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Let k be an infinite field. The notion of retract k-rationality was
introduced by Saltman in the study of Noether’s problem and other
rationality problems. We will investigate the retract rationality
of a field in this paper. Theorem 1: Let k ⊂ K ⊂ L be fields.
If K is retract k-rational and L is retract K -rational, then L is
retract k-rational. Theorem 2: For any finite group G containing
an abelian normal subgroup H such that G/H is a cyclic group,
for any complex representation G → GL(V ), the fixed field C(V )G

is retract C-rational. Theorem 3: If G is a finite group, then all
the Sylow subgroups of G are cyclic if and only if Cα(M)G is
retract C-rational for all G-lattices M , for all short exact sequences
α : 0 → C

× → Mα → M → 0. Because the unramified Brauer
group of a retract C-rational field is trivial, Theorems 2 and 3
generalize previous results of Bogomolov and Barge respectively
(see Theorems 5.9 and 6.1).

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let k be a field, and L be a finitely generated field extension of k. L is called k-rational (or rational
over k) if L is purely transcendental over k, i.e. L is isomorphic to some rational function field over k.
L is called stably k-rational if L(y1, . . . , ym) is k-rational for some y1, . . . , ym which are algebraically
independent over L. L is called k-unirational if L is k-isomorphic to a subfield of some k-rational field
extension of k. It is easy to see that “k-rational” ⇒ “stably k-rational” ⇒ “k-unirational”.

Let G be a finite group acting on the rational function field k(xg : g ∈ G) by k-automorphisms
defined by h · xg = xhg for any g,h ∈ G . Denote by k(G) the fixed subfield, i.e. k(G) = k(xg : g ∈ G)G .
Noether’s problem asks, under what situation, the field k(G) is k-rational.
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Note that, if k is an infinite field and k(G) is k-rational (resp. stably k-rational), then there exists a
generic G-Galois extension over k [Sa2, Theorem 5.1]. On the other hand, when Hilbert’s irreducibility
theorem is valid for k (e.g. if k is any algebraic number field), it is not difficult to see that the existence
of a generic G-Galois extension over k implies that there is a Galois field extension K over k such that
Gal(K/k) � G , i.e. the inverse Galois problem for the pair (k, G) is solvable (see, for example, [Sw1,
Theorem 3.3]). In the study of generic Galois extensions and generic division algebras, Saltman was
led to the notion of retract k-rationality [Sa1,Sa4], which is the main subject of this paper.

Definition 1.1. (See [Sa1, p. 130], [Sa4, Definition 3.1].) Let k be an infinite field and L be a field
containing k. L is called retract k-rational, if there are some affine domain A over k and k-algebra
morphisms ϕ : A → k[X1, . . . , Xn][1/ f ], ψ : k[X1, . . . , Xn][1/ f ] where k[X1, . . . , Xn] is a polynomial
ring over k, f ∈ k[X1, . . . , Xn]\{0}, satisfying that

(i) L is the quotient field of A, and
(ii) ψ ◦ ϕ = 1A , the identity map on A.

In the above definition of retract k-rationality, it is required that k is an infinite field because this
assumption guarantees the existence of sufficiently many k-specializations when we apply the notion
of retract rationality to other concepts or problems. Here is a geometric picture of retract rationality.
Suppose that L is retract k-rational over k. Then there are quasi-projective varieties V and W defined
over k, a dominating k-morphism p : V → W satisfying that k(W ) = L, k(V ) is k-rational and p has a
section, i.e. a k-morphism s : W → V with ps = 1W .

Another related notion is discussed by Colliot-Thélène and Sansuc [CTS2]. A field L over k is called
a direct factor of a k-rational field if there is a field L′ over k such that the quotient field of L ⊗k L′
is k-rational (in particular, the k-algebra L ⊗k L′ is an integral domain). It is known that, if L is the
function field of some algebraic torus T over k, then L is retract k-rational if and only if it is a direct
factor of some k-rational field [CTS2, Proposition 7.4].

Return to Noether’s problem.

Theorem 1.2. (See [Sa2,Sa4,De].) Let k be an infinite field and G be a finite group. The following statements are
equivalent:

(i) k(G) is retract k-rational.
(ii) There is a generic G-Galois extension over k.

(iii) There exists a generic G-polynomial over k.

Proof. (i) ⇔ (ii) by [Sa2, Theorem 5.3], [Sa4, Theorem 3.12]. The equivalence of (i), (ii), (iii) was proved
in [De,DM]. �

It is not difficult to verify that, if k is an infinite field, then “k-rational” ⇒ “stably k-rational” ⇒
“retract k-rational” ⇒ “k-unirational”. Thus, if k(G) is not retract k-rational, then k(G) is not stably
k-rational (and is not k-rational, in particular). This is the strategy for showing that C(G) is not C-
rational for some group G of order p9 by Saltman in [Sa3] (where p is any prime number). On the
other hand, if k(G) is k-rational, then k(G) is retract k-rational.

We remark that the direction of the implication “rational” ⇒ “stably rational” ⇒ “retract rational”
⇒ “k-unirational” cannot be reversed. There is a field extension L of C such that L is stably C-
rational, but not C-rational [BCTSSD]. If C p denotes the cyclic group of order p, then Q(C p) is retract
Q-rational, but not stably Q-rational when p = 47, 113 or 233, etc. (see Theorem 3.7 and the remark
after its proof). Q(C8) is Q-unirational, but not retract Q-rational (see Theorem 2.9); for finitely gen-
erated field extensions over C which are C-unirational, but not retract C-rational, see [Sa3,Bo,CHKK].
On the other hand, we don’t know whether there is a field extension L of C such that L is retract
C-rational, but is not stably C-rational. The reader is referred to the papers [MT,CTS3] for surveys of
the rationality problems, and to Swan’s paper [Sw1] for Noether’s problem.
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In this paper, we will prove a transitivity theorem for retract rationality in Theorem 4.2. Then
we will show that C(V )G is retract C-rational where G → GL(V ) is any complex representation and
G is a finite group containing an abelian normal subgroup H such that G/H is a cyclic group (see
Theorem 5.10). Because of Theorem 3.2, Theorem 5.10 may be regarded as a generalization of a result
of Bogomolov (see Theorem 5.9). Finally we will show that, if G is a finite group, then all the Sylow
subgroups of G are cyclic if and only if Cα(M)G is retract C-rational for all G-lattices M , for all
short exact sequences α : 0 → C× → Mα → M → 0. This result generalizes a theorem of Barge (see
Theorem 6.1).

An application of the transitivity theorem is Theorem 5.4, which asserts that k(G) is retract k-
rational is equivalent to the retract k-rationality of k(M)G where M is any faithful G-lattice with [M]fl

invertible. We remark that Theorems 2.9 and 3.7, due to Voskresenskii and Saltman respectively, are
of interest themselves. The proofs of these two theorems are included for the convenience of the
reader.

We remark that there is a notion, called the property Rat(G/k) by Serre [GMS, p. 86], which is
slightly stronger than the existence of a generic G-Galois extension over k. We define it as follows.

Definition 1.3. (See [GMS, pp. 11, 86].) Let k be an infinite field and G be a finite group. We say that
the property Rat(G/k) holds for the pair (G,k), if there exists a versal G-torsor over L where L is
some k-rational field extension.

In order to explain this property, we define first the notion of a G-Galois covering.

