
CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsev
Renal effects of soluble guanylate cyclase stimulators
and activators: A review of the preclinical evidence
Johannes-Peter Stasch1,2, Jens Schlossmann3 and
Berthold Hocher4

Available online at www.sciencedirect.com

ScienceDirect

ier - Publisher Connector 
Direct stimulation of soluble guanylate cyclase (sGC) is

emerging as a potential new approach for the treatment of renal

disorders. sGC catalyzes the formation of cyclic guanosine

monophosphate (cGMP), deficiency of which is implicated in

the pathogenesis of chronic kidney disease (CKD). Therefore,

new classes of drugs — sGC stimulators and activators — are

being investigated in preclinical models under conditions

where nitric oxide is deficient. In preclinical models with

different etiologies of CKD, the sGC stimulators BAY 41-2272,

BAY 41-8543, BAY 60-4552, riociguat and vericiguat and the

sGC activators cinaciguat, ataciguat, BI 703704 and

GSK2181236A have shown consistently renoprotective

effects. Clinical trials are required to confirm these findings in

humans, and to ascertain whether these agents could provide a

future alternative to guideline-recommended treatments.
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Introduction
Chronic kidney disease (CKD), defined as a reduced

estimated glomerular filtration rate (<60 ml/min/

1.73 m2), increased urinary albumin excretion (>30 mg/

g of creatinine), or both, is a substantial cause of morbidity

and mortality worldwide, and a growing public health

concern [1,2]. The estimated global prevalence of CKD is

8–16% in the general population, rising to over 50% in

high-risk subgroups [1,3]; however, few drugs for kidney

disease have been successfully developed over the past

15 years [4]. While many therapeutic interventions have
www.sciencedirect.com 
initially appeared effective in animal models, translation

of these results into humans in the clinical setting has

remained challenging [5]. There is a particularly high

unmet medical need for new therapies in cases where

guideline-recommended CKD treatments are unsuccess-

ful. These patients are likely to have persistent high

blood pressure and increased albumin excretion, which

puts them at increased risk of rapid progression to end-

stage renal disease (ESRD) [6–8].

Direct stimulation of soluble guanylate cyclase (sGC) is a

novel therapeutic approach under investigation for vari-

ous cardiovascular disorders associated with endothelial

dysfunction. It has also been shown to have beneficial

effects on renal tissue remodeling and organ function [9].

This review will focus on preclinical data on two classes of

compounds that directly modulate sGC, sGC stimulators,

and sGC activators. These compounds increase cyclic

guanosine monophosphate (cGMP) formation under nor-

mal conditions and conditions where nitric oxide (NO)

formation and bioavailability are impaired or NO toler-

ance has developed [10]. Given their non-overlapping

mechanism of action compared with current therapies,

activators and stimulators of sGC may offer an alternative

option for patients who are unresponsive to available

modalities and who therefore are at high risk of rapidly

progressing to more serious disease.

Pathogenesis of CKD
Excessive accumulation of extracellular matrix occurs in

virtually every type of CKD, leading to renal fibrosis [5].

Three key pathways have been identified in promoting

tissue matrix expansion: firstly, elevated synthesis of

extracellular matrix components; secondly, increased in-

hibition of matrix degradation; and finally, upregulated

local expression of integrins [11]. This pathogenic process

is progressive and ultimately leads to ESRD [5]. There

are believed to be several pathways of progression toward

ESRD at the cellular and molecular level; injury to the

tubulointerstitium, the renal parenchyma comprising the

tubules and bounded by the vasculature and nephrons,

may be one of these pathways [12].

NO and cGMP deficiency are implicated in the patho-

genesis of multiple organ systems, including the cardio-

vascular system and importantly, the renal system [10].

NO deficiency has been documented in numerous

experimental and human renal diseases, including hyper-

tension and diabetic nephropathy, glomerulosclerosis,
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obstructive nephropathy, and chronic interstitial nephri-

tis, as well as renal diseases due to cyclosporine A and

radiocontrast media [13–21].

