
Theoretical Computer Science 76 (1990) 223-242 
North-Holland 

223 

International Institute for Advanced Study of Social Information Science, 
Fujitsu Limited, 140 Miyamoto, Numazu, Shizuoka 410-03, Japan 

Communicated by M. Takahashi 
Received January 1988 
Revised November 1988 

Abstract. We consider the problem of learning a context-free grammar from its structural descrip- 
tions. Structural descriptions of a context-free grammar are unlabelled derivation trees of the 
grammar. We present an efficient algorithm for learning context-free grammars using two types 
of queries: structural equivalence queries and structural membership queries. The learning protocol 
is based on what is called “minimally adequate teacher”, and it is shown that a grammar learned 
by the algorithm is not only a correct grammar, i.e. equivalent to the unknown grammar but also 
structurally equivalent to it. Furthermore, the algorithm runs in time pclynomial in the number 
of states of the minimum frontier-to-root tree automaton for the set of structural descriptions of 
the unknown grammar and the maximum size of any counter-example returned by a structural 
equivalence query. 

. ntroduciir 4r 

In learning a particular language, formal grammars are induce from sequences 

of examples in the language. The problem of learning a “correct’ 

unknown lailguage from finite examples in the language is known as the grammatical 

inference problem. These grammars are typically represented as regular expressions, 

finite-state automata, context-free grammars or transformation rules. Angluin [2] 

shows that the regular sets can be learned by an algorithm using equivalence queries 

and membership queries in time polynomial in the nu f states of the minimum 

deterministic finite automaton for th 

counter-example returned by an equivalence query. owever the question of whether 

analogous result for the 

erman and Woos [3] an 

questian. Ifn [I], Angluin assets nonterminal members 

* A preliminary version of the paper was presented at the 1st Wor 

heory, MIT, USA. 

0304-3975/90/$03.50 @ 1990-Elsevier Science Publishers B.V. (North-t Tolland) 



224 Y. Sakakibara 

In this paper, we give another partial sc!ution by demonstrating an algorithm to 

learn context-free grammars from structural data. Structural data of a context-free 

grammar are unlabe%d derivation trees of th e grammar, called structural descriptiom. 

i\ structural description is a kind of tree whose interior nodes have no label. Thus 

we assume that information on the structure of the unknown grammar is available 

to the learning algorithm. Levy and Joshi [9] have already shown the possibility of 

efficient grammatical inferences in terms of structural descriptions. It is known that 

the set of derivation trees of a context-free grammar constitutes a rational set of 

trees, where a rational set of trees is a set of trees which can be recognized by some 

tree automaton. Further the set of structural descriptions of a context-free grammar 

also constitutes a rational set of trees. Based on this observation, the problem of 

learning a context-free grammar from structural data is reduced to the problem of 

learning a tree automaton. Then by extending Angluin’s efficient learning algorithm 

for finite automata [2] to the one for tree automata, we present an efficient learning 
algorithm for context-free grammars using two types of queries: structural 

equivalence queries and structural membership queries. 

Thus the problem is slightly different from the usual grammatical inference 

problem. However in a practical use of grammar learning (e.g. designing a parser), 

the above assumption on availabilities of the information of the structure of a 

grammar is quite natural. The traditional grammatical inference problem is defined 

to identify a grammar G from examples of the unknown language L sucn that G 
correctly generates the language L, i.e. L = L(G). However for any context-free 

language L there e ::ist infinitely many grammars G such that L = L(G). Furthermore, 

those grammars may have different structures. Consider the following example. The 

grammar G, below describes the set of all valid arithmetic expressions involving a 

variable “v” and the operations of multiplication “x” and addition “+“. 

S-, vlAv 

A+v+(vx(v+A(vxA (thegrammarG,). 

However the structure assigned by the grammar G1 

meaningless. The same language can be specified by 

meaningful manner. 

ere the phrases are all significant in terms or the rules of arithmetic. Although G1 

E+F(F+E 

/+ v ( v x F (the grammar G2). 

to ser&nces is semantically 

the grammar G2 below in a 

and G2 are equivalent (i.e. L( G,) = L( G,)), this fact is not very relevant from a 

be unusual to ccmsider such a grammar as 

uctures to the sentences in a nonsignificant manner. Thus 



Context-jree grammars from structural data 225 

situation entailing the translation or interpretation of sentences in a compiler. 
However in the framework of the usual grammatical inference, it is impossible to 

compel to infer such a grammar (e.g. not the grammar 6, but G2) which has the 

correct (intended) structbce. To do so, it is necessary for us to assume that information 

on the structure of the grammar is available to the learning algorithm. Thiz hypothesis 

is in agreement with studies on natural languages by Chomsky in terms of the theory 

of phrase structure grammars which claim that the availability of structu 
tions is prerequisite for language description, since there must be a partially semantic 

basis in syntax acquisition. We show that a grammar learned by our algorithm in 

our problem setting is not only a correct grammar which correctly generates the 

language of the unknown grammar but also assigns a correct structure on the 

sentences of the language, i.e. structurally equivalent to it (Fig. 1). 

the big dog chases a yrl_! ng girl 

Fig. 1. A structural description for “the big dog chases a young gwl”. 

asic definitions 

Let N be the set of natural numbers and N* be the free monoid generated by 

IV. Let the binary operation of N* be denoted by l and the identity by E. For y, 
x E Al*; ~‘2 v0-ite y sx iff there is a ZEN* such that x=y- z, and y<x iff YSX 

and yfx. 