Definition 1.4. (See [Mi1, p. 43], [Mi2, p. 41], [Sw1, Proposition 2.1].) Let G be a finite group. Let
R ⊂ S be commutative rings such that the group G acts on S by R-automorphisms of S with R = SG

where SG is the ring of invariants of S under the action of G . We say that S is a Galois covering
of R with group G (for short, S is a G-Galois covering of R), if the morphism h : S ⊗R S → ∏

σ∈G S
defined below is an isomorphism where we define h(s1 ⊗ s2) = (. . . ,hσ (s1 ⊗ s2), . . .)σ ∈ ∏

σ∈G S with
hσ (s1 ⊗ s2) = s1 ·σ(s2) (i.e. the σ -th coordinate of h(s1 ⊗ s2) is s1 ·σ(s2)). We also say that Spec(S) →
Spec(R) is a G-Galois covering if S is a G-Galois covering of R .

The above definition can be globalized. Namely, when V , W are schemes or algebraic varieties
defined over a field k and V → W is a faithfully flat morphism, we can define by the similar way the
notion that V → W is a G-Galois covering.

A G-Galois covering V → W is nothing but a G-torsor of W , i.e. a principal homogeneous space
over W under G ([Mi2, Example 11.3, p. 76], [Mi1, pp. 120 and 43–44]). If R ⊂ S are commutative
rings, the notion that S is a G-Galois covering of R defined here is equivalent to the notion that S is a
Galois extension of R with group G in the sense of Galois extensions of commutative rings [Sw1, Prop-
osition 2.1]. Since G is a finite group, the assumption of faithful flatness in [Mi1, p. 43], [Mi2, p. 43]
guarantees that the morphism is affine and finite (by the faithfully flat descent [Mi1, p. 20]); when
both V and W are affine schemes, the assumption of faithful flatness for V → W is redundant by
[Sw1, Corollary 2.2].

Now we may rephrase Serre’s property Rat(G/k) as follows.

Definition 1.5. Let k be an infinite field and G be a finite group. We say that the property Rat(G/k)

holds for the pair (G,k), if there exists a G-Galois covering V → W where W is a smooth k-
rational variety defined over k satisfying the following condition: For any field k′ containing k, any
G-Galois covering A of k′ , any nonempty open subset U ⊂ W , there exists a point x ∈ U (k′) ⊂ W such
that Spec(A) � V ×W Spec(k′) where the fibre product V ×W Spec(k′) is defined via the morphism
Spec(k′) → {x} ⊂ W .

Here is an affine version. The property Rat(G/k) holds, if there is a G-Galois covering S of
R satisfying that (i) R and S are affine k-algebra, (ii) R is a localized polynomial ring, i.e. R =
k[X1, . . . , Xn][1/ f ] for some non-zero polynomial f , (iii) for any field k′ containing k, any G-Galois
covering A of k′ , any r ∈ R\{0}, there is a k-morphism φ : R → k′ such that φ(r) �= 0 and A � S ⊗φ k′ .
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We claim that, if k is an infinite field and G is a finite group, then “k(G) is stably k-rational” ⇒
“the property Rat(G/k) holds” ⇒ “there is a generic G-Galois extension over k”.

For the implication “k(G) is stably k-rational” ⇒ “the property Rat(G/k) holds”, the same proof of
[Sw1, Theorem 4.2] works as well in this situation; in particular, we rely on Kuyk’s Lemma, i.e. [Sw1,
Lemma 4.5].

As to the implication “the property Rat(G/k) holds” ⇒ “there is a generic G-Galois extension
over k”, suppose that V → W is the G-Galois covering given in Definition 1.5. Choose an affine open
subset W0 of W such that W0 � Spec(R) for some localized polynomial ring R (use Lemma 4.1, if
necessary). Consider the G-Galois covering V ×W W0 → W0. The fibre product V ×W W0 is an affine
variety because V → W is a G-torsor and G is a finite constant group scheme. Write V ×W W0 =
Spec(S). Then the pair (R, S) satisfies the conditions for a generic G-Galois extension over k (see [Sa2,
Definition 1.1] for its definition).

By Theorem 1.2, we find that, if k is an infinite field and G is a finite group, then “k(G) is stably
k-rational” ⇒ “the property Rat(G/k) holds” ⇒ “k(G) is retract k-rational”. We don’t know whether
the two notions “Rat(G/k) holds” and “k(G) is retract k-rational” are equivalent or not.

In [Ku] Kunyavskii studies the birational classification of 3-dimensional algebraic tori over a field k.
He gives a list of all those tori which are k-rational; the remaining ones are not stably k-rational. In
a private communication during 2009 Kunyavskii informed me that, from the proof in [Ku], it is not
difficult to deduce that a 3-dimensional algebraic torus over k is not retract k-rational if and only if it
is not stably k-rational.

We organize this paper as follows. We review basic notions of multiplicative group actions in
Section 2. In Section 3 Saltman’s work on retract rationality is reviewed. The transitivity theorem of
retract rationality is proved in Section 4. Applications are given in Section 5 where Theorem 5.10 is
the main result. In Section 6, we study the fixed subfields of monomial actions; Theorem 6.6 is the
generalization of Barge’s Theorem.

Standing notations. In discussing retract rationality, we always assume that the ground field is infinite
(see Definition 1.1). Thus, throughout this paper, we will assume that k is an infinite field, unless
otherwise specified. A finitely generated field extension L of k is called a k-field for short. k(x1, . . . , xn)

or k(X1, . . . , Xn) denotes the rational function field of n variables over k. For emphasis, recall k(G) =
k(xg : g ∈ G)G .

We denote by ζn a primitive n-th root of unity in some extension field of k. When we write ζn ∈ k,
it is understood that char k = 0 or char k = p > 0 with p � n. Similarly, when we write char k � n, it is
understood that char k = 0 or char k = p > 0 with p � n.

For brevity, we will call k[X1, . . . , Xn][1/ f ] a localized polynomial ring when k[X1, . . . , Xn] is a
polynomial ring and f ∈ k[X1, . . . , Xn]\{0} (see the definition of retract rationality in Definition 1.1).
An affine domain over k or an affine k-domain (or simply an affine domain) is an integral domain of
the form k[α1, . . . ,αm] for finitely many elements α1, . . . ,αm .

All the groups in this article are finite groups. Cn denotes the cyclic group of order n. Z[π ] is the
group ring of the finite group π over Z. The exponent of a group G is the least common multiple of
the orders of elements in G .

2. Multiplicative group actions

Let π be a finite group. A π -lattice M is a finitely generated Z[π ]-module such that M is a free
abelian group when it is regarded as an abelian group.

For a π -lattice M , k[M] denotes the Laurent polynomial ring and k(M) is the quotient field of
k[M]. Explicitly, if M = ⊕

1�i�m Z · xi as a free abelian group, then k[M] = k[x±1
1 , . . . , x±1

m ] and k(M) =
k(x1, . . . , xm). Since π acts on M , it will act on k[M] and k(M) by k-automorphisms, i.e. if σ ∈ π
and σ · x j = ∑

1�i�m aij xi ∈ M , then we define the multiplicative action of σ on k[M] and k(M) by

σ · x j = ∏
1�i�m x

aij

i .
The multiplicative action of π on k(M) is called a purely monomial action in [HK1]. If π is a

group acting on the rational function field k(x1, . . . , xm) by k-automorphism such that σ · x j = c j(σ ) ·
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∏
1�i�m x

aij

i where σ ∈ π , aij ∈ Z and c j(σ ) ∈ k\{0}, such a multiplicative group action is called a
monomial action.

