CRITICALLY (k, k)-CONNECTED GRAPHS

Kiyoshi ANDO

Nippon Ika University, 2-297 Kosugi, Nakahara-ku, Kawasaki, Japan

Yoko USAMI Ochanomizu University, 2–1 Otsuka, Bunkyo-ku, Tokyo, Japan

Received 6 November 1985 Revised 17 November 1986

The vertex connectivity of a graph G is denoted by $\kappa(G)$ and the minimum degree of G is denoted by $\delta(G)$. A finite simple graph G is said to be critically (k, k)-connected if $\kappa(G) = \kappa(\bar{G}) = k$ and for each vertex v of $G \kappa(G - v) = k - 1$ or $\kappa(\bar{G} - v) = k - 1$, where \bar{G} is the complement of G. The following result is proved: If G is a critically (k, k)-connected graph, $k \ge 2$, $\delta(G) \ge \frac{1}{2}(3k - 1)$ and $\delta(\bar{G}) \ge \frac{1}{2}(3k - 1)$, then $|V(G)| \le 4k$. Furthermore, these bounds are sharp for $k \ge 3$.

1. Introduction

In this paper, we consider only finite simple graphs. The set of the vertices and the set of the edges of a graph G are denoted by V(G) and E(G), respectively. The vertex connectivity of G is denoted by $\kappa(G)$ and the minimum degree of G is denoted by $\delta(G)$. A graph G is said to be critically k-connected if $\kappa(G) = k$ and $\kappa(G-v) = k-1$ for each vertex v of G. Chartrand, Kaugars and Lick [1] have shown that if G is a critically k-connected graph, $k \ge 2$, then $\delta(G) < \frac{1}{2}(3k-1)$ and that this bound is sharp.

Let \bar{G} be the complement of G. A graph G is said to be critically (k, k)-connected if $\kappa(G) = \kappa(\bar{G}) = k$ and for each vertex v of $G \kappa(G - v) = k - 1$ or $\kappa(\bar{G} - v) = k - 1$. In this paper, we prove the following theorem.

Theorem A. If G is a critically (k, k)-connected graph, $k \ge 2$, $\delta(G) \ge \frac{1}{2}(3k-1)$ and $\delta(\bar{G}) \ge \frac{1}{2}(3k-1)$, then $3k \le |V(G)| \le 4k$.

We remark that this upper bound of |V(G)| is sharp. Define $H_1 = K_k$, $H_2 = \bar{K}_k$, $H_3 = \bar{K}_k$ and $H_4 = K_k$. We define a graph G as follows:

$$V(G) = \bigcup_{i=1}^{4} V(H_i),$$

$$E(G) = \bigcup_{i=1}^{4} E(H_i) \cup \{(v, v') \mid v \in V(H_i), v' \in V(H_{i+1}), 1 \le i \le 3\}.$$

On the other hand for $k \ge 3$ the lower bound of minimum degree is sharp, since 0012-365X/87/\$3.50 (C) 1987, Elsevier Science Publishers B.V. (North-Holland)

there are infinitely many critically (k, k)-connected graphs with $\delta(G) = m$ for each integer *m* satisfying $k \le m < \frac{1}{2}(3k-1)$. These examples will be given in Section 4.

2. Preliminaries

We will give a few definitions and some notation (cf. [2]). If H is a subset of V(G), then we denote by |H| the number of the vertices in H. A subset H of V(G) may be identified with the induced subgraph $\langle H \rangle_G$ in G (or the induced subgraph $\langle H \rangle_{\bar{G}}$ in \bar{G}). A subset S of V(G) is called a k-cut of G if the induced subgraph $G - S = \langle V(G) - S \rangle_G$ is disconnected and |S| = k. For a subset H of V(G), set $N_G(H) = \bigcup_{x \in H} N_G(x) - H$, where $N_G(x)$ is the set of the vertices adjacent to x in G. Set $d_G(x) = |N_G(x)|$. A non-empty subset C of V(G) is called a fragment of G if $N_G(C)$ is a $\kappa(G)$ -cut of G and $V(G) - N_G(C) - C \neq \emptyset$. If C is a fragment of G and $N_G(C) = S$, then we say that C is a fragment with respect to S. A fragment C of G is called an end if $|N_G(C')| > \kappa(G)$ for any non-empty proper subset C' of C. Clearly an end C is a component of $G - N_G(C)$. An end of G with minimum cardinality is called an atom of G and its cardinality is denoted by a_G . We define $\tilde{C} = G - (C \cup N_G(C))$ for a fragment C of G. We also define $\tilde{C} = \bar{G} - (C \cup N_{\bar{G}}(C))$ for a fragment C of \bar{G} .

