

(16)mφi − εij dφ̄j

dy
= 0, mφ̄j ε

ij + dφi

dy
= 0.

The parameterm in Eq. (16) is the Majorana mas
eigenvalue of the 4D chiral spinor7

(17)iσµ∂µψ̄ = mψ, iσ̄µ∂µψ = mψ̄.

As a consequence of the transformation(14)the SS pa-
rameterω manifests itself only in the BC aty = πR:8

ζ0 ≡ φ2

φ1

∣∣∣∣
y=0

= z0,

(18)

ζπ ≡ φ2

φ1

∣∣∣∣
y=πR

= tan(πω)(iq1 − q2 − iq3zπ ) + zπ

tan(πω)(iq1zπ + q2zπ + iq3) + 1
,

whereζf are the BC’s in the SS basis. In particular, t
boundary conditionζπ is a function ofω, �q andzπ .
From this it follows that we can always gauge aw
the SS parameterω in the bulk Lagrangian going int
the SS basis through(14). However, now in the new
basisω reappears in one of the BC’s.

The bulk equations have the following generic s
lution

(19)φ(y) =
(

ā cos(my) + z̄0a sin(my)

−a sin(my) + z0ā cos(my)

)
,

wherea is a complex number given in terms ofz0 and
ζπ :

(20)a = z0 − ζπ

|z0 − ζπ | + 1+ z0ζ̄π

|1+ z0ζ̄π | .

7 The bar acting on a scalar quantity, as, e.g.,φ̄i , and a chiral
spinor, as, e.g.,̄ψ , denotes complex conjugation.

8 Notice thatU(y = 0) = 1. The roles of the branes and hence
zπ andz0 can be interchanged by considering the SS transforma
U ′(y) ≡ U(y − πR).
The solution(19) satisfies the BC’s Eq.(18) for the
following mass eigenvalues

(21)mn = n

R
+ 1

πR
arctan

∣∣∣∣ z0 − ζπ

1+ z0ζ̄π

∣∣∣∣,
where n ∈ Z. When z0 = ζπ there is a zero mod
and supersymmetry remains unbroken. When the
sources of supersymmetry breaking reside on
branes, setting them to cancel each other,z0 = zπ ,
preserves supersymmetry[12]. Once supersymmetr
is further broken in the bulk, an obvious way to r
store it is by determiningzπ as a function ofz0 andω

using the relation(18) with ζπ = z0. This will lead to
an ω-dependent brane-Lagrangian aty = πR. In this
case we could say that supersymmetry, that was
ken by BC’s (SS twist) isrestored by the given SS
twist (BC’s) [13].

There is, however, a more interesting case: supp
the brane Lagrangian determineszπ to be

(22)zπ = z(�q) ≡ λ − q3

q1 − iq2

with λ = ±1. This special value ofzπ is a fixed
point of the SS transformation, i.e.,ζf = zf . Forzπ =
z(�q) the spectrum becomes independent onω. In
other words, for this special subset of boundary
grangians, the VEV for the field�q · �V5 does not influ-
ence the spectrum. The reason for this can be un
stood by going back to the Lagrangian which we u
to derive the BC’s. From the relation(13) one can see
that condition(22) is satisfied by the mass matrix

M
(π)
12 = λq3,

M
(π)
11 = −λ(q1 + iq2),

(23)M
(π)
22 = λ(q1 − iq2),

which can be translated into a mass term at the bou
ary y = yπ along the direction of the SS term, i.e
V (π) = 0 and T(π) = −λ�q · �σ in the notation of Eq.(4).
In particular, this brane mass term preserves a re
ual U(1)R aligned along the SS direction�q. In other
words, the SS transformationU leaves both bran
Lagrangians invariant andω can be gauged awa
When we further imposez0 = z(±�q), i.e., V (0) = 0
andT (0) = ±T (π) the U(1)R symmetry is preserve
by the bulk. In particular ifz0 = z(�q) supersymme
try remains unbroken, although the VEV of�q · �V5 is
non-zero. One could say that in this case the the
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is persistently supersymmetric even in the presence
the SS twist, with mass spectrummn = n/R. On the
other hand ifz0 = z(−�q) the theory is (persistently)
non-supersymmetric and independent on the SS tw
the mass spectrum is given bymn = (n + 1/2)/R. In
this case supersymmetry breaking amounts to an e
Z′

2 orbifolding[14].
Notice that we have not chosen the most gen

solution to Eq.(22) but one whereV (f ) = 0. In the
most general case the condition(10)leads to( �T (f ))2−
( �V (f ))2 = 1 and �T (f ) · �V (f ) = 0, and for �V (f ) �= 0
Eq. (22) has in general a two-parameter family of s
lutions. All of them should comply with the existenc
of persistent zero modes (irrespective of the SS twis
However, the condition for an (off-shell) supersy
metric action is only consistent with the solution w
V (f ) = 0, as we will see below.