Pharmacological blockade of NO has been utilized to

study the effects of NO inhibition in animal models of

renal disease. In a rat model of obstructive nephropathy,

increased fibrosis and apoptosis, and reduced blood flow

and filtration rates were observed with the use of the NO

synthase inhibitor L-NAME as compared with control

animals [13]. In another study in rats, increased arterial

pressure and reduced renal blood flow were observed as a

result of treatment with L-NAME. The hemodynamic

effects induced by NO inhibition were normalized by

sGC activation, demonstrating that the function of NO is

mediated by the cGMP pathway [22]. Together, this

research has demonstrated that NO and cGMP deficiency

contribute to the progression of CKD through both he-

modynamic and direct pro-fibrotic effects. It also reveals a

protective role of NO on renal function, interstitial fibro-

sis, and renal tubular apoptosis [13]. More than 80% of

patients with CKD are hypertensive [23], and in most, if

not all cases, the dominating pathohistological feature of

their underlying kidney disorder is accumulation of ex-

tracellular matrix proteins [5].

Due to the established link between NO deficiency and

vascular pathophysiology, targeting of the NO signaling

pathway has become a therapeutic strategy; for example,

organic nitrates have been used to treat cardiovascular

disease for more than 150 years [24]. However, resistance

to NO, non-specific, and cytotoxic effects and other

limitations associated with such treatments have led to

an interest in targeting the sGC pathway directly, result-

ing in the discovery and development of sGC stimulators

and activators [24].

Soluble guanylate cyclase
The enzyme sGC is a heterodimeric complex composed

of two subunits (a and b), and is responsible, across

various species and systems, for catalyzing cGMP forma-

tion from guanosine triphosphate. The prosthetic heme

moiety at the b-subunit of sGC is essential for NO

binding and subsequent enzyme activation [10]. NO is

produced in response to physiological stimuli such as

shear stress, and induces relaxation in the cardiovascular

system through its modulation of sGC and cGMP levels,

and consequent regulation of vascular tone and blood

pressure. Under conditions where NO formation and

bioavailability are impaired or NO tolerance has been

established, two classes of compounds have been devel-

oped that can directly modulate sGC and increase cGMP

formation: sGC stimulators and sGC activators [10].

Stimulators and activators of sGC target the enzyme in

two different redox states: the NO-sensitive reduced

(ferrous) enzyme and NO-insensitive oxidized (ferric)
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enzyme, and finally heme-free enzyme, respectively

(Figure 1). Stimulators of sGC stimulate the reduced

form of sGC directly and synergize with NO by stabilizing

the nitrosyl–heme complex of reduced sGC [24]. Con-

versely, sGC activators increase the activity of the en-

zyme only when the heme iron is oxidized which

subsequently lead to the heme-free enzyme. They bind

to the unoccupied heme-binding complex, and produce

only an additive effect with NO. In certain cases, sGC

activators also protect sGC from oxidation-induced pro-

teasomal degradation [24].

sGC stimulators
Effect of sGC stimulators in experimental kidney and

cardiovascular disease

In 1994, scientists at Bayer started a screening for sub-

stances that could induce an increase in NO synthesis and

thereby stimulate sGC in porcine endothelial cells. This

screening led to the unexpected discovery of NO-inde-

pendent sGC stimulators. At the same time it was

reported that a benzyl indazole compound named YC-1

inhibited platelet aggregation by stimulation of cGMP

synthesis. This compound was subsequently character-

ized as a direct NO-independent, but heme-dependent,

sGC stimulator [10,25]. Kidney fibrosis induced by uni-

lateral ureter ligation was inhibited by YC-1 via activation

of cGMP-dependent protein kinase I [26]. However,

along with its relatively weak sGC stimulating potency,

it revealed a poor pharmacokinetic profile and a lack of

specificity, as it was found to inhibit phosphodiesterases

and to modulate many cGMP-independent effects [27].

Therefore, further optimization of potency, pharmacoki-

netic properties, and specificity was required to realize

the full therapeutic potential of this novel class of drugs

[25]. Since YC-1, the sGC stimulators BAY 41-2272, BAY

41-8543, BAY 60-4552, riociguat, and vericiguat have

been developed, and their effects have been investigated

in experimental models of kidney and cardiovascular

disease [9,28–41,42�,43,44]. A summary of some of the

results of these investigations is given below and in

Table 1 and Figure 2.