Definition 2.1. Let M = ⊕
1� j�m Z · x j be a π -lattice and π act on k(M) = k(x1, . . . , xm) by

purely monomial k-automorphisms. The fixed field, denoted by k(M)π , is defined as k(M)π = { f ∈
k(x1, . . . , xm): σ · f = f for any σ ∈ π}. This field k(M)π was designated as k(M,π) by Saltman
in [Sa5].

On the other hand, the fixed field for a monomial action is denoted by kα(M)π (here α designates
the extension of Z[π ]-modules associated to the monomial action, which will be defined below). Pre-
cisely, if π acts on k(M) = k(x1, . . . , xm) by monomial k-automorphisms, define Mα to be the (multi-
plicatively written) Z[π ]-module generated by x1, . . . , xm and k× (:= k\{0}) in k(x1, . . . , xm)\{0}. Thus
we obtain a short exact sequence of Z[π ]-modules 0 → k× → Mα → M → 0; label this short exact se-
quence (or the module extension) as α. Define kα(M)π = { f ∈ k(x1, . . . , xm): σ · f = f for any σ ∈ π}.

Note that kα(M)π of this article agrees with the notation of Saltman in [Sa6, p. 538]; our notation
kα(M)π also agrees with Saltman’s notation in [Sa7, p. 535], except that, Mα in [Sa7] is the multi-
plicative subgroup generated by x1, . . . , xm and μ where k is assumed to be algebraically closed and
μ denotes the group of all roots of unity in k× .

Definition 2.2. Let K be a k-field, π be a finite group, and M = ⊕
1� j�m Z · x j be a π -lattice. Suppose

that π acts on K by k-automorphisms of K and π acts on K (M) by monomial k-automorphism,
i.e. σ · x j = c j(σ ) · ∏

1�i�m x
aij

i where σ ∈ π , c j(σ ) ∈ K\{0}, aij ∈ Z. We will denote the fixed field
by Kα(M)π where α : 0 → K × → Mα → M → 0 is the associated extension of this monomial action
of π . If π acts on K (M) by purely monomial automorphisms, we will write K (M)π for Kα(M)π .

Note that it is not necessary to assume that the action of π on the k-field K is faithful. In case
π acts faithfully on K and acts on K (M) by purely monomial k-automorphisms, then K (M)π is just
the function field of some algebraic torus defined over K π split by K and with character group M
(see [Vo2]).

We recall some basic facts of the theory of flabby (flasque) π -lattices developed by Voskresenskii,
Endo and Miyata, Colliot-Thélène and Sansuc, etc. [Vo2,CTS1]. We refer the reader to [Sw1,Sw2,Lo] for
a quick review of the theory.

Definition 2.3. A π -lattice M is called a permutation lattice if M has a Z-basis permuted by π . M is
called an invertible (or permutation projective) lattice, if it is a direct summand of some permutation
lattice. A π -lattice M is called a flabby (or flasque) lattice if H−1(π ′, M) = 0 for any subgroup π ′ of π
(note that all the cohomology groups in this paper, in particular H−1(π ′, M), are the Tate cohomology
groups). Similarly, M is called coflabby if H1(π ′, M) = 0 for any subgroup π ′ of π . More generally, if
N is a Z[π ]-module, we will say that N is H1 trivial if H1(π ′, N) = 0 for any subgroup π ′ of π .

Let Lπ be the set of all π -lattices. We define a similarity relation on Lπ : If M1, M2 ∈ Lπ , then
M1 ∼ M2 if and only if M1 ⊕ Q 1 � M2 ⊕ Q 2 for some permutation lattices Q 1 and Q 2. The set of all
similarity classes is denoted by Lπ/∼; [M] denotes the similarity class containing M in Lπ/∼. Note
that the operation of the direct sum in Lπ induces a commutative monoid structure on Lπ/∼.

Lemma 2.4. (See [Sw1, Lemma 8.4], [Le, Proposition 1.2].)

(1) If E is an invertible π -lattice, then E is flabby and coflabby.
(2) If E is an invertible π -lattice and C is a coflabby π -lattice, then any short exact sequence 0 → C → N →

E → 0 splits.

Theorem 2.5 (Endo and Miyata). (See [Sw2, Theorem 3.4], [Lo, 2.10.1].) Let π be a finite group. Then all the
flabby π -lattices are invertible if and only if all the Sylow subgroups of π are cyclic.
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Theorem 2.6 (Colliot-Thélène and Sansuc). (See [Sw1, Lemma 8.5], [Lo, Lemma 2.6.1].) For any π -lattice M,
there is a short exact sequence of π -lattices 0 → M → P → F → 0 where P is a permutation lattice and F is
a flabby lattice.

Definition 2.7. The exact sequence 0 → M → P → F → 0 in the above theorem is called a flabby
resolution of the π -lattice M . The flabby class of M , denoted by [M]fl , is defined as [M]fl = [F ] ∈
Lπ/∼. Note that [M]fl is well defined: If [M] = [M ′], [M]fl = [F ] and [M ′]fl = [F ′], then F ⊕ Q �
F ′ ⊕ Q ′ for some permutation lattices Q and Q ′ , and therefore [F ] = [F ′] (see, for example, [Sw1,
Lemma 8.7]).

When we say that [M]fl is invertible, we mean that [M]fl = [E] for some invertible lattice E .

Theorem 2.8. (See Saltman [Sa4, Theorem 3.14].) Let K be a finite Galois field extension of k with π =
Gal(K/k). For any π -lattice M, K (M)π is retract k-rational if and only if [M]fl is invertible.

As an application of Theorem 2.8, we prove the following theorem.

Theorem 2.9. (See Voskresenskii [Vo1].) Let k be an infinite field with char k �= 2. If k(ζ2n ) is not a cyclic
extension of k, then k(C2n ) is not retract k-rational. Thus k(C2n ) is not rational over k.

Proof. Write C2n = 〈σ 〉 and V = ⊕
0�i�2n−1 k · x(σ i) be the regular representation space of C2n . Then

k(C2n ) = k(x(σ i): 0 � i � 2n − 1)〈σ 〉 .
Let ζ = ζ2n and π = Gal(k(ζ )/k). Extend the actions of σ and π to k(ζ )(x(σ i): 0 � i � 2n − 1) so

that π acts trivially on x(σ i) and σ acts trivially on k(ζ ). For 0 � i � 2n − 1, define

yi =
∑

0� j�2n−1

ζ−i j · x
(
σ j) ∈

⊕
0� j�2n−1

k(ζ ) · x
(
σ j).

It follows that k(C2n ) = k(x(σ i): 0 � i � 2n − 1)〈σ 〉 = {k(ζ )(x(σ i): 0 � i � 2n − 1)π }〈σ 〉 =
k(ζ )(yi: 0 � i � 2n − 1)〈σ ,π 〉 .

It is easy to see that σ · yi = ζ i yi for 0 � i � 2n − 1. Moreover, if τt ∈ π is defined by τt(ζ ) = ζ t ,
then τt(yi) = yti for 0 � i � 2n − 1 (note that the subscript ti of yti is taken modulo 2n). It follows
that k(ζ )(yi: 0 � i � 2n − 1)〈σ ,π 〉 = k(ζ )(yi: 1 � i � 2n − 1)〈σ ,π 〉(y0).