Something similar happens in the warped case[4]:
when bulk cosmological constant and brane tens
are turned on, invariance of the action under lo
supersymmetry requires gravitino mass terms on
brane. In the tuned case—i.e., in the Randall–Sund
(RS) model—those brane mass terms precisely
rise to the BCz0 = zπ = z(�q) [15]. Note that there
�q · �V5 is replaced byA5, the fifth component of the
graviphoton. In fact, it has been shown that in t
case there always exists a Killing spinor and sup
symmetry remains unbroken[16,17], consistent with
the result that in RS supersymmetry cannot be sp
taneously broken9 by the SS mechanism[15,19]. This
and other issues, such as the comparison betwee
interval and the orbifold approaches and how to rela
them, will be presented elsewhere[4].

Up to now, we have focused on the fermion s
tor spectrum. Adding the complete vector multip
does not invalidate our conditions for supersymm
try restoration as long as the supersymmetry brea
brane terms are of the form given by Eq.(4). We would
like to show the invariance of our gaugino Lagrangi
Eq.(6), under (global) supersymmetry. To this end,
us focus on a simple abelian gauge multiplet. Clea
since we are not imposing any a priori boundary con
tion on the fields in the action, we have to worry ab
the total derivatives which arise in the variation of t

9 A discrete supersymmetry breaking by BC’s,z0 = z(−�q),
zπ = z(�q), was performed in Ref.[18].
e

bulk action. The latter is given by10

S
U(1)
bulk =

∫
M

(
2 �X · �X − Σ∂2Σ − 1

2
∂MΣ∂MΣ

(24)+ iΨ̄ /∂Ψ − 1

4
GMNGMN

)
.

Under a global supersymmetric transformation the
grangian transforms into a total derivative giving r
to the supersymmetry boundary-variation:

δεS
U(1)
bulk =

∫
∂M

ε̄iγ 5ρ,

(25)ρ =
(

i �X · �σ − Σ/∂ − 1

4
γ MNGMN − 1

2
/∂Σ

)
Ψ.

To compensate for this, weadd to it the brane action

(26)S
U(1)
brane=

∫
∂M

(
2�T (f ) · Σ �X + 1

2
Ψ̄ T (f )Ψ

)
,

which transforms into

(27)δεS
U(1)
brane=

∫
∂M

ε̄T (f )ρ.

Now the supersymmetry variation at each boundar
proportional to(1+ iγ 5T (f )))ε(yf ). Denoting withξ

(see Eq.(1)) the upper part ofε, whenever( �T (f ))2 = 1
these variations can cancel provided the transfor
tion parameter satisfies the BC’sξ2 = z( �T (f ))ξ1. The
only possibility is thatT (0) = T (π), sinceε is con-
stant for global supersymmetry. Notice that accord
to Eqs.(10) and (5), this gives rise to the same BC
for the gaugino,η2 = z( �T (f ))η1. The remaining EOM
then fix the boundary conditionsGµ5 = �X = Σ = 0.
The bottom line of the off-shell approach is that,
the presence of a boundary, at most one supers
metry can be preserved. Global SUSY invariance
the action of a vector multiplet singles out a spec
boundary mass term for gauginos such thatz0 = zπ

which is at origin of the zero mode in the spectrum (
Eq. (21) for ω = 0).11 We expect there to be a local

10 Besides the gauge fieldBM with field strengthGMN and the
gauginoΨ the 5D vector multiplet contains the real scalarΣ and
the auxiliarySU(2)R triplet �X.

11 In the global theory on the interval, all supersymmetry break

is encoded in theT (f ): there is no auxiliary fieldVM whose VEV
could contribute to the breaking.
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supersymmetric extension of the action(24)+ (26)for
T (0) �= T (π). In this case theSU(2)R auxiliary gauge
connection�VM from the supergravity multiplet give
an additional source of supersymmetry breaking. N
tice that for a globally supersymmetric vacuum th
must then be a solution to the Killing spinor equ
tion

(28)γ 5D5ε(y) = 0, ξ2(yf ) = z
( �T (f )

)
ξ1(yf ),

whereD5 is covariant with respect toSU(2)R. These
equations coincide with the zero mode condition
the gaugino considered above.