A ranked alphabet V is a finite set of symbols associated with a finite relation 

called the rank relation yv z V x ZV. V,, denotes the subset {f~ VI (J n) E rv} of V 

Let m = max{n 1 Vn # fl}, i.e. m = min(n 1 rv s V x {O, 1, . D . , n}). In many cases the 

symbols in k/j, are considered as functiofg symbols. We say that a function symbol f 

has an arity n if _fc Vn and a symbol of arity 0 is called a constant symbs~. 

A tree over V is a mapping t 

finite subset of IV* such that ( 



226 Y. Sakakibara 

the set of all trees over K !DornJ denotes the cardinality of Dom,, that is, the 
number of nodes in t. 

If we consider V as a set of function symbols, the finite trees over 
identified with well-formed terms over V and written linearly with co 
parentheses. Within a proof or a theorem, we shali write down only 
terms to represent well-formed trees. Hence when declaring “let t be c f the form 

f(t 1,...,&)***” e also declare that f is of arity n. 
Let t be a tree over V. A node y in d is ra!!ed a terminal node iff for all x E Dom,, 

y K x. A node y in o is an interior node iff y is not a terminal node. The frontier of 

Dom,, denoted frontier(Dom,)? is the set of all terminal nodes in Dom,. The interior 

of Dom,, denoted interior( Dom,), is Dom, - frontier(Dom,). The depth of x E Dom,, 
denoted depth(x), is the length of x. For a tree t, the depth of t is defined as 
depth(t) = max{depth(x) Ix E Dom,}. For XE Dom,, the subtree t/x of t at x is a 
tree such that Dam,,, = (y 1 x l y E Dam,} and t/x(y) = t(x l y) for any y E Dam,,,. 

Let $ be a new symbol (i.e. $& V) of rank 0. V,’ denotes the set of all trees in 
( Vu ($1)’ which exactly contains one $-synbol. For trees s E Vl and t E ( VT v Vc), _ 
we define an operation “#” to replace the terminal node labelled $ of s with t by 

s# t(x)= 
s(x) if x E Dam, and s(x) # $, 

t(y) ifx=z*y,s(z)=$andyEDom,. 

For subsets SC, Vl and T c ( VT u Vl), S# T is defined to be the set {s # t i s E S 
and t E T}. 

A skeletal alphabet Sk is a ranked alphabet consisting of only the special symbol 
(T with the rank relation rsk c {a} x { I,& 3, . . . , m}, where m is the maximum rank 
of the symbols in the alphabet Sk. A tree defined over Sku VO is called a skeleton. 

Let t E VT. The skeletal (or structural) description of t, denoted s(t), is a skeleton 
with Dam,,,, = Dom, such that 

s(t)(x) = 
t(x) if x E frontier( Dom,), 
0 if x E interior( Dom,). 

Let T be a set of trees. The corresponding skeletal set, denoted K ( T), is {S(J) 1 t E T}. 

hus a skeleton is a tree which has a special label a for the interior nodes. The 
skeletal description of a tree preserves 
names describing that structure Fig. 2) 

the structure of the tree, but not the label 

- s(t) = /i\ , 

a/u\b 
a b 



Context-free grammurs from structural data 227 

Let V be a ranke alphabet and m be t e maximum rank of the symbols in V. 
A (deterministic frontier-to-root) tree automaton over V is a quadruple A = 
(Q, V, 6, F) such that Q is a finite set, F is a subset of Q, and S = (6,, S,, . . _ ,6,) 

consists of the following maps: 

&: &X(Qu V,)“++Q (k= 1,2,. . ., m), 

&(a)=a foraE VO. 

Q is the set of states, F is the set of ftnal states of A, and S is the state transition 

function of A. In this definition, the terminal symbols on the frontier are taken as 
“initial” states. S cdn be extended to VT by letting 

W(t 1, l l l 9 t/J = 
w.L m), l l l 9 a(&)) if k>O, 

&Lf 1 if k = 0. 

Thz tree t is accepted by A iff 6(t) E E The set of trees accepted by 
T(A), is defined as T(A) = (t E VT 1 S(t) E F}. Note that the tree automaton A cannot 
accept any tree of depth 0. 

If 6 is a function from Vk x (Q u VJk to 2O (k = I, 2, . . . , m), then the tree 
automaton is called nondeterministic. For a nondeterministic tree automaton NA = 

(Q, V, 6, F), we define T( NA) as follows. S can be extended to VT by letting 

WU,, l l l 9 0 = 

1 

w &Us,,--A&) ifk>O, 
9,E~(11)....,9~E~(IL) 

1.f1 if k = 0. 