BAY 41-2272 and BAY 41-8543

Administration of BAY 41-2272 to rats with an acute form

of glomerulonephritis attenuated renal dysfunction, as

determined by significant reductions in proteinuria and

systolic blood pressure (Figure 2a) as compared with

untreated and control animals [36]. This effect was ac-

companied by decreased transforming growth factor beta

(TGFb) production, matrix deposition, and macrophage

infiltration, which was found to occur independently of

changes in blood pressure [36]. In another study, using

the same model, BAY 41-2272 elevated cGMP levels in

mesangial cells, thereby reducing their proliferation and

matrix production compared with placebo-treated ani-

mals. Again, treated rats had significantly lower protein-

uria levels than controls and the effects were found to
www.sciencedirect.com
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Figure 1
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Soluble guanylate cyclase stimulators and activators target two different redox states of the enzyme (reproduced from [24,25]). Soluble guanylate

cyclase (sGC) stimulators and activators target two different states of sGC: the nitric oxide (NO)-sensitive reduced, native sGC, and the NO-

insensitive oxidized, heme-free sGC. Stimulators of sGC stabilize the nitrosyl–heme complex of the reduced sGC (shown left) and exhibit a strong

synergism with NO. Activators of sGC bind to the unoccupied heme-binding complex (shown right) or displace the prosthetic heme of sGC and

protect sGC from proteasomal degradation. cGMP, cyclic guanosine monophosphate; eNOS, endothelial nitric oxide synthase.
have a direct pressure-independent component [30�].
Furthermore, BAY 41-2272 was shown to significantly

limit the course of chronic glomerulonephritis in a rat

model [41]. Improvements in kidney function, as assessed

by lower plasma creatinine and urea levels, were ob-

served. A further study found that BAY 41-2272 protected

the kidney from progressive sclerosis and matrix deposi-

tion by limiting TGFb expression [42�].

Both BAY 41-2272 and BAY 41-8543, when administered

orally, produced dose-dependent vasodilation and

markedly improved survival, compared with untreated

controls, in rat models of hypertension, without causing

tolerance [39,40]. In aged spontaneously hypertensive

rats, BAY 41-2272 rapidly reversed existing pathological

cardiac changes, for example by decreasing fibrosis levels

to those of age-matched normotensive rats [31].

Studies in L-NAME-induced low-NO rat models of hy-

pertension demonstrated that BAY 41-8543 had a renal

protective effect (decreased plasma levels of urea and
www.sciencedirect.com 
creatinine compared with untreated controls) [40], while

BAY 41-2272 attenuated cardiac fibrosis (Figure 2b) and

hypertrophy [44]. In other studies, and at a dose below

that affecting blood pressure, BAY 41-2272 nevertheless

attenuated cardiac fibrosis in rodent models of hyperten-

sion induced by infusion of angiotensin II [33] or supra-

renal aortic constriction [34]. These findings suggest that

sGC stimulation may protect against organ injury inde-

pendently of its effects on vascular tone.

Increased cGMP production and subsequently enhanced

renal recovery after unilateral ureteral obstruction relief

was observed with sGC stimulation by BAY 41-8543 in a

rat model, compared with obstruction relief alone [43].

This suggests that BAY 41-8543 may serve as a novel

treatment approach to restore or preserve renal structure

and function in cases of obstructive kidney disease [45].

BAY 60-4552

Limited published data are currently available for

the other sGC stimulator, BAY 60-4552. However, in
Current Opinion in Pharmacology 2015, 21:95–104
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Table 1

Summary of studies investigating sGC stimulators in experimental models of kidney and cardiovascular disease [9,28–41,42�,43,44]

Citation Compound Treatment groups Key findings

Peters et al.,

2004 [36]

BAY 41-2272 PBS control

OX-7 only

OX-7 + BAY 41-2272

Administration of BAY 41-2272 to rats with an acute form of

glomerulonephritis induced by OX-7 antibody injection attenuated

renal dysfunction, as determined by the presence of proteinuria.

This effect was accompanied by decreased TGFb production,

fibronectin, PAI-1, matrix deposition, and macrophage infiltration.

In general, the fibrotic response in this model was not altered by

blood pressure lowering alone

Hohenstein et al.,

2005 [30�]

BAY 41-2272 OX-7 + vehicle

OX-7 + BAY 41-2272

BAY 41-2272 elevated cGMP levels in mesangial cells, thereby

reducing their proliferation and matrix production in experimental

glomerulonephritis

Wang et al.,

2005 [41]

BAY 41-2272 Nonnephrectomy + PBS

Uninephrectomy + PBS

Uninephrectomy + anti-thy1

Uninephrectomy + anti-

thy1 + BAY 41-2272

Uninephrectomy + anti-

thy1 + hydralazine

Bay 41-2272 limited the progressive course of anti-thy1-induced

chronic glomerulosclerosis toward tubulointerstitial fibrosis and

impaired renal function, at least in part in a blood pressure-

independent manner, suggesting that sGC stimulation counteracts

fibrosis and progression in chronic renal disease

Wang et al.,

2006 [42�]