Let N be the multiplicative subgroup of k(ζ )(yi: 1 � i � 2n −1)\{0} generated by y1, y2, . . . , y2n−1.
Since π acts on N = 〈yi: 1 � i � 2n − 1〉, N is a π -lattice. Similarly, π acts on 〈ζ 〉 � Z/2nZ; thus we
may regard Z/2nZ as a finite Z[π ]-module (note that τt · ī = ti for any ī ∈ Z/2nZ). Define a π -
morphism Φ by

Φ : N → Z/2nZ

where, for any monomial y = ∏
1� j�2n−1 y

λ j

j with λ j ∈ Z, define Φ(y) = σ(y)/y (note that σ(y)/y ∈
〈ζ 〉, and thus can be regarded as an element of Z/2nZ).

Define M = Ker(Φ), which is a π -lattice. It follows that k(ζ )(yi: 1 � i � 2n − 1)〈σ ,π 〉 = {k(ζ )×
(yi: 1 � i � 2n − 1)〈σ 〉}π = k(ζ )(M)π .

We compare the above construction with that in [Le, p. 310]. It is clear that N � ZC(q) where q =
2n and ZC(q) is Lenstra’s notation. Thus M � Iq in Lenstra’s notation. By [Le, Propositions 3.1 and 3.2],
H1(π ′, Iq) = 0 for any subgroup π ′ of π and H−1(π0, Iq) � Z/2Z if π0 is the unique subgroup of π
isomorphic to C2 × C2 (also see [Vo2, p. 79]). Thus Iq(� M) is coflabby, but not flabby.

Let 0 → M → P → F → 0 by any flabby resolution of M so that P is permutation and F is flabby.
Suppose that F is invertible. By Lemma 2.4, this exact sequence splits. Thus P � M ⊕ F . In particu-
lar, M is invertible. By Lemma 2.4 again, M is flabby. This leads to a contradiction to the previous
assertion that M is not flabby.

Apply Theorem 2.8. We find that k(ζ )(M)π (= k(C2n )) is not retract k-rational. �
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Corollary 2.10. Let k be a field such that k(ζ2n ) is not cyclic over k. Let G = H � C2n where H is a normal
subgroup of the finite group G with C2n acting on it. Then k(G) is not retract k-rational.

Proof. Suppose k(G) is retract k-rational. By Theorem 3.5, k(C2n ) is retract k-rational, which contra-
dicts to Theorem 2.9. �
Remark. Let M be the π -lattice defined in the proof of Theorem 2.9. Voskresenskii showed that [M]fl ,
the flabby class of M , is not invertible ([Vo1, pp. 97–99], [Vo2, p. 79]); the same result was obtained
by Lenstra [Le, pp. 310–311]. Saltman showed that Q(G) is not retract Q-rational if G is a finite
abelian group containing an element of order 2n with n � 3 by using Wang’s counter-example to
Grunwald Theorem [Sa2, Theorem 5.11]. Sonn generalized Saltman’s Theorem and proved that Q(G)

is not retract Q-rational if G is any finite group containing a normal subgroup H such that G/H � C2n

with n � 3 [So].

3. Criteria of retract rationality

In this section we recall several results about retract rationality, which will be used subsequently.
First we define the unramified Brauer group of a k-field L.

Definition 3.1. (See [Sa3], [Sa5, p. 226].) Let L be a k-field. Define the unramified Brauer group of L
over k, denoted by Brv,k(L), as Brv,k(L) = ⋂

R Br(R) ⊂ Br(L) where R runs over all discrete k-valuation
rings whose quotient fields are equal to L, and Br(R) denotes the Brauer group of R . See [Bo, Sec-
tion 3], [Sa7, Theorem 12] for more results about unramified Brauer groups.

Theorem 3.2. (See Saltman [Sa5, Section 2].)

(i) Let L be a k-field. If L is retract k-rational, then Brv,k(L) � Br(k). In particular, when k is algebraically
closed and L is retract k-rational, then Brv,k(L) = 0.

(ii) If K ⊂ L are k-fields and L is retract K -rational, then Brv,k(K ) � Brv,k(L).

Note that Brv,C(L) = 0 is just a necessary condition for a C-field L to be retract C-rational. It is
not a sufficient condition. In fact, Peyre shows that, there is a group G of order p12 such that C(G) is
not retract C-rational but Brv,C(C(G)) = 0 [Pe].

Definition 3.3. (See [Sa5].) Let K ⊂ L be k-field. K is called a dense retraction of L if there is a regular
affine K -algebra R such that (i) the quotient field of R is L, and (ii) for any r ∈ R\{0}, there is a
K -algebra morphism ϕ : R[1/r] → K .

We will prove in Lemma 5.2 that, if L is retract k-rational, then k is a dense retraction of L.

Now consider retract rationality. We reformulate Saltman’s results of [Sa2] in terms of retract
rationality by applying Theorem 1.2.

Lemma 3.4.

(i) (See [Sa4, Proposition 3.6].) Let L be a k-field, L(x1, . . . , xn) be the rational function field over L. Then L is
retract k-rational if and only if so is L(x1, . . . , xn).

(ii) (See [Sa2, Theorems 1.5 and 3.1].) Let G = G1 × G2 . Then k(G) is retract k-rational if and only if so are
k(G1) and k(G2).

(iii) (See [Sa5, Lemma 1.1].) Let K ⊂ L be k-fields. If L is retract k-rational and K is a dense retraction of L,
then K is retract k-rational.

(iv) (See [Sa5, Theorem 1.3].) Let K be a finite Galois field extension of k with π = Gal(K/k), and M be any
π -lattice. Then k is a dense retraction of K (M)π .
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Theorem 3.5. (See [Sa2, Theorems 3.1 and 3.5].) Let G = N � G0 where N is a normal subgroup of G with G0
acting on N.

(1) If k(G) is retract k-rational, so is k(G0).
(2) Assume furthermore that N is abelian and gcd{|N|, |G0|} = 1. If both k(N) and k(G0) are retract k-

rational, so is k(G).

Remark. For more results about sufficient conditions to ensure that k(N � G0) is retract k-rational,
see [Ka2, Theorems 1.11, 1.12, 1.13 and 4.3].

We recall a reduction theorem for Noether’s problem.

Theorem 3.6. (See [KP, Theorem 1.1].) Let k be a field with char k = p > 0 and G̃ be a group extension defined
by 1 → C p → G̃ → G → 1. Then k(G̃) is rational over k(G).

Theorem 3.7. (See Saltman [Sa4, Theorem 4.12].) Let k be an infinite field and G be a finite abelian group of
exponent e = 2rm with 2 � m. Then k(G) is retract k-rational if and only if either char k = 2, or k(ζ2r ) is a cyclic
extension over k.

Proof. If char k = p > 0 and p | e, choose an element g ∈ G of order p. Consider 1 → 〈g〉 → G →
G/〈g〉 → 1 and apply Theorem 3.6. Since k(G) is rational over k(G/〈g〉), it follows that k(G) is retract
k-rational if and only if so is k(G/〈g〉) by Lemma 3.4. Thus we may assume that gcd{char k, |G|} = 1
without loss of generality.