We remark that if $\delta(G) \ge \frac{1}{2}(3\kappa(G) - 1)$, then $a_G > \frac{1}{2}\kappa(G)$. In Section 3, we will prove the following Theorem B which is a generalization of Theorem A.

Theorem B. If G is a critically (k, k)-connected graph, $k \ge 2$, $a_G > \frac{1}{2}k$ and $a_{\bar{G}} > \frac{1}{2}k$, then $|V(G)| \le 4k$.

The properties of ends in the following lemmas are essentially in our argument in Section 3. Lemma C follows from Lemma 3 in [4]. Lemma D follows from Satz 2 in [3]. (We remark that $|B| < |V(G)| - \frac{3}{2}\kappa(G)$ for any end B of G if $a_G > \frac{1}{2}\kappa(G)$.)

Lemma C (Mader). If A is an end of G and $a_G > \frac{1}{2}\kappa(G)$, then $A \cap S = \emptyset$ for any $\kappa(G)$ -cut S of G.

Lemma D (Mader). If $a_G > \frac{1}{2}\kappa(G)$ and B_1 and B_2 are two distinct ends of G, then $B_1 \cap B_2 = \emptyset$.

3. A proof of Theorem B

Let $\mathscr{C}(G)$ (resp. $\mathscr{C}(\overline{G})$) be the set of the vertices contained in some $\kappa(G)$ -cut of G (resp. $\kappa(\overline{G})$ -cut of \overline{G}). Note that $V(G) = \mathscr{C}(G) \cup \mathscr{C}(\overline{G})$, if G is critically

(k, k)-connected. In this section we suppose G is critically (k, k)-connected, $k \ge 2, a_G > \frac{1}{2}k$ and $a_{\bar{G}} > \frac{1}{2}k$. Let $\{X_i\}$ (i = 1, 2, ...) be all the ends of G and $\{Y_j\}$ (j = 1, 2, ...) be all the ends of \bar{G} . Set $N_G(X_i) = S_i$, $N_{\bar{G}}(Y_j) = T_j$ for each i and j.

Lemma 1. The following hold:

- (i) $X_i \cap \mathscr{C}(G) = \emptyset$ and $Y_i \cap \mathscr{C}(\overline{G}) = \emptyset$, for all i, j;
- (ii) $X_i \cap X_{i'} = \emptyset$, $Y_j \cap Y_{j'} = \emptyset$ for all $i \neq i', j \neq j'$;
- (iii) $X_i \cap Y_j = \emptyset$ for all i, j.

Proof. Lemma C (resp. Lemma D) assures us of (i) (resp. (ii)). By Lemma C, $X_i \subseteq V(G) - \mathscr{C}(G) = \{\mathscr{C}(G) \cup \mathscr{C}(\bar{G})\} - \mathscr{C}(G) = \mathscr{C}(\bar{G}) - \mathscr{C}(G) \text{ and } Y_j \subseteq \mathscr{C}(G) - \mathscr{C}(\bar{G}).$ Then $X_i \cap Y_j = \emptyset$. Hence (iii) holds. \Box

From now on, we assume |V(G)| > 3k.