Then the set T( NA) of trees accepted b;r NA is defined as TWA) = 
(tE vp(e? F-z@}. 

(Levy and Joshi 193). Nondeterministic tree automata are no more 
po?uerful than deterministic tree automata. 

Let A = (Q V, S, F) and A’ = (Q’, V, 6’, F’) be (deterministic) tree automata. A 

is isomorphic to A’ iff there exists a bijection q of Q onto Q’ such that q(F) = F’, 

and for every ql, . . . , qk E Qu 2 andf E VL (P(&(.L ql,. . . , qd) = W.i d,. . . 9 4:) 

where qi = v( qi) if qi E Q and qi = qi if qi E C for 1 
which accepts a set of trees T. A is minimum iff 
states among all tree automata which accept T. The 
unique up to isomorphism [4]. 

a 3.2 (Replacement lemma). Let A = (Q, V, 6, F) be a tree aMtQrnat~~. For s, 

S’E VT and t E Vl, if S(s) = S(s), then S( t # s) = S( t # s’). 

y induction on th 
then 8(t # s) = 6(s) = S(d) = 6(t # s’). 



228 Y. Sakakibara 

in which the depth of thz node labelledl $ is at most h. Let t be an element of V,’ 

in which the depth of the node labelled is h+ 1, so that t = 

il#f(Ul, l l m 3 Ui-l,$r Qi, l l l 3 Uk-1) for some Ul,. . . , u~-,E VT, iEN and a’~ VI in 

which the depth of the node labelled $ is h. Then 

Kfb 1, l l l 9 Idi- 5 S, Uiy l l l 3 %-I)) 

= &(..A w4), l l l 9 S(Ui--I), S(S), S( Ui j, l l l f ‘(‘~-! jj 

= Mfi S(U,), l l l ¶ s(“i-l)9 s(s’), stUi)9 l l l 7 S(Uk-1)) 

Therefore 

S(t#S)=S(t’#f(Ul,...,Ui-i,$,Ui,...,Uk-I)#S) 

=S(t’#f(Ul, l l s 3 Ui-1, S, Uip l l l 3 Uk-1)) 

=S(t’#f(u,, m l l 3 Ui-1) S’, Ui, l l l 3 Uk-A), 

by the induction hypo!hesis and the above 

=S(r#s’). 

This completes the induction and the proof of the replacement lemma. 0 

A context-free grammar is denoted G = (N, 2, P, S), where N and 2 are alphabets 

of nonterminals and terminals respective!y such that N n C = QI. P is a finite zet of 

productions; each production is of the form A + QI, where A is a nonterminal and 

cy is a string of symbols from (N u X)*. Finally, S is a special nonterminal called 

the start symbol. If A+ p is a production of P, then for any strings c11 and y in 

(N u Z)“, we define cuAy~cu@. 3 is the reflexive and transitive closure of a. 

The language generated by G, denoted L(G), is {w 1 w is in C* and S$ w). Two 

context-free grammars G1 and G2 are said to be equivalent if L(G,) = L( G2). Without 

loss of generality, we restrict our consideration to only E-free context-free grammars. 
Let G = (N, 2, P, S) be a context-free grammar. For A in N u 2, the set DJ G) 

of trees over N u 2 is recursively defined as 

1 1 ifA=aEZ, 

~~(t,,...,r,)lAjB,..B,tP,ticD,,(G)(l~~~~ 

if AE N. 

,JG) is called a derivation tree of G from A. For the set D&G) of 

ees of G from the start symbol S, the S-subscript will be deleted. 

A skeleton in K (D( G)) is called a structural description of G. Then K (D(G)) is 

the set of structural descriptions of G. Two ce Irtext-free grammars G, aijd Gz are 

said to be structurally equivalent if K( D( G,)) = K( D( G2)). Note that if G1 and G2 

alent, they are equivalent too. Given a context-free grammar 



Ccntcxt-frw gramn;ars_from structural data 229 

Next we show two important propositions which connect a context- 

with a tree automaton. By a coding of the derivation process of a context-free 

grammar in the formalism of a tree automaton, we can obtain the following result. 

3.3. Let G = (lV, 2, l?, S) be a context-free grammar. The corresponding 

nondeterministic tree automaton NA( G) = (Q, Sk u 2, 8, F) is defined as follows. 

Q= N, F = (51, 

&(q B,,..., Bk) 3 A if the production of the form 

&(Q)=Q for QEC. 

reposition 3.4. Let G be a context-free grammar. Then T( NA( G)) = 

That is, the set of trees accepted by MA(G) is equal to the set of structural descriptions 

of G. 

roof. Firstly we prove that s E K ( DA( G)) iff S(s) 3 A for A E N v C. We prove it 

by induction on the depth of s. Suppose first that the depth of s is 0, i.e. s = Q E C. 

By the definition of DA(G) and NA(G), a E DA(G) iff A = a iff S(Q) = {&,(a)} sA. 