BAY 41-2272 Nonnephrectomy + PBS

Uninephrectomy + PBS

Uninephrectomy + anti-thy1

Uninephrectomy + anti-

thy1 + BAY 41-2272

Uninephrectomy + anti-

thy1 + pentoxifylline

In a chronic model of glomerulonephritis, BAY 41-2272 protected

the kidney from progressive sclerosis and matrix deposition by

limiting TGFb expression; BAY 41-2272 administration resulted in

marked reductions of glomerular and tubulointerstitial histological

matrix accumulation, expression of TGFb1 and fibronectin,

macrophage infiltration, and cell proliferation, as well as improving

renal function. The protective effect achieved by elevating cGMP

via direct sGC stimulation with BAY 41-2272 was superior to that

produced by preventing degradation of cGMP using the non-

specific PDE inhibitor pentoxifylline

Zanfolin et al.,

2006 [44]

BAY 41-2272 Untreated control

L-NAME only

L-NAME + BAY 41-2272

BAY 41-2272

In a low-NO rat model of hypertension BAY 41-2272 attenuated

cardiac fibrosis and hypertrophy

Masuyama et al.,

2006 [33]

BAY 41-2272 Placebo control

BAY 41-2272 low

(2 mg/kg/day)

BAY 41-2272 high

(10 mg/kg/day)

Ang II + placebo

Ang II + BAY 41-2272 low

(2 mg/kg/day)

Ang II + BAY 41-2272 high

(10 mg/kg/day)

In a rat model of hypertension, BAY 41-2272 ameliorated

angiotensin II-induced cardiovascular remodeling, and the effects

on the extracellular matrix may have been exerted partially via

cGMP, independently of blood pressure

Masuyama et al.,

2009 [34]

BAY 41-2272 Surgery control

Pressure overloaded

Pressure overloaded + BAY

41-2272

In a rat model of hypertension, BAY 41-2272 had no effects on

blood pressure, but decreased aortic constriction-induced

collagen accumulation in the left ventricle, inhibiting the number of

myofibroblasts and gene expressions of TGFb1 and type

1 collagen

Jones et al.,

2009 [31]

BAY 41–2272 BAY 41-2272

BAY 58-2667

Age-matched normotensive

In aged spontaneously hypertensive rats, BAY 41-2272 rapidly

reversed existing pathological cardiac changes, for example by

decreasing fibrosis levels to those of age-matched normotensive

rats

Stasch et al., 2001,

2002 [39,40]

BAY 41-8543 and

BAY 41–2272

Untreated control

BAY 41-2272

Vehicle control

BAY 41-8543

Oral BAY 41-2272 and BAY 41-8543 produced dose-dependent

vasodilation without causing tolerance and significantly improved

survival in rat models of hypertension

Wang-Rosenke

et al., 2011 [45]

BAY 41-8543 Unilateral ureteral obstruction

with obstruction relief

Unilateral ureteral obstruction

with obstruction relief + BAY

41-8543

Administration of BAY 41-8543 to untreated obstructed rats

showing mildly increased systolic blood pressure, marked tubular

atrophy and apoptosis, tubulointerstitial macrophage infiltration,

and fibrosis significantly increased plasma cGMP. This was

paralleled by significant decreases in systolic blood pressure, renal

tubular diameter, apoptosis, and renal macrophage infiltration.

sGC stimulation decreased tubulointerstitial fibrosis, as shown by

tubulointerstitial volume, matrix protein accumulation, a-smooth

muscle actin expression, collagen IV deposition, and TGFb1 mRNA

expression

Current Opinion in Pharmacology 2015, 21:95–104 www.sciencedirect.com
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Table 1 (Continued )

Citation Compound Treatment groups Key findings

Wang-Rosenke

et al., 2012 [43]

BAY 41-8543 Sham surgery control

Unilateral ureteral obstruction

with obstruction relief

Unilateral ureteral obstruction

with obstruction relief + BAY

41-8543

Administration of BAY 41-8543 to rats with unilateral ureteral

obstruction increased cGMP production and led to significant

amelioration of renal matrix protein expansion, macrophage

infiltration, tubular apoptosis, and atrophy

Costell et al.,

2012 [29]