Write G � ∏
q Cq where these q’s are some prime powers with gcd{char k,q} = 1. By Lemma 3.4,

it suffices to check whether each k(Cq) is or is not retract k-rational.
If char k = 2, then q is an odd integer by the above assumption. Thus k(Cq) is retract k-rational by

[Sa2, Theorem 2.1]. From now on, we assume that char k �= 2.
By [Sa2, Theorem 2.1], k(Cq) is retract k-rational if q is odd or q is even with k(ζq) being cyclic

over k. When k(ζq) is not cyclic over k, then k(Cq) is not retract k-rational by Theorem 2.9. �
Remark. Voskresenskii shows that, if G = C2r , then k(G) is k-rational ⇔ k(G) is retract k-rational ⇔
either char k = 2 or k(ζ2r ) is cyclic over k [Vo2, p. 79]. For any odd prime number p, Q(C p) is always
retract Q-rational by the above theorem, while Q(C47) is not Q-rational by Swan (see, for example,
[Le, p. 299]), and thus not stably Q-rational by [Le, Proposition 5.6].

Here is another criterion for retract rationality.

Example 3.8. (See [Ka2, p. 2763].) Let k be any infinite field, G be a non-abelian p-group of exponent
p and of order p3 or p4. Then k(G) is retract k-rational.

4. A transitivity theorem

Before proving the transitivity theorem, we recall a lemma due to Swan.

Lemma 4.1. (See [Sw1, Lemma 4.3].) Let L be a k-field, R1 and R2 be affine k-domains contained in L such that
the quotient fields of R1 and R2 are equal to L. Then there are r1 ∈ R1\{0}, r2 ∈ R2\{0} such that R1[1/r1] =
R2[1/r2].

Theorem 4.2. Let K ⊂ L be k-fields. If K is retract k-rational and L is retract K -rational, then L is retract
k-rational.

Proof. Geometrically this result looks clear. Here is a rigorous proof.
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Step 1. By assumptions, there exist an affine K -domain B , an affine k-domain S , localized polynomial
ring K [X1, . . . , Xn][1/ f ], k[Y1, . . . , Ym][1/g], and K -algebra morphisms ϕ : B → K [X1, . . . , Xn][1/ f ],
ψ : K [X1, . . . , Xn][1/ f ] → B , k-algebra morphisms ϕ1 : S → k[Y1, . . . , Ym][1/g], ψ1 : k[Y1, . . . , Ym][1/

g] → S satisfying that

(i) the quotient fields of B and S are L and K respectively, and
(ii) ψ ◦ ϕ = 1B , ψ1 ◦ ϕ1 = 1S .

We will find a subring A of L and an affine k-domain R of K such that

(i) A = R[α1, . . . ,αt] for some α1, . . . ,αt ∈ L,
(ii) the quotient fields of A and R are L and K respectively, and

(iii) the above morphisms ϕ , ψ , ϕ1, ψ1 are “well defined” for A and R , i.e. the “natural ex-
tensions” of these morphisms (still denoted by ϕ , ψ , ϕ1, ψ1, by abusing the notations)
ϕ : A → R[X1, . . . , Xn][1/ f ], ψ : R[X1, . . . , Xn][1/ f ] → A, ϕ1 : R → k[Y1, . . . , Ym][1/g0], ψ1 :
k[Y1, . . . , Ym][1/g0] → R are well defined (where g0 = gg1 for some non-zero polynomial g1)
and satisfy ψ ◦ ϕ = 1A , ψ1 ◦ ϕ1 = 1R .

The above assertion seems obvious in some sense, although a formal proof is tedious. We provide
the proof in the following.

Note that in choosing the localized polynomials K [X1, . . . , Xn][1/ f ] and k[Y1, . . . , Ym][1/g], we
may assume that X1, . . . , Xn, Y1, . . . , Ym are algebraically independent over K . In fact, these subrings
may be chosen from the rational function field K (X1, . . . , Xn, Y1, . . . , Ym).

Write B = K [α1,α2, . . . ,αt] for some α1, . . . ,αt ∈ L. Let R1 be an affine k-domain whose quotient
field is K . Thus the quotient field of R1[α1, . . . ,αt] is L.

We will enlarge R1 by adjoining additional elements of K to R1. First f ∈ K [X1, . . . , Xn]. Adjoin
all the coefficients of f into R1. Then consider ϕ(α j) for 1 � j � t . Since ϕ(α j) = f j/ f l for some f j ∈
K [X1, . . . , Xn]. Adjoin all the coefficients of all these f j to R1 also. Call this new affine k-domain R2.
It follows that f ∈ R2[X1, . . . , Xn] and ϕ : R2[α1, . . . ,αt] → R2[X1, . . . , Xn][1/ f ] is well defined.

Now consider ψ(X1), . . . ,ψ(Xn) and ψ(1/ f ). They lie in B = K [α1, . . . ,αt]. Thus they belong to
the subring R2[α1, . . . ,αt][1/β] for a fixed element β ∈ K\{0}. Adjoin 1/β to R2. Call this affine k-
domain R3. We conclude that the R3-algebra morphisms ϕ : R3[α1, . . . ,αt] → R3[X1, . . . , Xn][1/ f ],
ψ : R3[X1, . . . , Xn][1/ f ] → R3[α1, . . . ,αt] are well defined and satisfy ψ ◦ ϕ = 1.

Consider the affine k-domain S . Apply Lemma 4.1. We find r ∈ R3\{0} and r1 ∈ S\{0} so that
R3[1/r] = S[1/r1]. Define R = R3[1/r] and A = R[α1, . . . ,αt].

Note that ϕ1(r1) = g1/gl′ for some non-zero polynomial g1 ∈ k[Y1, . . . , Ym]. Define g0 = g · g1. Then
ϕ1 : S[1/r1] → k[Y1, . . . , Ym][1/g0] is well defined. It is not difficult to check that, in the morphism
ψ1 : k[Y1, . . . , Ym][1/g] → S , the element ψ1(g) is a unit in S . Thus ψ2(g1) = r1u for some unit u ∈ S .
It follows that ψ1 : k[Y1, . . . , Ym][1/g0] → S[1/r1] is also well defined. Thus, the k-algebra morphisms
ϕ1 : R → k[Y1, . . . , Ym][1/g0] and ψ2 : k[Y1, . . . , Ym][1/g0] → R satisfying ψ1 ◦ ϕ1 = 1R . So are the
R-algebra morphisms ϕ : A → R[X1, . . . , Xn][1/ f ] and ψ : R[X1, . . . , Xn][1/ f ] → A. Done.

Step 2. Let C0 := R[X1, . . . , Xn][1/ f ]. Then we have R-algebra morphisms ϕ : A → C0 and ψ : C0 → A
with ψ ◦ϕ = 1A . Note that A = R[α1, . . . ,αt] is an affine k-domain whose quotient field is L. We will
define a localized polynomial C related to A and C0.

Since f ∈ R[X1, . . . , Xn], write f = ∑
λ aλ · Xλ where Xλ = Xλ1

1 Xλ2
2 · · · Xλn

n and aλ ∈ R . Write
ϕ1(aλ) = bλ/gN

0 for all λ where bλ ∈ k[Y1, . . . , Ym]. Define f0 and h by

f0 =
(∑

λ

bλ Xλ

)
/gN

0 ,

h =
∑

bλ Xλ ∈ k[X1, . . . , Xn, Y1, . . . , Ym]\{0}.