I-Ience QE K(D,(G)) iff S(Q) sA. 

Next suppose that the result holds for all trees with depth at most h. Let s be a 

tree of depth h + 1, so that s = a(~~,. . . , uk) for some skeletons ul,. . . , uk with 

depth at most h. Assume that ui E K( DR,( G)) for 1 s i 6 k. Then 

4% 1 - - 5 ud E UX&3) 

ifg there is the production of the form A + B, . . . Bk in P, 

by the definition of DA( 6) 

,,..., B,&A, by the definition of NA( S> 

iff S&P, B,, . . . i B&)3Aand B&(u,) ,..., Bk~S(uk), 

by the induction hypothesis 

irjf S(U(U,, . . . , uk)) 3A. 

This completes the induction and the proof of the above proposition. 

Then it immediately follows from this that s E K( D( G)) iff S(s) 3 S Hence 

K(D(G))= T:NA(G)). Cl 

Conversely, by a coding of the recognizing process of a tree automaton in the 

formalism of a context-free grammar, w, 10 can obtain the following result. 

a tree 

=(N, S) is defined as follows. 



230 Y. Sakakibara 

3.6. Let A = (Q, Sk v 2, S, F) be a tree automaton for a 

))) = T(A). Th a is, the set of structural descriptions of t 

the set of trees accep+d b>y A. 

al set. Then 

is equal to 

roof. Firstly we prove that (i) S(s) = q ifI SE K(DJG(A))) for q E QuZ. We 
prove it by induction on the depth of s. Suppose first that the depth of s is 0, ie. 
s=a&Z.Bythe finition of G(A) and DA(G), S(a) = q iff q = a iff a E (A)). 
Hence S(a) = q E K(D,(G(A))). 

Next suppose that the result holds for all trees with depth at most h. 

tree of depth h + 1, so that s = (T(u~, . . . , uk) for some skeletons u,, . . . , tik with 
depth at most ,&E. &XXX! chat S( Ui) - Xi t-or 1 s i 6 PC. Then 

s(ab4?,...,ul,))=q 

iff &A~, Wlc,L . . . , WJ) = q 

iff &(a,x,,...,~~)=q 

iff there is the production of the form q + x1 . . . xk in G(A), 
by the definition of G(A) 

iR q+xl . . . xk in G(A) 

and U1 E K(&,(G(A))), l l l 3 uk E K(D,,(G(A))), 

by the induction hypothesis 

ifi U(U,,... , t(k) E K( DJ G(A))), by the definition of DA( G). 

This completes the induction and the proof of (i). 
Secondlyweprovethat(ii)sEK(D,(G(A)))iffsEK(D~(G(A)))forsomeqEF. 

Let s be a skeleton of the form a(~,, . . . , uk) for some skeletons ul, . . . , ukm If 
SEK(DJG(A))), then since if uiEK(Dqi(G(A))), then qi=S(Si) for lsisk by 
(i), there is the production of the form S+ S( u,) . . . a(&) in G(A) and 

Sk@-, 8(u,), l l l 
, 6( uk)) E F by the definition of G(A). Then S(a( ul,. . . , uk)) E F 

and so S(s) E F. Hence by (i), s E K(D,(G(A))) for some q E F. 
Conversely if SE K(D;(G(A))) for some q E *E thmr S(s) = 

skb, %), l - . , 6( uk)) E F by (i). By the definition of G(A), theie is ihiproduction 
of the form S+ S( u,) . . . 6( uk) in G(A). Since Ui E K( DscUiJ G(A))) for 1 s is k by 

(i), S(u,, l l l ? Uk)E K(&(G(A))). Hence SE K(&(G(A))). 

Lastly it immediately follows from (i) and (ii) that S(s) E F iff s E K (D( G( A))). 

Hence T(A):= K(D(G(A))). 0 

Hence the problem of learning a context-free grammar from structural descriptions 
can be reduced to the problem of learning a tree automaton. 

se e 

the one for tree automata 



Context-free grammars from structural data 231 

subtree-closed if s E implies that all subtrees wi depth at least 1 of s are elements 
of A. B is called $ re$x-closed with respect to if eEB-{$} imp 
exists an e’ in such that e=e’#G(s,,. . ., si-,,$,si,. . . , skml) for some 
Sl,*.*, sk-p54uiE and iEN. 

An observation fable, denoted (S, E, T), consists of a nonempty finite subtree- 
closed set S of skeletons with depth at least 1, X(S) = {a( I.+, . . . , uk) 1 u E Skk, 

u1 v . . . , U~ESUZ and a(~,,..., uk) ti S for k a I}, a nonempty finite s 
(Sk LJ E)c which is $-prefix-closed with respect to S, and a finite function 
(E # (S u X(S))) to (0, 1). The interpretation of this is that T(s) is 5 ii? s is a 
structural description of the unknown grammar G. An observation table can be 
visualized as a two-dimensional matrix with rows labelled by elements of (5 u X(S)), 
columns labelled by elements of E, and the entry for row s and column e equal to 
T( e # s). The learning algorithm uses the observation table to build a tree automaton. 
If s is an element of (S u X(S)), row(s) denotes the finite function f from E to 
(0, 1) defined by j(e) = T(e # s) (Fig. 3). 