BAY 60-4552 Normal diet

HSFD

HSFD + GSK2181236A low

(0.1 mg/kg/day)

HSFD + GSK2181236A high

(1.0 mg/kg/day)

HSFD + BAY 60-4552 low

(0.3 mg/kg/day)

HSFD + BAY 60-4552 high

(3.0 mg/kg/day)

In spontaneously hypertensive stroke-prone rats, a low dose of

BAY 60-4552 decreased urine output and improved survival. A high

dose also reduced urine output, and in addition reduced

microalbuminuria and attenuated the increase in mean arterial

pressure

Sharkovska et al.,

2010 [38�]

Riociguat High renin study

L-NAME only

L-NAME + riociguat low

(3 mg/kg/day)

L-NAME + riociguat high

(10 mg/kg/day)

Low renin study

Sham surgery control

5/6 nephrectomy

5/6 nephrectomy + riociguat

In two independent rat models of hypertension, riociguat reduced

mortality and normalized blood pressure. Renal target organ

damage was reduced in one model, as demonstrated by

reductions in plasma creatinine and urea and less fibrosis. In the 5/

6 nephrectomy model, creatinine clearance was improved and

interstitial fibrosis reduced

Geschka et al.,

2011 [9]

Riociguat Vehicle control

Riociguat low (3 mg/kg/day)

Riociguat high (10 mg/kg/day)

Riociguat-treated salt-sensitive rats fed a high-salt diet had

improved survival and attenuated systemic hypertension and

systolic dysfunction. Fibrotic tissue remodeling and degeneration

were also enhanced in the heart and kidneys

Ott et al., 2012 [35] Riociguat Vehicle control

Telmisartan

Riociguat

Telmisartan + riociguat

Significant reductions in blood pressure and albuminuria were

induced with combined riociguat and telmisartan treatment in

diabetic eNOS knockout mice as compared with diabetic controls

JP Stasch et al.,

unpublished

Vericiguat Vehicle control

Vericiguat

Vericiguat reduced mortality, improved systemic hypertension and

tubulopathy, glomerulopathy, and vasculopathy in salt-sensitive

rats fed a high-salt diet. In a low-NO/high-renin rat model of

hypertension, vericiguat reduced right and left heart hypertrophy

and mortality, and showed a positive effect on grading of kidney

changes, and the incidence and severity of myocardial lesions

Ang, angiotensin; cGMP, cyclic guanosine monophosphate; eNOS, endothelial nitric oxide synthase; HSFD, high-salt/high-fat diet; L-NAME, L-NG-

nitroarginine methyl ester; mRNA, messenger ribonucleic acid; NO, nitric oxide; PAI-1, plasminogen activator inhibitor-1; PBS, phosphate buffered

saline; PDE, phosphodiesterase; sGC, soluble guanylate cyclase; TGFb, transforming growth factor beta.
stroke-prone, spontaneously hypertensive rats, BAY 60-

4552 improved survival (Figure 2c), attenuated the de-

velopment of hypertrophy, reduced urine output and

microalbuminuria, and attenuated increases in blood

pressure compared with untreated controls [29].

Riociguat

Riociguat (BAY 63-2521) is the most advanced of the sGC

stimulators. It has been approved for use in pulmonary

arterial hypertension and chronic thromboembolic pul-

monary hypertension [46,47], and is in clinical develop-

ment for a number of other indications [48]. Riociguat is a

heme-dependent sGC stimulator closely related to BAY

41-2272 and BAY 41-8543 [10]. In two independent rat

models of hypertension, riociguat had a potent protective

effect against cardiac and renal damage. In the first
www.sciencedirect.com 
model (low-NO/high-renin), riociguat induced a marked

dose-dependent decrease in renal interstitial fibrosis and

normalized blood pressure versus control rats [38�]. In a

subtotal nephrectomy rat model, riociguat-treated rats

exhibited significantly lower blood pressure compared

with untreated sham-operated animals, and had a signifi-

cantly higher creatinine clearance compared with untreat-

ed rats [38�]. Furthermore, in a model of chronic volume

and pressure overload using salt-sensitive Dahl rats fed a

high-salt diet, riociguat significantly reduced glomerulo-

sclerosis and interstitial and perivascular fibrosis, and

significantly decreased mortality, compared with vehi-

cle-treated rats [9]. In addition, riociguat in combination

with telmisartan has been studied in a diabetic eNOS

knockout mouse model, where animals were previously

treated with an angiotensin II receptor blocker. Significant
Current Opinion in Pharmacology 2015, 21:95–104
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Figure 2
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(a) Example of effects of soluble guanylate cyclase stimulators on systolic blood pressure (BAY 41-2272) (reproduced from [36]). Effects of the

pharmacologic soluble guanylate cyclase stimulator BAY 41-2272 (10 mg/kg/day) in rats with induced anti-thy1 glomerulonephritis (GN). Blood pressure

was measured in conscious animals using a tail cuff method. *P < 0.01 versus GN. (b) Example of effect on fibrosis (BAY 41-2272) (reproduced from