λ
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Define C = k[X1, . . . , Xn, Y1, . . . , Ym][1/(g0h)].
From the k-algebra morphism R

ϕ1−→ k[Y1, . . . , Ym][1/g0] ψ1−→ R , extend the base to k[X1, . . . , Xn],
i.e. define k-algebra morphisms ϕ2 : R[X1, . . . , Xn] → k[X1, . . . , Xn, Y1, . . . , Ym][1/g0] and ψ2 : k[X1,

. . . , Xn, Y1, . . . , Ym][1/g0] → R[X1, . . . , Xn] by requiring that both ϕ2 and ψ2 are morphisms over
k[X1, . . . , Xn] and define ϕ2(r) = ϕ1(r) for any r ∈ R , ψ2(G) = ψ1(G) for any G ∈ k[Y1, . . . , Ym][1/g0].

Note that f ∈ R[X1, . . . , Xn] and ϕ2( f ) = f0 = h/gN
0 by the above definition. Hence ϕ2 : C0 =

R[X1, . . . , Xn][1/ f ] → C = k[X1, . . . , Xn, Y1, . . . , Ym][1/(g0h)] is well defined.
Moreover, from the relation bλ = gN

0 · ϕ1(aλ), we get ψ1(bλ) = ψ1(g0)
N · (ψ1 ◦ ϕ1)(aλ) = aλ ·

ψ1(g0)
N . Note that ψ1(g0) is a unit in R . It follows that ψ2(h) = ψ2(

∑
λ bλ Xλ) = ∑

λ ψ2(bλ)Xλ =∑
λ ψ1(bλ)Xλ = ψ1(g0)

N · ∑
λ aλ Xλ = ψ1(g0)

N · f is also a unit in C0 since 1/ f ∈ C0. Thus ψ2 : C =
k0[X1, . . . , Xn, Y1, . . . , Ym][1/(g0h)] → C0 = R[X1, . . . , Xn][1/ f ] is also well defined. Clearly ψ2 ◦ ϕ2 =
1C0 .

Step 3. Note that we have the following diagram

A
ϕ

C0
ψ

ϕ2

A

C

ψ2

A
ϕ

C0
ψ

A

define ϕ̃ = ϕ2 ◦ ϕ and ψ̃ = ψ ◦ ψ2. It follows that ψ̃ · ϕ̃ = 1A . Thus L is retract k-rational. �
5. Applications

We recall a known result which will be used subsequently.

Theorem 5.1. (See [HK3, Theorem 1].) Let L be any field and G be a finite group acting on L(x1, . . . , xm), the
rational function field of m variables over a field L. Suppose that

(i) for any σ ∈ G, σ(L) ⊂ L;
(ii) the restriction of the action of G to L is faithful;

(iii) for any σ ∈ G,

⎛
⎝

σ(x1)
...

σ (xm)

⎞
⎠ = A(σ ) ·

⎛
⎝

x1
...

xn

⎞
⎠ + B(σ )

where A(σ ) ∈ GLm(L) and B(σ ) is an m × 1 matrix over L.

Then there exist z1, . . . , zm ∈ L(x1, . . . , xm) such that L(x1, . . . , xm) = L(z1, . . . , zm) and σ(z j) = z j for
any σ ∈ G, any 1 � j � m.

Lemma 5.2. Let K ⊂ L be k-field. If L is retract K -rational, then K is a dense retraction of L.

Proof. Let A be an affine K -domain whose quotient field is L arising from the definition of retract K -
rationality. Let K [X1, . . . , Xn][1/ f ] be the localized polynomial ring and ϕ : A → K [X1, . . . , Xn][1/ f ],
ψ : K [X1, . . . , Xn][1/ f ] be the K -morphisms satisfying ψ ◦ ϕ = 1A .
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Since the singular locus of A defines a non-zero ideal I in A, we may choose any non-zero element
α ∈ I; then replace A by A[α] and replace K [X1, . . . , Xn][1/ f ] by K [X1, . . . , Xn][1/( f φ(r))]. Thus we
may assume that A is a regular domain from the beginning. For any r ∈ A\{0}, let g = ϕ(r). Find a
K -morphism Φ : K [X1, . . . , Xn][1/ f ] → K such that Φ( f g) �= 0. Then Φ ◦ φ : A → K is the required
map. �

We consider an application of Theorem 4.2.
Recall Theorem 2.8 provides a criterion of retract rationality for K (M)G when G is faithful on K

and M is a G-lattice (it is unnecessary to assume that M is a faithful G-lattice). Now we consider the
retract rationality for k(M)G where G acts trivially on the field k.

Theorem 5.3. Let G be a finite group acting trivially on the field k, and M be a faithful G-lattice.

(i) (See Saltman [Sa5, Corollary 1.6].) If k(M)G is retract k-rational, then k(G) is also retract k-rational.
(ii) (See Saltman [Sa5, Proposition 1.7].) If 0 → M → N → E → 0 is an exact sequence of G-lattices where E

is invertible, then k(N)G is retract k(M)G -rational.

We may wonder whether some criterion of retract rationality for k(M)G is available. Although we
cannot find a complete solution, we are able to answer this question when [M]fl is invertible.

Theorem 5.4. Let G be a finite group. For any G-lattice M in the following statements, it is assumed that G
acts on k(M) by purely monomial k-automorphisms. The following statements are equivalent:

(i) k(G) is retract k-rational;
(ii) k(M)G is retract k-rational for some faithful permutation G-lattice M;

(iii) k(M)G is retract k-rational for some faithful G-lattice M such that [M]fl is invertible;
(iv) k(M)G is retract k-rational for all faithful permutation G-lattices M;
(v) k(M)G is retract k-rational for all faithful G-lattices M satisfying that [M]fl are invertible;

(vi) k(M)G is retract k-rational for some faithful G-lattice M.

Proof. (i) ⇒ (vi) by taking M = Z[G].
(vi) ⇒ (i) by Theorem 5.3.
The implications “(v) ⇒ (iv) ⇒ (ii) ⇒ (iii) ⇒ (i)” are easy. It remains to show that “(i) ⇒ (v)”.
For any faithful G-lattice M with [M]fl invertible, we will show that k(M)G is retract k-rational.
Define N := Z[G] and consider k(M ⊕ N)G .
By Theorem 5.1, k(M ⊕ N)G = {k(M)(z1, . . . , zl)}G where σ · z j = z j for any σ ∈ G , any 1 � j � l =

|G|. Thus k(M ⊕ N)G = k(M)G (z1, . . . , zl). It follows that k(M)G is retract k-rational if and only if so is
k(M ⊕ N)G by Lemma 3.4.

Now k(M ⊕ N)G � k(N ⊕ M)G = {k(N)(M)}G is retract rational over k(N)G by Theorem 2.8. Since
k(N)G = k(G) is retract k-rational. Apply Theorem 4.2. We find that k(M ⊕ N)G is retract k-rational.

Here is another proof of “(i) ⇒ (v)”.
Suppose that k(G) is retract k-rational and M is a faithful G-lattice with [M]fl invertible.
Let 0 → M → P → E → 0 be the flabby resolution of M where P is a permutation lattice and E is

an invertible lattice because [M]fl is invertible. By Theorem 5.3, we find that k(P )G is retract rational
over k(M)G . Thus k(M)G is a dense retraction of k(P )G by Lemma 5.2. We may apply Lemma 3.4
to show that k(M)G is retract k-rational, if it is known that k(P )G is retract k-rational. Since k(G) =
k(Z[G]G), we may apply Theorem 5.1 twice to k(P ⊕Z[G])G as the preceding proof. Thus we find that
k(G) is retract k-rational if and only if so is k(P )G . Done. �
Remarks. (i) It is known that k(M)G is k-rational for any G-lattice M with rankZ(M) � 3. See [HK1,
HK2,HR].

