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1. INTRODUCTION 

An interesting question in the study of retarded differential equations (R.D.E. 
for short), whose answer is of great practical importance, is the following: When 
does the presence of a delay make the solutions of an R.D.E. qualitatively 
different from those of the corresponding equation without delay ? 

Here we are concerned with the following more specific question: When does 
the introduction of a delay change the oscillatory character of an ordinary 
differential equation? This question is extremely difficult. Since the delays are 
very crucial in this case, one has to invent techniques sensitive to the presence 
of delays. For some contributions in this direction the reader is referred to 
Kamenskii [3], Ladas and Lakshmikantham [4], Wong [9], Gustafson [2], 
Ladas, Ladde, and Papadakis [5], Papadakis [7], Ladas, Lakshmikantham, and 
Papadakis [6], and Sficas and Staikos [8]. 

In this paper we obtain sufficient conditions under which the R.D.E. 

yyq -p(t)y(t - T) = 0, 71 3 1, (1) 

where p E C[[O, co), Ii+] and r > 0, has oscillatory solutions. Our results 
generalize the results in [7] and are in the spirit of the results in [6]. Although 
the hypotheses under which we prove oscillations here are, in general, incompa- 
tible with those in [6] when p(t) is constant, our hypotheses are weaker than 
those in [6]. 

For simplicity, the delay 7 is assumed to be constant. As is customary, a 
solution is said to be oscillatory if it has arbitrarily large zeros. 

2. 

For the sake of clarity we first develop a series of lemmas about solutions of 
the R.D.E. 

y’“‘(t) + (-l)““p(t)y(t - T) = 0, n 2 1, 

where p(t) E C[[O, CO), I?+], p(t) f 0, and 7 is a positive constant. 

(2) 
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LEMMA 1. If y(t) is a solution of (2), then for all t, s E [0, c9) 

Proof. Applying Taylor’s formula with remainder (see [I, p. 1571) to the 
function y(s), and using (2), we get 

n-1 Y’w(t) 
Y(S) = c - 

f<=()k! ~ 
(s - t)” + (n A l>! : (s - ~)~-ly(~)(u) du 

I 

= z; yT (s - ty + & f (s - u)n-l (- 1)” p(u) y(u - T) du 

= g; ‘q (s - t)k + & [St (u - s)+l f(u) y(u - T) du. 

LEMMA 2. If y(t) is a nonnegative and nonincreasing solution of (2), then for 
t - T < s < t the following inequality holds: 

Y(S) [ 1 - &p .5” (u - F-l p(u) du] 2 F; ‘9 (s - t)“. (4) 

Proof. If s < u < t, then s - T < u - 7 < t - 7 < s and therefore 
y(u - T) > y(s). Using this inequality in (3), inequality (4) follows immediately. 

LEMMA 3. If y(t) is a bounded and nonoscillatory solution of (2), then for 
su#iciently large t 

y(k)(t)y(n-+1’(t) < 0, O<R<?Z-1. (5) 

Proof. Let y(t) be a bounded and nonoscillatory solution of (2). Without 
loss of generality assume that y(t) > 0 for t 3 t, . Then, from (2), it follows that 

(-l)“y’“‘(t) 2 0, t 3 t,, + 7. (6) 

Using (6) and the fact that iff @j(t) f tk+l)(t) > 0 (butf is not identically constant) 
for k > 1 then lim,,, if(t)] = + co, we conclude, in view of the boundedness 
of y(t), that there exists a t, > t, such that 

(-l)“y’“‘(t) 3 0, t > t, for K = 0, l,..., n. 

Therefore, for t > t, and 0 < k < n - I, 

y(k)(t)y(k+l)(t) = -(-l)“y’“‘(t) . (-l)‘i’l (f) < 0 

and the proof is complete. 
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The following oscillatory result about Eq. (2) . IS an immediate consequence of 
Lemma 2 (set s = t - 7 in (4)) and Lemma 3. 

COROLLARY 1. Assume that 

(u - t + T)“-‘p(u) du > (n - l)!. (7) 

Then every bounded solution of Eq. (2) is oscillatory. 

LEMMA 4. Ify(t) is a nonnegative and nonincreasing solution of (2), then for 
t - T < s < t the following inequality holds: 

(-1)n y(fi-l)(t + 7) 

>/ (-1),-1,(+1’(t) 
(n - l)! 

x [ll, [(t - s)n-lp(s + T) - (-1)” (t - s - T)“?(S)] ds - (n - l)!] 

+ y (-l)“y(“‘(t) t 

k=O 
k! s t-+ U - S)‘P(S + 4 - C-1)” (t - s - T)“P(s)] ds 

+ t-1)” f7y(s + T)P(S) ds. (8) 

Proof. Multiplying both side of (4) by p(s + 7) and using (2) we obtain 

(- 1 In Y’“)(s + 7) [ 1 - &-jy Lt (u - S)*-’ P(u) d”] 

2 k1 Y’“‘(t) - (s - t)” p(s + T). 
J&o k! 

(9) 

Set 

F(s) = 1 - & 8t (u - s)‘+l p(u) du. I 

Then, 

F’k-1’(s) = (I-‘;! 
s 
8t (s - u)“-~ p(u) du, k = 2, 3,..., n (10) 

and 

W’(s) = (- l>,-1 p(s). (11) 
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Integration by parts n times yields 

1 
t 

yys - T) F(s) ds 
*t--r 

-;c C-1) k Y(~-~)(s + T) P-l)(s) I:-; f (- 1)‘” 11, y(s i T) P”(s) ds. 