[44]). Area of fibrosis in rats treated with control, treated chronically with chronic N-nitro-L-arginine methyl ester (L-NAME; 20 mg/rat/day for eight weeks)

alone or in association with BAY 41-2272 (10 mg/kg/day) or treated with BAY 41-2272 alone. Results are expressed as mean � SEM.

*P < 0.01 compared with control group, **P < 0.01 compared with L-NAME group. (c) Example of effect on survival (BAY 60-4552) (reproduced from

[29]). Survival following chronic administration of BAY 60-4552 (0.3 or 3.0 mg/kg/day) or GSK2181236A (0.1 or 1.0 mg/kg/day) in spontaneously

hypertensive prone Sprague rats on a high-salt/high-fat diet (HFSD) versus rats on HFSD alone or no diet (ND). Results are expressed as mean � SEM.

*P < 0.001 versus HFSD. **P < 0.01 versus HFSD. ***P < 0.05 versus HFSD. (d) Example of effect on albumin reduction (riociguat) (reproduced from

[35]). Percentage reduction in urinary albumin excretion per day in diabetic, endothelial nitric oxide synthase knockout mice treated with riociguat (3 mg/

kg/day), telmisartan (1 mg/kg/day), and both (3 mg/kg/day and 1 mg/kg/day) compared with diabetic controls. Results are expressed as mean � SEM.

*P < 0.05 compared with diabetic vehicle. (e) Example of effect on creatinine clearance upon 5/6 nephrectomy (cinaciguat) (reproduced from [32]).

Change in creatinine clearance in male Wistar rats who were allocated to three groups: 5/6 nephrectomy, 5/6 nephrectomy treated with cinaciguat

(�50 mg/day), and sham operation. Results are expressed as mean � SD. *P < 0.001 versus sham operation. **P < 0.05 versus 5/6 nephrectomized rats.

Current Opinion in Pharmacology 2015, 21:95–104 www.sciencedirect.com
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reductions in urinary albumin excretion, an early sign of

diabetic nephropathy, were observed compared with dia-

betic controls (Figure 2d) [35].

The combination of promising preclinical data and fur-

ther positive clinical trials have led to the approval of

riociguat (Adempas1), making it the first of the sGC
Table 2

Summary of studies investigating sGC activators in experimental

53,54�,55,56]

Citation Compound Treatment groups 

Kalk et al.,

2006 [32]

Cinaciguat Sham surgery control

5/6 nephrectomy

5/6 nephrectomy + cinaciguat

Fang et al.,

2012 [53]

Cinaciguat Untreated control

Cinaciguat

Chen et al.,

2014 [55]

Cinaciguat Vehicle

ACE-i + CCB

ACE-i + cinaciguat

Hoffmann et al.,

2014 [27]

Cinaciguat High-salt diet only

High-salt diet + cinaciguat

Dautzenberg et al.,

2014 [22]

Cinaciguat Vehicle control

Cinaciguat

Benz et al.,

2007 [54�]

Ataciguat Sham surgery control

Subtotal nephrectomy

Subtotal nephrectomy

+ ataciguat

Subtotal nephrectomy + ACE-

Schafer et al.,

2010 [37]

Ataciguat Sham surgery control

Left coronary arterial

ligation + placebo

Left coronary arterial

ligation + ataciguat

Harrison et al.,

2014 [56]

BI 703704 Vehicle

BI 703704 at doses

of 0.3, 1, 3,

and 10 mg/kg/day

Costell et al.,

2012 [29]

GSK2181236A Vehicle

GSK2181236A 0.1 mg/kg

GSK2181236A 1.0 mg/kg

ACE-i, angiotensin-converting-enzyme inhibitor; CCB, calcium channel blo

pressure; mRNA, messenger ribonucleic acid; NO, nitric oxide; sGC, soluble

ZSF1 obese.

www.sciencedirect.com 
stimulators to be approved for clinical use in any indica-

tion [48].