Lemma 2. There exist only two ends X_1 , X_2 of G (resp. Y_1 , Y_2 of \bar{G}), and $|\tilde{X}_i| \ge k + 1$, $|\tilde{Y}_j| \ge k + 1$, for each $1 \le i, j \le 2$. Furthermore, we can assume $T_1 \supseteq X_1$, $T_2 \not \supseteq X_1$, $T_1 \not \supseteq X_2$, $T_2 \supseteq X_2$, $S_1 \not \supseteq Y_1$, $S_2 \supseteq Y_1$, $S_1 \supseteq Y_2$ and $S_2 \not \supseteq Y_2$.

Proof. First we remark that in G, $Y_j \cup \tilde{Y}_j$ contains a complete bipartite graph with partite sets Y_j and \tilde{Y}_j as its spanning subgraph. Our second remark is that if $Y_j \cup \tilde{Y}_j - S_i$ is connected in $G - S_i$ and $|X_i| < |V(G)| - 2k \le |Y_j \cup \tilde{Y}_j - S_i|$, then $X_i \subseteq T_j$.

We claim that $|\tilde{X}_i|$, $|\tilde{Y}_j| > k$ for all *i*, *j*. Suppose $|\tilde{X}_i| \le k$. Then $|X_i| = |V(G)| - |\tilde{X}_i| - |S_i| > k$. If $X_{i'}$ is an end in \tilde{X}_i , then

$$\sum_{\text{all } j} |Y_j| \leq |\tilde{X}_i - X_{i'}| + |S_i| < \frac{3}{2}k.$$

This implies $|Y_j| \le k \le |V(G)| - 2k$ for all j. If $T_j \not \ge \tilde{X}_i$, then $X_i \cup \tilde{X}_i - T_j$ is connected in $\overline{G} - T_j$ by the first remark. Hence, as a consequence of the second remark, $S_i \supseteq Y_j$. If $T_j \supseteq \tilde{X}_i$, then $S_i \supseteq Y_j$, since $X_i \cap Y_j = \emptyset$ by Lemma 1. In any case $S_i \supseteq Y_j$ for any j. Hence

$$k = |S_i| \ge \sum_{\text{all } j} |Y_j| > k,$$

a contradiction. In case $|\tilde{Y}_j| \leq k$ we can show a similar contradiction to the above case.

Now $|\tilde{X}_i|$, $|\tilde{Y}_j| > k$ for all *i*, *j*. Then $|X_i| < |V(G)| - 2k$ and $|Y_j| < |V(G)| - 2k$ for all *i*, *j*. We claim that if $T_j \not \supseteq X_i$, then $Y_j \subseteq S_i$. If $T_j \not \supseteq X_i$, then $(X_i \cup \tilde{X}_i) - T_j$ is connected in $\tilde{G} - T_j$ by the first remark. Consequently $Y_j \subseteq S_i$ by the second remark. Now if $T_1 \not \supseteq X_1$, $T_2 \not \supseteq X_1$, then $Y_1 \cup Y_2 \subseteq S_1$, by the above claim. This is a contradiction. If $T_1 \supseteq X_1$ and $T_2 \supseteq X_1$, then $T_1 \not \supseteq X_1$ and $T_2 \not \supseteq X_1$, which is a contradiction similarly. Now we can assume $T_1 \supseteq X_1$ and $T_2 \not \supseteq X_1$ T_3 . Then there exist only two ends Y_1 and Y_2 in G. Similarly we can show that there exist only two ends X_1 and X_2 in G. Hence the first statement holds.

Since $T_1 \supseteq X_1$ and $T_2 \not\supseteq X_1$, $T_1 \not\supseteq X_2$, $T_2 \supseteq X_2$ and by the above claim $Y_2 \subseteq S_1$, $Y_1 \subseteq S_2$. Hence the second statement holds. \Box

By Lemma 2 note that G - S consists of two components for any k-cut S of G. One contains X_1 and the other contains X_2 .

Lemma 3. Suppose S is a k-cut of G. Then $S \not\supseteq Y_1$ or $S \not\supseteq Y_2$. If $S \not\supseteq Y_i$, then the component C of G - S containing X_i is contained in T_i and the other component of G - S has at least k + 1 vertices.