An observation table (S, E, T) is called closed if every row(x) of x E X(S) is 
identical to some r,~wjs) of s E S. An observation table is called consistent if 

whenever s1 and s2 are elements of S such that row(sA =,row(d, 
row(a(u,, . *. , Ui-1, S1, Ui, . . . , &_I)) =row(u(u,, . . l , Ui-1, s2, 4,. -., Uk-1)) for all 

aESk, u],..., uk.+ESC~~ and lGi<k. 
Let (S, E, T) be a closed, consistent observation table. The cnrresporading 

automaton A(!$, E, T) over Sk u C constructed from (S, E, T) is defined with 

state set Q, the set of final states F, and the state transition functio 

Q = {row(s) 1 s E S}, 

F = {row(s) 1 s E S and T(s) = l}, 

akb, row, l l . , 

S,(a) = a 

/ 



232 Y. Sakakibara 

where the function row is augluented to be row(a) = a for a E 2. 
We can see that this is a well-defined (deterministic) tree automaton. Let s1 and 

s2 be eiements of S stia*h that row(s, j = row(,s& ‘I’hlen since E contains $, T(q) = 

T($# s,) and T(s,) = T($# s2) are defined and eclual to each other. 

well-defined. Since the observation table (S, E, T) is consistent, Ibr ul, . . . , uk-l E 
SUZ, row(&4,,. . ., Ui_l,S*, Ui,.. ., Uk-l))=row(V(u, ,... , Ui-1, S2, Ui,. . ., Uk-1)) 

(0~ i < k), and since it is closed, this value is equal to row(s) for some s in S. 

Hence 6 is well-defined. 

The ideas of the closed, consistent observation table and the learning algorithm 

using this are essentially extzsions of Angluin’s ones [2]. The idea of the observation 

table is also related to the state characterization matrix in [8]. The lemmas and 

theorems that follow are analogous to Angluin’s results. 

.I. Suppose that (S, E, T) is a closed, consistent observation table. For the 
tree automaton A(S, E, T) and for every s in (S u X(S)), 6(s) = row(s). 

roof. It is clear from the definition of A(S, E, T). Cl 

2. Suppose that (S, E, T) is a closed, consistent observation table. Then the 

tree automaton A(S, E, T) is consistent with thejnite function T That is, for every s 

in (SuX(S)) andeinE,S(e#s) isin FiffT(e#s)=l. 

We prove it by induction on the depth of the node labelled $ in e. When e 

is $ and s is any element of (SuX(S)), by Lemma 4.1, is,(&s) = S(s) =row(s). If 

s is in S, then by the definition of F, row(s) is in F ifI T(s) = 1. tf s is in X(S), 

then since (S, E, T) is closed row(s) = row(s’) for some s’ in S, and row( s’) is in F 

iff T(s’) = 1, which is true ifI T(s) = 1. 

Next suppose that the result holds for all e E E in which the depth of the node 

labelled $ is at most h. Let e be an element of E where the depth of the node 

labelled $ is h f 1. Since E is $-prefix-closed with respect to S, e = 

e’#a(S,, a.. , S;_1, $, Si,. . . , s& for some q, . . . , Q_,ESUZ, &IV and ek E in 

which the depth of the node labelled $ is h. For any element s of (S u X(S)), since 

(S, E, T) is closed; there is an element s’ in S such that S(s) = S(s’). Therefore 

S(e# sj = S(e'# a(s,, . q . , s;_, , $, .qi,. . . , S& # S) 

=S(e’#u(s,,. . .,.s~_~,$,s~ ,..., sk-,)#s’), 
by the replacement lemma 

I 
= S(e’# U(Sl, *. . , Si-1, S , Si,. . . , Sk-l)). 



Context-free grammars from structural data 233 

3. Suppose that (S, E9 T) is a closed, consistent observation table, and the 

tree automaton A( S, E, T) = (Q, Sk v 2, S, 1”;) has n states. If A' = (Q', Sk v 2; 6’, F’) 
id any tree automaton corasistent with T that has n or fewer states, then A’ is isomorphic 

to A(S, E, T). 

roof. We prove it y exhibiting an isomorphism q from A(S, E, T) to A’. First 
define for any s E SU X(S) q(row(s)) = 6’(s). Since ’ is consistent with T, q is 

one-ts-one mappin from Q to Q’. Hence A’ has n st e,c, and q is a bijection. We 

must verify that it preserves the transition function, and that it carries F to F’. For 

each So,..., QESWC and cESkk, 

d&Aa, row(sl), . . l 9 rowh))) = drow(~(s*, l l l , Sk))) 

= S’(u(s,, . . . , Sk)). 