Vericiguat

Vericiguat (BAY 1021189), a more recent sGC stimulator,

improved survival, systemic hypertension and tubulopa-

thy, glomerulopathy, and vasculopathy in salt-sensitive
 models of kidney and cardiovascular disease [22,27,29,32,37,

Key findings

Cinaciguat treatment of 5/6 nephrectomized rats reduced blood

pressure, left ventricular weight, cardiac arterial wall thickness, and

cardiac myocyte diameter compared with control rats. Creatinine

clearance, glomerulosclerosis, and fibrosis were also improved

with cinaciguat treatment

In type-1 diabetic rats treated with cinaciguat the urinary

protein:creatinine ratio was attenuated, and there was reduced

glomerular sclerosis and tubular damage. Cinaciguat treatment

also significantly decreased the elevated TGFb mRNA levels seen

in the diabetic rats and the desmin expression of podocytes

In a rat model of type-2 diabetic nephropathy (ZSF1),

administration of cinaciguat in combination with an ACE-i resulted

in a significant reduction in the incidence of glomerulosclerosis and

tubulointerstitial lesions compared with vehicle, with benefits

sustained beyond treatment discontinuation. Such an effect was

not observed in the ACE-i + CCB group, demonstrating its

dissociation from MAP lowering.

Long-term cinaciguat treatment of salt-sensitive rats on a high-salt

diet resulted in significantly improved survival and reductions in

blood pressure and heart rate compared with control animals. Urea

and protein levels in urine and uric acid levels in plasma were also

reduced with cinaciguat treatment. Furthermore, biomarkers of

inflammation and fibrosis in the kidney and left ventricle were also

lower with treatment. Likewise, cardiac function and fibrotic

remodeling were improved

Under NO-deficient conditions, cinaciguat treatment of intact

anaesthetized rats at least partly stabilized the resultant

hypertension and renal vasoconstriction, and re-established the

modulation of renal blood flow autoregulation

i

In subtotal nephrectomized rats, ataciguat treatment ameliorated

the increases in urinary albumin and glomerular cell number

induced by the surgery and observed in the untreated rats. In

addition, relative kidney and left ventricular weight were reduced

In a model of chronic heart failure, ataciguat-treated rats

demonstrated improved vasomotor function and reduced platelet

activation

In a rat model of type-2 diabetic nephropathy (ZSF1) BI

703704 treatment resulted in significant reductions in proteinuria

and the incidence of glomerulosclerosis and interstitial lesions

compared with vehicle. Beneficial effects were observed at doses

that did not significantly alter MAP and HR

Models used were: Sprague Dawley rats during coronary artery

ischemia/reperfusion; and, spontaneously hypertensive stroke

prone rats on HSFD

Low dose GSK2181236A attenuated the development of cardiac

hypertrophy, while the high dose also improved survival.

Vasodilatory responses to GSK2181236A were unaltered by HSFD

cker; HR, heart rate; HSFD, high-salt/high-fat diet; MAP, mean arterial

 guanylate cyclase; TGFb, transforming growth factor beta; ZSF1, male

Current Opinion in Pharmacology 2015, 21:95–104
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Dahl rats fed a high-salt diet (JP Stasch et al., unpub-

lished). In a low-NO/high-renin rat model of hyperten-

sion, vericiguat reduced right and left ventricle

hypertrophy and mortality, and showed a positive effect

on grading of kidney changes, and the incidence and

severity of myocardial lesions [49–53,54�]. The potential-

ly beneficial effects of vericiguat on cardiac function are

supported by the findings from recently completed phase

I studies, which found that this agent leads to improve-

ment in important cardiologic parameters, including:

cardiac output/index, systemic vascular resistance, and

stroke volume [49]. Clinical phase IIb trials are now

underway in patients with heart failure who have reduced

or preserved ejection fraction (SOCRATES,

NCT01951625, and NCT01951638) [52].

sGC activators
Effect of sGC activators in experimental kidney and

cardiovascular disease

The effects of the sGC activators cinaciguat, ataciguat, BI

703704, and GSK2181236A have been investigated in

experimental models of kidney and cardiovascular dis-

ease (Table 2).