Proof. The first claim holds since the fact that $S \supseteq Y_1$ implies that $S \not\supseteq Y_2$. Suppose $S \not\supseteq Y_i$. Since $S \not\supseteq Y_i$ and $\tilde{Y}_i - S \neq \emptyset$, $(Y_i \cup \tilde{Y}_i) - S$ is connected in G - S and one component C of G - S is contained in T_i . Since X_i is the only end of G contained in T_i , C must contain X_i . The last statement follows, since |V(G)| > 3k. \Box

Lemma 4. (i) There is only one maximal element X_i^* in the set of all the fragments of G contained in T_i .

- (ii) If S is a k-cut of G satisfying $S \not\supseteq Y_i$, then $\tilde{X}_i^* \cap S = \emptyset$.
- (iii) $\tilde{X}_1^* \cap \tilde{X}_2^* \cap \mathscr{C}(G) = \emptyset$.
- (iv) $\tilde{Y}_1^* \cap \tilde{Y}_2^* \cap \mathscr{C}(\bar{G}) = \emptyset$ for the maximal element Y_i^* in the set of all the fragments of \bar{G} contained in S_i (i = 1, 2).
- (v) $\tilde{X}_1^* \cap \tilde{X}_2^* \cap \tilde{Y}_1^* \cap \tilde{Y}_2^* = \emptyset$.

Proof. Let C and C' be fragments of G contained in T_i . First we will show $C \cup C'$ is a fragment of G contained in T_i . Clearly $C \cup C' \subseteq T_i$. Note that

$$|\tilde{C} \cap \tilde{C}'| \ge |V(G)| - |C \cup C'| - |N_G(C)| - |N_G(C')|$$
$$\ge |V(G)| - |T_i| - 2k = |V(G)| - 3k > 0.$$

Since $C \cap C' \supseteq X_i \neq \emptyset$ and $\tilde{C} \cap \tilde{C}' \neq \emptyset$, $C \cup C'$ is also a fragment of G (cf. Lemma 2.1 in [2]). Hence (i) holds.

If C is a fragment of G with respect to S contained in T_i , then $C \subseteq X_i^*$. Hence $\tilde{C} \supseteq \tilde{X}_i^*$ and so $\tilde{X}_i^* \cap S \subseteq \tilde{C} \cap S = \emptyset$. Thus (ii) holds. If S is a k-cut of G, then $S \not\supseteq Y_1$ or $S \not\supseteq Y_2$. Hence from (ii), (iii) follows. By a similar argument for \tilde{G} , (iv) holds. Since $V(G) = \mathscr{C}(G) \cup \mathscr{C}(\tilde{G})$, (v) follows. \Box

With these lemmas, we are now prepared to prove Theorem B. Set $N_G(X_i^*) = S_i^*$ and $N_{\bar{G}}(Y_i^*) = T_i^*$.

Clearly $|\tilde{X}_i^*| > k$ and $|\tilde{Y}_i^*| > k$ for i = 1, 2. First we claim $V(G) - T_2^* - S_1^* \subseteq \tilde{X}_1^*$. Note that $Y_1 - S_1^* \neq \emptyset$. (If $S_1^* \supseteq Y_1$, then $S_1^* \supseteq Y_2$ and the component of $G - S_1^*$ containing X_2 is contained in T_2 by Lemma 3, which contradicts $X_2 \subseteq \tilde{X}_1^*$ and $|\tilde{X}_1^*| > k$.) $S_2 \supseteq Y_2^* \supseteq Y_1$ by Lemma 2 and Lemma 4(iv). Since $Y_2^* - S_1^* \supseteq Y_1 - S_1^* \neq \emptyset$ and $\tilde{Y}_2^* - S_1^* \neq \emptyset$, $V(G) - T_2^* - S_1^*$ is connected in $G - S_1^*$. Since $|V(G) - T_2^* - S_1^*| > k$, $V(G) - T_2^* - S_1^* \subseteq \tilde{X}_1^*$ and the claim holds. Similarly $V(G) - T_1^* - S_2^* \subseteq \tilde{X}_2^*$. Then

$$V(G) - (S_1^* \cup S_2^* \cup T_1^* \cup T_2^*) \subseteq \tilde{X}_1^* \cap \tilde{X}_2^*.$$