Also for xi = q(row(si)) if SI E S and Xi = Si if Si E C (1 s is k), 

S@, X!, . . . , Xk) = q.Jcr, S’(s,), . l l , S’(Sk)) 

= S’(o(s, , . . . , Sk)). 

Lastly since A’ is consistent with T, for s E S, row(s) in in 6; ifI T(s) = 1 iff S’(s) 

is in F’ iff q(row(s)) is in F’. Thus 50 maps F to F’. Hence we conclude that the 

mapping q is an isomorphism from A(S, E, T) to A’. Cl 

5. e learni g algorithm 

Suppose GU is the unknown grammar to be learned (up to structural equivalence). 

We assume tt;?at the terminal alphabet C and the skeletal alphabet Sk for GU are 

known. 

A structural membership query proposes a skeleton s and asks whether it is in 

K (D( G,)). The answer is either yes or no. A structural equivalence query proposes 

a grammar 6’ and asks whether K (D(GU)) = K ( (G’)). The answer is yes or ncp. 

If it is no, then a counter-example is a provided, that is, a skeleton s in the 

symmetric difference of K (D(, G,,)) and D( 6’)). This learning protocol is based 

on what is called “minimally adequate teacher” in [2]. 

Note that the problem of structural e uivalence of co 

solvable, whereas the problem of equivalen of context-free 

Further the problem of testing two context-free gra ars f0r structural equivalence 

may be solved by a co 

a comptrtable implene 

of erics. 



234 Y. Sakakihwa 

Tne Learning A!~+thf+r L.4 

s := fj; E := ($1; 

Let G := the context-5ee grammar G = ({S}, 2,8, S); 
Make the conjecture G and a structural equivalence query proposing G; 

if the reply is yes t en halt and output 6; 
Add a counter-example t and all its subtrees with depth at least 1 to S; 
Construct the initial observation table (S, E, T) using stTuctura1 membership queries; 

) is not closed or 
is not consistent t 

finds,ands,inS,eEE,u,,...,uk_,ESu~,andiEh’suchthat 
row(s*) is equal to row(s,) and 
T(e#G(tiI,. ..,Ui_-lrS~,Ui,...,Uk_l)) 

# T(e#a(u,,...,Z~i_l,s2, Ui,...,Uk-1)); 

add e#c+(U,,...,Ui+$,Ui,...,Uk_,*)fO E; 
extend T to E # (S u X(S)) using structural membership queries; 

if (S, E, T) is not closed then 
find s1 E X(S) such that row(sI) is different from row(s) for all s E S; 
add s1 to S; 
extend T to E # (S u X(S)) using structural membership queries; 

Once (S, E, T) is closed and consistent, let G := G(A( S, E, T)); 
Make the conjecture G and a structural equivalence query proposing G; 
if the reply is no with a counter-example t the 

add t and all its subtrees with depth at leas 
extend T to E # (S u X(S)) using structural membership queries; 
the reply is yes to the conjecture G; 
and output 6. 

In the above algorithm, the operation of “extend T to E # (S u X(S)) using 
structural membership queries” is the operation to extend T by asking structural 
membership queries for missing elements. 

Now we will see that LA eventually terminates and makes a correct conjecture, 
i.e. outputs a grammar structurally equivalent to CU. It is clear that if LA ever 
terminates, its output is a grammar structurally equivalent to CU. Let AU be the 
minimum tree automaton for the set of structural descriptions of GU and n be the 
number of states in it. 

The conjectures G( A(S, E, T)) tha, the algorithm L makes are consistent 
with T. Th;?t is, for every s in (SuX(S)) and e in E, e#sE K(D(G(A(S, E, T)))) 
iflT(e#s)=l. 



Context-free grammars from structural data 235 

When t and ail its subtrees with depth at least 1 are added to S, S obviously remains 

subtree-closed. If (S, E, T) is not consistent, then for some e E E, ul, . . . , uk+ E 3’ u 2 

and iE N, e#o(u,,. .., ui-,,$, ui ,..., Q-J) is added to E. In this case, E remains 
$-prefix-closed with respect to S. If (S, E’, T) is not closed, then for some tll,. . . 9 uk E 

SuZandaESkk,cr(ul,..., uk) is added to S. In this case, S remains s 
Whenever LA makes a conjecture, the observation table (S, E, T) is found tc be 

closed and consistent. Hence by Lemma 4.2 and Proposition 3.6, G(A(S, E, T)) is 

consistent with K 0 

emma 5.2. The algorithm LA terminates. 

roof. Firstly we show that whenever an observation table (S, E, T) is not consistent 

or not closed, the number of distinct values row(s) for s E S must increase. If 

(S, E, T) is not consistent, then since some two previously equal row values are no 

longer equal after E is augmented, the number of distinct values row(s) increases 

by at least one. If (S, E, T) is not closed and some element t in X(S) is added to 

S, then since row(t) is different from row(s) for all s in S before S is augmented, 

the number of distinct values row(s) increases by at least one. 