In conclusion we have studied in this Letter the
sues of fermion mass spectrum, and supersymm
breaking in the presence of Scherk–Schwarz twist12

in the interval approach with arbitrary BC’s fixed b
boundary mass terms. Ifalignment occurs, i.e., BC’s
are invariant under the SS twist, the mass spect
(supersymmetric or not) becomes independent on
SS parameter. If the BC’s are identical for the differ
boundaries there appears a zero mode in the spec
supersymmetry isrestored by a cancellation betwee
BC’s and the SS twist. When the two previous con
tions are fulfilled, i.e., the BC’s are equal at differe
boundaries and SS twist invariant, the mass spect
is supersymmetric and independent on the SS para
ter: supersymmetry ispersistent in the presence of th
SS twist. In this case the bulk+brane Lagrangian is in
variant under a remainingU(1)R symmetry. The con
ditions imposed on the brane Lagrangians in theper-
sistent supersymmetry case can be regarded as t
nically natural, since once they are satisfied at t
level, they will not be upset by corrections comi
from the bulk+ brane Lagrangian to any order. On
after the addition of extra breaking terms, for examp
brane kinetic terms, supersymmetry would be bro
in a controllable way. Those two conditions could ha
their origin on a higher-dimensional completion of t
theory, as it takes place at Horava’s gaugino cond
sation model[12], and they would lead topersistent
supersymmetry after compactification down to five
mensions. In our scenario,alignment would give rise
to a model where supersymmetry could be brok
but the breaking scale would be completely fixed

12 We have studied SS or Hosotani breaking in the bulk, but
could similarly consider radionF -term breaking[20].
:

-

the compactification scale 1/R and the relative size
of brane breaking termszf , irrespective of the SS
breaking scaleω. This phenomenon opens new po
sibilities for model building whenever one needs
control the effect of supersymmetry breaking in t
bulk.

Acknowledgements

This work was supported in part by the RTN E
ropean Programs HPRN-CT-2000-00148 and HPR
CT-2000-00152, and by CICYT, Spain, under co
tracts FPA 2001-1806 and FPA 2002-00748 and g
number INFN04-02. One of us (V.S.) thanks T. Ok
for useful discussions. Three of us (L.P., A.R. a
V.S.) would like to thank the Theory Department
IFAE, where part of this work has been done, for h
pitality.

References

[1] J. Scherk, J.H. Schwarz, Phys. Lett. B 82 (1979) 60;
J. Scherk, J.H. Schwarz, Nucl. Phys. B 153 (1979) 61.

[2] J.A. Bagger, F. Feruglio, F. Zwirner, Phys. Rev. Lett. 88 (20
101601, hep-th/0107128.

[3] A. Delgado, G. von Gersdorff, M. Quirós, JHEP 0212 (200
002, hep-th/0210181.

[4] G. von Gersdorff, L. Pilo, M. Quirós, A. Riotto, V. Sanz, i
preparation.

[5] C. Csaki, C. Grojean, J. Hubisz, Y. Shirman, J. Terning, h
ph/0310355.

[6] C. Csaki, C. Grojean, H. Murayama, L. Pilo, J. Terning, he
ph/0305237.

[7] M. Zucker, Fortschr. Phys. 51 (2003) 899.
[8] Y. Hosotani, Phys. Lett. B 126 (1983) 309.
[9] G. von Gersdorff, M. Quirós, Phys. Rev. D 65 (2002) 0640

hep-th/0110132.
[10] J. Wess, J. Bagger, Supersymmetry and Supergravity, Pr

ton Univ. Press, Princeton, NJ, 1992.
[11] I.G. Moss, hep-th/0403106.
[12] P. Horava, Phys. Rev. D 54 (1996) 7561, hep-th/9608019.
[13] J. Bagger, F. Feruglio, F. Zwirner, JHEP 0202 (2002) 010, h

th/0108010;
K.A. Meissner, H.P. Nilles, M. Olechowski, Acta Phys. P
B 33 (2002) 2435, hep-th/0205166.

[14] R. Barbieri, L.J. Hall, Y. Nomura, Phys. Rev. D 63 (200
105007, hep-ph/0011311.

[15] J. Bagger, D. Belyaev, JHEP 0306 (2003) 013, h
th/0306063.

[16] J. Bagger, M. Redi, Phys. Lett. B 582 (2004) 117, hep
th/0310086.



112 G. von Gersdorff et al. / Physics Letters B 598 (2004) 106–112

p-

ep-

7

p-

p-
[17] Z. Lalak, R. Matyszkiewicz, Phys. Lett. B 583 (2004) 364, he
th/0310269.

[18] T. Gherghetta, A. Pomarol, Nucl. Phys. B 602 (2001) 3, h
ph/0012378.

[19] L.J. Hall, Y. Nomura, T. Okui, S.J. Oliver, Nucl. Phys. B 67
(2004) 87, hep-th/0302192.
[20] D. Marti, A. Pomarol, Phys. Rev. D 64 (2001) 105025, he
th/0106256;
D.E. Kaplan, N. Weiner, hep-ph/0108001;
Z. Chacko, M.A. Luty, JHEP 0105 (2001) 067, he
ph/0008103.


	Fermions and supersymmetry breaking in the interval
	Acknowledgements
	References