(ii) Note that [Ka2, Theorem 4.3] may be regarded as a hybrid of Theorem 2.8 and the above
Theorem 5.4 (with the help of the following Theorem 5.5).
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Theorem 5.5. Let G = 〈σ 〉 be a cyclic group of order n = 2rm where 2 � m. The following statements are
equivalent:

(i) k(G) is retract k-rational.
(ii) k(M)G is retract k-rational for any G-lattice M.

(iii) Either char k = 2 or char k �= 2 such that k(ζ2r ) is a cyclic extension of k.

Proof. The equivalence of (i) and (iii) follows from Theorem 3.7.
(ii) ⇒ (i) by Theorem 5.4.
(i) ⇒ (ii) If M is a faithful G-lattice, then [M]fl is invertible by Theorem 2.5. Hence k(M)G is retract

k-rational by Theorem 5.4.
If M is not faithful, find a normal subgroup H of G so that M is a faithful lattice over G/H . Let

n′ = 2sm′ be the order of G/H with 2 � m′ . Since n′ | n and k(ζ2r ) is cyclic over k, it follows that k(ζ2s )

is also cyclic over k. Thus k(G/H) is retract k-rational by Theorem 3.7. Now we may apply the same
arguments in the preceding paragraph to the group G/H . �

We recall a theorem in group theory.

Theorem 5.6. (See [Za, Theorem 11, p. 175].) Let G be a finite group. Then the following two statements are
equivalent:

(i) All the Sylow subgroups of G are cyclic.
(ii) G is of the form G = 〈σ ,τ 〉 with relations σm = τn = 1, τστ−1 = σ r where m, n, r are positive integers

satisfying

gcd
{
(r − 1)n,m

} = 1 and rn ≡ 1 (mod m).

Note that, in the condition (ii) of the above theorem, if r = 1, it is understood as “gcd{n,m} = 1”.
The following result is an extension of Theorem 5.5. We choose to formulate only one direction

among the various directions of implication.

Theorem 5.7. Let G be a finite group satisfying the property in Theorem 5.6. If k(G) is retract k-rational, then
k(M)G is retract k-rational for any G-lattice M.

Proof. By the same method as in the proof of Theorem 5.5, we may assume that M is faithful. Then
apply Theorem 2.5 for such a group G , and use Theorem 5.4. �

Now we consider an application of Theorem 5.5.
Recall two previous results about the rationality problem and unramified Brauer groups.

Theorem 5.8. (See Kang [Ka1, Theorem 1.4].) Let k be a field and G be a finite group. Assume that (i) G contains
an abelian normal subgroup H so that G/H is cyclic of order n, (ii) Z[ζn] is a unique factorization domain, and
(iii) ζe ∈ k where e is the exponent of G. If G → GL(V ) is any finite-dimensional linear representation of G
over k, then k(V )G is rational over k. In particular, k(G) is k-rational.

Theorem 5.9. (See Bogomolov [Bo, Lemma 4.9].) Let G be a finite group containing an abelian normal subgroup
H such that G/H is cyclic. Then Brv,C(C(G)) = 0.

What we will prove next is that, with the same assumptions as in Theorem 5.9, C(G) is retract
C-rational. Hence it is not surprising that BrV ,C(C(G)) = 0 in this situation.
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Theorem 5.10. Let k be an infinite field and G be a finite group. Assume that (i) G contains an abelian normal
subgroup H so that G/H is cyclic, and (ii) ζe′ ∈ k with e′ = lcm{exp(H),ord(τ )} where τ is some element in
G and the image of τ in G/H generates the cyclic group G/H. If G → GL(V ) is any linear representation of G
on the k-vector space V , then k(V )G is retract k-rational. In particular, k(G) is retract k-rational.

Proof. Step 1. We will go over the proof of Theorem 5.8 in the paper [Ka1]. By [Ka1, Corollary 3.2],
the proof of Theorem 5.8 is valid under the weaker assumption on ζe′ . We will show that k(V )G =
k(M)π (Y1, . . . , Yr) where π = G/H = 〈τ̄ 〉 and M is a π -lattice.

Note that the assumption that Z[ζn] is a unique factorization domain is used in the proof of [Ka1,
Theorem 2.2]. This theorem asserts that k(M) is π -isomorphic to k(L), a fact which appears only in
Step 5 of the proof of [Ka1, Theorem 1.4, line 7 from the bottom on p. 1218].

On the other hand, in Step 4 of the proof of [Ka1, Theorem 1.4], it is known that k(V )G =
k(y(i, j): 1 � i � r, 1 � j � di − 1)G(Y1, . . . , Yr) = k(z(i, j): 1 � i � r, 1 � j � di − 1)G(Y1, . . . , Yr)

where G = 〈H, τ 〉 acts on these z(i, j) by

τ : z(i,1) �→ z(i,2) �→ · · · �→ z(i,di − 1) �→
( ∏

1� j�di−1

z(i, j)

)−1

,

σ : z(i, j) �→ Ψi
(
τ−( j−1)σ τ j−1)z(i, j) (1)

where σ ∈ H and 1 � j � di − 1.
The first two paragraphs of Step 5 of the proof of [Ka1, Theorem 1.4] shows that k(z(i, j): 1 � i � r,

1 � j � di − 1)H = k(M). Hence k(V )G = k(M)〈τ 〉(Y1, . . . , Yr). From formula (1), it is clear that τ acts
on k(M) by purely monomial k-automorphisms.

Step 2. By Fischer’s Theorem ([Sw1, Theorem 6.1], [KP, Corollary 1.5]), k(G/H) is k-rational; thus it
is retract k-rational. Applying Theorem 5.5, we find that k(M)〈τ 〉 is retract k-rational. By Lemma 3.4,
k(V )G is retract k-rational.

In particular, take a k-vector space V whose dual space is equal to
⊕

g∈G k · x(g), the regular

representation of G . We find that k(G) = k(V )G is retract k-rational. �
Remark. Compare Theorem 5.10 with Proposition 5.2 in [Ka2] (and also Theorems 1.11, 1.12 and
Corollary 5.1 there). There the assumption ζe′ ∈ k is waived, while other assumptions, e.g. the group
extension 1 → H → G → Cn → 1 splits and the structures of some Galois extensions over k, are
required.

6. Monomial actions

Recall the definition of the fixed field kα(M)G of a monomial action of G (see Definition 2.2).
Throughout this section, G acts trivially on k. We will generalize the following theorem of Barge.

Theorem 6.1. (See Barge [Ba, Theorem IV-1].) Let G be a finite group. The following two statements are equiv-
alent:

(i) All the Sylow subgroups of G are cyclic.
(ii) Brv,C(Cα(M)G) = 0 for all G-lattices M, for all short exact sequences of Z[G]-modules α : 0 → C× →

Mα → M → 0.

First we recall an H1 trivial embedding theorem due to Saltman.

Theorem 6.2. (See Saltman [Sa7, Proposition 2].) Let G be a finite group, M be a G-lattice. If α : 0 → k× →
Mα → M → 0 is an exact sequence of Z[G]-modules, then there is an exact sequence β : 0 → k× → Nβ →
N → 0 satisfying that (i) N is a G-lattice, (ii) Mα ⊂ Nβ , (iii) Nβ is H1 trivial, i.e. H1(G ′, Nβ) = 0 for any
subgroup G ′ ⊂ G, and (iv) Nβ/Mα is a permutation G-lattice.
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Theorem 6.3. Let G be a finite group. Then k(G) is retract k-rational if and only if kα(M)G is retract k-rational
for any invertible G-lattice M, for any short exact sequence of Z[G]-modules α : 0 → k× → Mα → M → 0
with G acting faithfully on Mα .