Next we will show that whenever a counter-example t and all its subtrees with 

depth at least 1 are added to S because G( A( S, E, T)) is incorrect, the tree automaton 
A(S’, E’, T’) for the next conjecture G(A( S’, E’, T’)) must have at least one more 

state than A( q, E, T). Since A(S’, E’, T’) is consistent with T and inequivalent to 

A(S, E, T) (since they disagree on t by Proposition 3.6), by Lemma 4.3, A( S’, E’, T’), 

has at least one more state than A(S, E, T). 
Since Al; is always consistent with T, by Lemma 4.3, the number of distinct values 

. row(s) cannot be more than n. Thus LA always eventually finds a closed, consistent 

observation tz.gle and makes a conjecture. Furthermore a counter-example is added 
to S at most n times. Hence the algorithm LA terminates after making at most n 

conjectures and by Lemma 5.1, outputs a correct conjecture. 0 

Next we will analy,, =p the time complexity of the algorithm LA. That depends 

partly on the size of the counter-examples returned by structural equivalence queries, 

where the size of a counter-example t is the number of nodes in t, i.e. IDom,I. 

will analyse the running time of the algorithm LA as a function of n, the number 

of states in rh-,e .minimum tree automaton for K( m, the maximum size 

of any counter-example returned by a struct ce query during the 

running of LA. We will show that its running tim 

m and n. IZJet k be the cardinality of the terminal alphabet 2, 2 be the cardinality 

of the skeletal alphabet Sk (that is the number of distinct ranks of the symbol 0) 

and d be the maximum rank of the symbol c in 

Whenever (S, E, T) is discovered one element is a 

henever (S, E, T) is discovered to is a 



236 r’. Sakakibara 

For each counter-example of size at most m returned by a structural equivalence 
query, at most nio subtrees are added to S. Since the observation table is dis- 
covered to be not consistent at most n - 1 times, the total number of elements in E 

cannot exceed n. Since the observation table is discovered to be not clcsed at most 
n - 1 times, and l ce there can be at most n counter-examples, the to 
of elements in cannot exceed n+mn. Thus, the maximum casdinality of 
E # (Su X(S)) is at most 

Now we consider the operations performed by LA. Checking the observation 
table to be closed and consistent can be done in time polynomial in the size of the 
observation table, and must be done at most n times. Adding an element to S or 
E requires at most O(m"nd ) structural membership queries to extend T for missing 
elements. When the observation table is closed and consistent, A(S, E, T) and 
G(A( S, E, T)) may be constructed in time polynomial in the size of the observation 
table, and this must be done at most n times. A counter-example requires the 
addition of at most m subtrees to S, and this can also happen at most n times. 
Therefore, the total running time of LA can be bounded by a polynomial function 
of m and n. 

We have the following main results. 

eore .3. Using structural equivalence and structural membership queries jbr an 
unknown context-free grammar GU, the learning algorithm LA eventually termdna tes 

and outputs a grammar structurally equivalent to GU. Moreover, if n is the number of 

states of the minimum tree automaton for the set of structural descriptions of GU and 

m is the maximum size of any counter-example returned by a structural equivalence 

query, then the total running time of LA is bounded by a polynomial in m and n, 

There is an algorithm that learns a grammar structurally equivalent to 
any context-free grammar G using structural equivalence and structural membership 

queries that runs in time polynomicl in the number of states of tire minimum tree 

a~tornat~~ for the set of structural descriptions of G and the maximtnm size of any 
counter-example. 

A parenthesis grammar is a context-free grammar G = (N, 2, P, S) such that the 
productions in I) are restricted to the form A + (a), where ( and ) are special symbols 
not in 22 and cy contains neither ( nor ). 

Since the structural information can be obts‘ned from sentences of a parenthesis 
grammar, parenthesis languages can be learned efficiently from a minimally adequate 
teacher. 



Context-free grammars from structural data 237 

time polynomial in the number of states of the minimum tree automaton for the set of 

structural descriptions of G and the maximum length of any counter-example. 

Note that in the tree automaton, the transition function must specify the state 

assigned to each d-tuple of elements from Q u V,, that is, at least ~2~ different 

d-tuples. In practice, the transition function is likely to be sparse, that is, assigns 

the “dead state” to most of these combinations. However the learning algorithm in 

its present form does not take advantage of sparsity. Perhaps it is possible to construct 
a more efficient version of the learning algorithm LA to take advantage of sparsity. 

6. An example 

In the process of learning a context-free grammar from its structural descriptions, 

the problem is to reconstruct the nonterminal labels because the set of derivation 

treec of the unknown context-free grammar is given with all nonterminal labels 

erased. 

Suppose that the unknown context-free grammar is the following context-free 

grammar GU = (IV, 2, P, S) which generates the set of all valid arithmetic expressions 

involving a variable “v”, the operations of multiplication “x” and addition “+“, 

and the parentheses “[” and “I”: 

N = {S, E, F}, 

2 = G-4 x, +, L II, 

P={S+ E, 

E+EtE, 

F-3 v, 

F+vxF, 

F+[E]}. 