Cinaciguat (BAY 58-2667)

Several studies have demonstrated that cinaciguat has a

protective renal effect. In rats with subtotal nephrectomy,

chronic cinaciguat treatment lowered blood pressure,

preserved renal function, improved plasma levels of na-

triuretic peptides, reduced left ventricular hypertrophy

and cardiac arterial wall thickness, and slowed renal

disease progression compared with untreated controls

(Figure 2e) [32]. Cinaciguat was further shown to inhibit

podocyte damage, tubular damage, and glomerulosclero-

sis in a type-1 diabetic rat model of nephropathy [53]. In a

rat model of type-2 diabetic nephropathy, administration

of cinaciguat, together with the angiotensin-converting-

enzyme inhibitor enalapril, resulted in significant and

sustained reductions in glomerulosclerosis and tubuloin-

terstitial lesions, compared with controls [55]. Under

NO-deficient conditions, cinaciguat treatment of intact

anesthetized rats at least partly stabilized the resultant

hypertension and renal vasoconstriction, and re-estab-

lished the modulation of renal blood flow autoregulation

[22]. In a salt-sensitive rat hypertension model, long-term

cinaciguat was associated with markedly improved

survival, a lower increase in blood pressure, improve-

ments in cardiac and renal function, and anti-fibrotic

and anti-inflammatory effects compared with untreated

controls [27].

Ataciguat (HMR1766)

A new structural class of sGC activators includes the novel

anthranilic acid derivative, ataciguat [37]. In a rat model

of congestive heart failure, chronic treatment with ataci-

guat improved vascular function and sensitivity to

NO, and reduced platelet activation [37]. In a rat model
Current Opinion in Pharmacology 2015, 21:95–104 
of non-inflammatory renal failure, ataciguat showed ben-

eficial blood pressure-independent renoprotective effects

on kidney structure and urinary albumin excretion com-

pared with untreated controls [54�].

BI 703704

Recently presented but limited data showed BI 703704 to

have a significant renal protective effect in a rat model of

diabetic nephropathy when compared with untreated

controls, with reductions in proteinuria and the incidence

of glomerulosclerosis observed at doses that did not

significantly alter blood pressure or heart rate [56].

GSK2181236A

Limited published data suggest that GSK2181236A may

provide partial benefit against hypertension-induced end-

organ damage in rat models [29].

Taken together, these results suggest that sGC activators

also have the potential to provide pressure-independent

renal and cardiac protection.

Discussion and conclusion
In in vivo experimental models of kidney and cardiovas-

cular disease, the sGC stimulators BAY 41-2272, BAY 41-

8543, BAY 60-4552, riociguat, and vericiguat have dem-

onstrated protection against renal target organ damage in

experimental CKD models (Table 1). It is of note that

this class of new drugs worked in the CKD models nearly

independent of the underlying cause of CKD. We tested

models of reduction of nephron numbers, malignant

hypertension, immunological induced glomerulonephri-

tis, and finally diabetic kidney disease were tested. Stim-

ulation of sGC and subsequent cGMP production

represents an important common pathway in the mainte-

nance of renal function independent of the initial under-

lying cause of CKD, and therapeutic use of these sGC

stimulators has been shown to produce a broad range of

antifibrotic, antiproliferative, and antiproteinuric effects.

It is of note that this new class of drugs can also improve

blood pressure control at higher doses. This is of major

clinical impact, since most patients with CKD suffer from

hypertension which is an independent progression factor

of CKD.

The results indicate that sGC stimulators may be capable

of restoring physiological signaling in disorders where

cGMP signaling has been disrupted. The sGC system

has an important physiological role in both vascular and

non-vascular tissues so the beneficial effects may extend

to restoring the endothelium-mediated regulation of

myocardial and renal function [51]. In addition, in in
vivo models mirroring the pathophysiology of different

subtypes of CKD and cardio-renal syndrome, the sGC

activators cinaciguat, ataciguat, BI 703704, and

GSK2181236A were capable of protecting and improving

physiological renal function (Table 2).
www.sciencedirect.com
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In conclusion, preclinical data suggest that both sGC

stimulators and sGC activators may offer therapeutic

benefits for patients with CKD, on top of guideline-based

renin–angiotensin system blockade. These novel drugs

have the potential to address an unmet medical need in

CKD, by providing an alternative for those patients in

whom currently available guideline-recommended treat-

ments alone are ineffective, and who are consequently at

risk for rapid progression to ESRD. Clinical trials are

required to confirm and extend these preclinical findings

to humans.
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