Proof. It suffices to show that “only if ” part.
Suppose that k(G) is retract k-rational and α : 0 → k× → Mα → M → 0 is the given extension.
Choose a G-lattice N such that M ⊕ N is a permutation G-lattice. Denote P = M ⊕ N .
We extend the action of G from kα(M) to kα(M ⊕ N) by requiring G acts on k(N) by purely

monomial k-automorphisms. Then G acts faithfully on kα(M ⊕ N).
Since M ⊕ N = P , it follows that G acts on kα(P ) = kα(M ⊕ N) by monomial k-automorphisms.

Moreover, if P = ⊕
1�i�n Z · xi and G permutes {xi: 1 � i � n}, then G acts on kα(P ) = k(x1, . . . , xn)

by linear k-automorphisms, i.e. for any σ ∈ G , any 1 � i � n, σ · xi = ai(σ )x j where j depends on i
and ai(σ ) is some non-zero element in k depending on σ and i.

Consider kα(P ⊕ Q )G where Q = Z[G]. By Theorem 5.1, kα(P ⊕ Q )G is rational over kα(P )G ;
apply the same theorem again, kα(P ⊕ Q )G � kα(Q ⊕ P )G is rational over kα(Q )G = k(G). Since k(G)

is retract k-rational, so is kα(P )G by Lemma 3.4.
On the other hand, consider kα(M ⊕ N)G (� kα(P )G ). By Lemma 3.4, kα(M)G is a dense retraction

of kα(M ⊕ N)G (note that G acts faithfully on kα(M)). Since kα(P )G is retract k-rational, so is kα(M)G

again by Lemma 3.4. �
Lemma 6.4. Let G be a finite group. Assume that k(Ḡ) is retract k-rational for all quotient groups Ḡ of the
group G. Let M be a G-lattice and α : 0 → k× → Mα → M → 0 be a short exact sequence of Z[G]-modules
satisfying that

(i) denoting H = {σ ∈ G: σ acts trivially on Mα}, then there is a short exact sequence of Z[G/H]-modules
β : 0 → k× → Nβ → N → 0 where, regarding Nβ and N as Z[G]-modules, N is a G-lattice, Nβ is H1

trivial, Mα ⊂ Nβ , and Nβ/Mα is a permutation G-lattice;
(ii) N is H1 trivial; and

(iii) [M]fl is an invertible G-lattice.

Then kα(M)G is retract k-rational.

Remark. The assumption (i) can be achieved by Theorem 6.2. On the other hand, the assumption (ii)
is essential. In fact, Saltman proves that, if k is an infinite filed with char k �= 2 and σ : k(x, y, z) →
k(x, y, z) is a k-automorphism defined by σ(x) = a/x, σ(y) = b/y, σ(z) = c/z where a,b, c ∈ k\{0}
satisfying [k(

√
a,

√
b,

√
c) : k] = 8, then k(x, y, z)〈σ 〉 is not retract k-rational [Sa8]. The above theorem

is not applicable to Saltman’s example, because N is not H1 trivial for any embedding of Mα into an
H1 trivial module Nβ .

Proof. Replace the group G by G/H where H is the subgroup in the assumption (i). We may assume
that the G-module Mα is faithful.

Let Nβ be any H1 trivial embedding of Mα satisfying the assumptions (i), (ii) and (iii).
Since Nβ/Mα is a permutation G-lattice, kβ(Nβ) = kα(Mα)(x1, . . . , xn) for some x1, . . . , xn satisfy-

ing that, for any σ ∈ G , σ(xi) = ai(σ ) · x j for some x j and some ai(σ ) ∈ kα(Mα)\{0}. By Theorem 5.1,
kβ(Nβ)G is rational over kα(Mα)G . By Lemma 3.4, kβ(Nβ)G is retract k-rational if and only if so is
kα(Mα)G .

From the snake lemma of the following diagram

0 k× Mα M 0

0 k× Nβ N 0
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we find that Nβ/Mα � N/M is a permutation G-lattice. By [Sw2, Lemma 3.1], [N]fl = [M]fl is an
invertible lattice.

Let 0 → N → P → N ′ → 0 be a flabby resolution of N , i.e. P is a permutation lattice and N ′ is a
flabby lattice. By Lemma 2.4, this short exact sequence splits, i.e. P � N ⊕ N ′ . Hence N is an invertible
G-lattice. Thus kβ(Nβ)G is retract k-rational by Theorem 6.3. �
Lemma 6.5. Let G be a finite group satisfying the property in Theorem 5.6 and k(Ḡ) is retract k-rational for
all quotient groups Ḡ of the group G. Let α : 0 → k× → Mα → M → 0 be a short exact sequence of Z[G]-
modules where M is a G-lattice. Assume the exact sequence α satisfies assumptions (i) and (ii) in Lemma 6.4.
Then kα(M)G is retract k-rational.

Proof. By Lemma 6.4, it remains to show that the assumption (iii) is valid for α, i.e. [M]fl is invertible.
But this follows from Theorems 2.5 and 5.6. �
Remark. Lemma 6.5 was proved by Saltman when G � C p where p is a prime number and ζp ∈ k
[Sa7, Lemma 11].

The next result is a generalization of Theorem 6.1 and is valid for any field k which is algebraically
closed and char k � |G|. But we choose to present our result when k is the field of complex numbers.

Theorem 6.6. Let G be a finite group. The following three statements are equivalent:

(i) All the Sylow subgroups of G are cyclic.
(ii) Cα(M)G is retract C-rational for all G-lattices M, for all short exact sequences of Z[G]-modules α : 0 →

C× → Mα → M → 0.
(iii) Brv,C(Cα(M)G ) = 0 for all G-lattices M, for all short exact sequences of Z[G]-modules α : 0 → C× →

Mα → M → 0.

Proof. (ii) ⇒ (iii) by Theorem 3.2.
(iii) ⇒ (i) by Theorem 6.1.
It remains to show that (i) ⇒ (ii). We will apply Lemma 6.5.
Let G be a finite group satisfying the assumption (i) of this theorem. By Theorem 5.6, the group

G and all of its quotient groups are metacyclic; thus Theorem 5.10 is applicable to these groups. It
follows that C(Ḡ) is retract C-rational for all quotient groups Ḡ of the group G .

For a short exact sequence of Z[G]-modules α : 0 → C× → Mα → M → 0, we will show that
Cα(M)G is retract C-rational. Replacing G by some quotient group G/H if necessary, we may assume
that G acts faithfully on Mα .

In order to apply Lemma 6.5, we should check the validity of the assumptions (i) and (ii) of
Lemma 6.5. The assumption (i) is valid by Theorem 6.2. As to the assumption (ii), we will show that
H2(G ′,C×) → H2(G ′, Nβ) is injective for any subgroup G ′ ⊂ G , which is equivalent to the assumption
(ii) of Lemma 6.5, because Nβ is H1 trivial.

Note that H2(G ′,C×) is the trivial group, because we may consider H2(G ′
p,C×) where G ′

p is a

p-Sylow subgroup of G ′ and we find that H2(G ′
p,C×) � H0(G ′

p,C×) � C×/(C×)q = 0 where q is the
order of the cyclic group G ′

p . Hence the result. �
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