First the learning algorithm LA proposes the context-free grammar G = ({S}, 2, 0, S) 

and we assume that the counter-example shown in Fig. 4 is returned by the structural 

equivalence query. This is the structural description of the derivation tree for the 

sentence “v x [v + v]” assigned by GU. 

LA adds all subtrees with depth at least 1 of it to S 

parts (i.e. row(s) =0 and row(s) = 1) by asking member 

interior nodes of the structural description are labelled 0 or 1 according to their 

row values, where E = ($}, s 

Next LA tries to make a cl 

queries. 



238 Y. Sukakibara 

Fig. 4. 

1 

I 
0 

u 
Fig. 5. 



Context-free grammars from structtrral data 239 

once, and hence it s the element o($) to E. Then 
closed, consistent o atrsn table shown in Fig. 6 and 

context-free grammar O’VC i . 7. 
correct for GL,, and therefore a counter-example is returned 

them. 

2 of the conjecture is shown 
s and all productions includin 

. . . 

Fig. 6. Observation table. 

G,=U’L~J,,W 

N, = wo>, VW, W)L 

P, = {(OO)+ v, 

(01) -’ NW, 

(01)+(00)+(01), 

w-, mwl~ 

(00) + v x (OO), 

(10: +0-w, 

s, + WY 

(00) 3 ( 1% 

(OO)+ vx(Ol), . . .I 

Fig. 7 



240 Y. Sakakibara 

“E” 
-.- 

(UC&, + ,dabm 

Fig. 8. Observation table. 

G,=(N,,2,Pz,S,) 

Iv? = {(loo), (OlO), (ml)}, 

Pz = {(OOl)+ u, 

(01O)-,(OOi), 

(010)+(001)+(010), 

Kw + wwl, 

(001) + u x (OOI), 

S,+ww 

Fig. 9 

In this example run, the value a( a($, +, a( (T( u)))) is taken as the third column 

of E. However this is one possible choice of a distinguishing environment. The 

simpler environment a( a( $)) would also work. 

The derivation tree for the sentence “v x [v + v]” by C2 is shown in Fig. 10. 

early work is Crespi- 

ars cz:T, be ‘learn 
e sh~s that a subclass of 



Context-free grammars from structural data 241 

Fig. 10. 

the possibility of efficient grammatical inferences in terms of structural descriptions. 

Fass [73 presents an algorithmic sofution to the inference problem of context-free 

languages from their structured sentences based on the theory of Levy and Joshi. 

However her solution only gives a theoretical basis for grammatical inference and 

her algorithm is still inefficient. Thus the algorithm described in this paper is the 

only algorithm that learns the full class of context-free grammars from structural 

data and a&kves the polynomial time bound. 

As Crespi-Reghikzi et al. [6] suggest, grammatical inference may be useful in 

specifying programming languages. A p.-_~~.;5-Si kYPn U rartirar gq4pation of our algorithm is 

designing programming languages or synthesis of compilers, because the structure 

or syntax of programming languages is usually defined by means of a context-free 

grammar. As in [6], the definition of structure and the definition of meaning should 

be interconnected since structural information is an aid for interpreting a sentence. 

Thus in learning a programming language, the learned grammar should be construc- 

ted so that it not only generates sentences correctly but a so assigns to each sentence 

the structure required by the designer. Then our approach will provide an effective 

method for the process of programming language design. 

The author would like to thank 

the o~po~unity 



242 Y. Sakakibara 

to the referees for their car&l reviewing. Discussions with colleagues T. Yokomori, 

Y. Takada and I-I. Ishizaka were also very fruitful. This is part Gf the work in the 

major R&D ofthe Fi4h Generatio,] Computer Project, conducted under the program 

st;t up by MITI. 

eferences 

VI 
PI 

e31 

141 
PI 

161 

PI 

[$I 

[91 

D. Angluin, Learning k-bounded context-free grammars, RR 557, YALEU/DCS, 1987. 
D. Angluin, Learning regular sets from queries and counter-examples, Inform. and Compuf. 75 ( 1987 j 
87- 106. 
P. Berman and R. Roos, Learning one-counter languages in polynomial time, in: l?we. IEEE FOCS 
‘87 (1987) 61-67. 
W.S. Brainerd, The minimalization of tree automata, Inform. and Conlrol 13 (1968) 484-491. 
S. Crespi-Reghizzi, An effective model for grammar inference, in: B. Gilchrist, ed. Information 
Processing 72 (Elsevier!North-Holland, Amsterdam, 1972) 524-529. 
S. Crespi-Reghizzi, MA. Melkanoff and L. Lichten, The use of grammatical inference for designing 
programming languages, Comm. ACM 16 (1973) 83-90. 
L.F. Fass, Learning cwtext-free languages from their structured sentences, SIGACT News 15 (1983) 
24-35. 
E.M. Gold, Complexity of automaton identificatiw from given data, hform. and t’ontrcri 37 (1978) 
102-320. 
L.S. Levy and A.K. Joshi, Skeletal structural descriptions, Inform. and Control 39 (19781 192-211. 