(12) 
Kow inequality (8) follows by integrating both sides of (9) with respect to s 
from t - T to t and by using (12), (IO), and (11). 

3. OSCILLATIONS OF EQ. (1) 

THEOREM 1. Assume that for every t, > 0 there exists t > t, such that the 
following two hypotheses are satisfied. 

.,;, [(t - sp-lp(s + 7) - (t - s - 7)2%-l p(s)] ds 3 (2n - I)!. 
F v-h) 

F t [(t-s)kp(s+T)-(t-s-+p(s)]ds>O for k = 0, 1, 2 ,..., 2n - 2. 
* t-r 

WJ 
Then every bounded solution of Eq. (1) is oscillatory. 

Proof. Let y(t) be a bounded nonoscillatory solution of (1). Without loss of 
generality we assume that y(t) > 0 for t > to . Then by Lemma 3 there is a 
t, > to such that 

(-l)“y’“‘(t) 3 0 for t > t, and k = 1, 2 ,..., 2n. 

Now replacing n by 2n in Lemma 4, we obtain 

3 ,m-l)(t + T) 

(2n-l)(t) 

'-ijY?n- l)! t-, 
[I” [(t - s)2n-lp(s + T) - (t - s - ~)~“-lp(s)] ds - (2n - I)!] 

+ 22, (-l)“y’“‘(t) t 
k! I 

[(t - s)~ p(s + T) - (t - s - T)” p(s)] ds 
k=O t--s 

+ j-1, Y(S f 4 ~(4 ds. (13) 

In view of hypotheses (H,) and (H,) there exists a t > t, such that the right-hand 
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side of (13) is positive while its left-hand side is nonpositive. This contradiction 
completes the proof. 

Remark 1. When Eq. (1) is of second order andp(t) is a nonnegative T-perio- 
dic function of t (in particular, a positive constant) or a positive and increasing 
function of t, then hypothesis (H,) of Theorem 1 is automatically satisfied and 
hypothesis (H,) is weaker than [S, (3.7)]. 

Remark 2. If?(t) is a positive constant p, then hypothesis (HJ of Theorem 1 
is automatically satisfied and (H,) becomes 

2przn 2 (2n)! 

which is weaker than PT sn 2 (2n)!, which is the corresponding hypothesis ,of 
[6, Theorem 2.11. 

So far we have proved that under hypotheses (H,) and (H,) all bounded solu- 
tions of Eq. (1) are oscillatory. This result enables us to show now that Eq. (1) 
does indeed have oscillatory solutions. We need some notation first. It is well 
known that the R.D.E. (1) together with the initial conditions 

and 

r(t) = b(t), 0 < t f 7; y'"'(T) = y< ) i = 1, 2 )...) 2% - 2 (14) 

y’-‘(T) = A (15) 

where 4 E C[[O, T], Ii], and yi , A E R, i = I,2 ,..., 2n - 2, has a unique solution 
on [T, m). The initial function 4 and the 2n - 2 constants yr , ya ,..., ya,+s are 
assumed to be given but fixed for the remainder of this section. However, we 
allow A to vary in R. For each A E R, the unique solution of (I), (14), and (15) 
is denoted by y(t, A). 

Let us introduce the following subsets of the real line R: 

K-” = {A E R: hi y(t, A) = -co} 

K+” = {A E R: fiz y(t, A) = + a} 

K” = {A E R: hi y(t, A) = 01 

Kw = {A E R: y(t, A) oscillatesf. 

Then, under the additional hypothesis 

s 
* p(t) dt = +a, 

0 
(16) 
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we have (see [6]) 

R=K-“uK+“uKOuK- 

and there exist real numbers a and b with a < b such that 

K-” = (-co, a), K-” = (b, +a). 

Thus, clearly, 

KOuK-# o. 

But under the hypotheses of Theorem 1, K” C K-, thus K- # D and in fact 
for every A E [u, b] the solution y(t, A) of (l), (14), and (15) is oscillatory. In 
summary, we have proved the following result: 

THEOREM 2. Assume that (H,), (H,), and (16) are satisfied. Then for every 
given initial function q5 E C[[O, T], R] and any given set of n - 2 real constants 
y1 , yz ,..., yzn-* there exists A E R such that y(t, A) is oscillatory. 

We close this section by stating two interesting open problems. 

OPEN PROBLEM 1. Under what conditions on p@(t) > 0), T, 4, and 
Yl ! Yz >..., y2n-2 is the set K” nonempty ? 

If such conditions could be found and if (16) holds then the system (1) and 
(14) would have absolutely no oscillatory solution for any choice of A E R, i.e., 
the delay T in this case would be literally “harmless.” 

OPEN PROBLEM 2. Under what conditions on p (p(t) > 0), -r, 45, and 
y1 , yz ,..., y2n--2 does the set K” v K* have more than one element ? 

If such conditions could be found and if (16) holds then the system (1) and 
(14) would have an oscillatory solution for every A E [a, b] where a < b, i.e., 
the delay in this case would be literally “harmful.” 
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