Similarly for \tilde{G}

$$V(G) - (S_1^* \cup S_2^* \cup T_1^* \cup T_2^*) \subseteq \tilde{Y}_1^* \cap \tilde{Y}_2^*.$$

Then

$$V(G) - (T_1^* \cup T_2^* \cup S_1^* \cup S_2^*) \subseteq \tilde{X}_1^* \cap \tilde{X}_2^* \cap \tilde{Y}_1^* \cap \tilde{Y}_2^* = \emptyset,$$

by Lemma 4(v). Hence $|V(G)| \leq 4k$ and Theorem B holds.

4. Examples

For any given positive integer n and $k \ge 3$, we will give a critically (k, k)connected graph G(k, n) with $\delta(G(k, n)) = \lfloor \frac{1}{2}(3k-3) \rfloor$ and $\delta(\overline{G}(k, n)) = \lfloor \frac{1}{2}(3k-1) \rfloor$ and $|G(k, n)| = \lfloor \frac{1}{2}(7k+1) \rfloor + \lfloor \frac{1}{2}k - 1 \rfloor n$. It is convenient to set $k' = \lfloor \frac{1}{2}k - 1 \rfloor$ and $k'' = \lfloor \frac{1}{2}(k+1) \rfloor$. Define $H_1 = K_k$ and $H_2 = K_k$ and set $V(H_1) = \{v_1, v_2, \ldots\}$ and $V(H_2) = \{u_1, u_2, \ldots\}$. Also define $M_j = K_{k'}$ and set $V(M_j) = \{x_{j,1}, x_{j,2}, \ldots, x_{j,k'}\}$ for each j $(1 \le j \le n)$. Let $G_0(k, n)$ be a graph such that

$$V(G_0(k, n)) = V(H_1) \cup V(H_2) \cup \left(\bigcup_{j=1}^n V(M_j)\right)$$

and

$$E(G_0(k, n)) = \left(\bigcup_{j=1}^n E(M_j)\right) \cup E(H_1) \cup E(H_2)$$
$$\cup \{(v_i, x_{1,h}), (u_i, x_{n,h}) \mid 1 \le i \le k, 1 \le h \le k'\}$$
$$\cup \left(\bigcup_{j=2}^n \{(x_{j-1,i}, x_{j,h}) \mid 1 \le i, h \le k'\}\right).$$

Define $H_0 = \overline{K}_{k''}$, $L_1 = K_{k''-1}$ and $L_2 = K_{k'+1}$. We define G(k, n) as follows:

$$V(G(k, n)) = V(G_0(k, n) \cup V(L_1) \cup V(L_2) \cup V(H_0),$$

$$E(G(k, n)) = E(G_0(k, n)) \cup E(L_1) \cup E(L_2)$$

$$\cup \{(v, v') \mid v \in V(L_i), v' \in V(H_i), 1 \le i \le 2\}$$

$$\cup \{(u, u') \mid u \in V(G_0(k, n)), u' \in V(H_0)\}.$$

Now $d_{G(k,n)}(z) = \lfloor \frac{1}{2}(3k-3) \rfloor = \delta(G(k, n))$ for a vertex z of L_1 and $d_{\bar{G}(k,n)}(z') = \lfloor \frac{1}{2}(3k-1) \rfloor = \delta(\bar{G}(k, n))$ for a vertex z' of H_0 . The graph given in Fig. 1 is G(5, 4).

If we define $L_1 = K_{m-k+1}$ and $L_2 = K_{2k-m-1}$, for each fixed integer *m* satisfying $k \le m < \frac{1}{2}(3k-1)$, then the graph G'(k, n, m) with $n \ge 2$ constructed in the same way as G(k, n) is a critically (k, k)-connected graph with $\delta(G'(k, n, m)) = m$ and $\delta(\bar{G}'(k, n, m)) = [\frac{1}{2}(3k-1)]$.

In [3] Hamidoune proved that a critically k-connected graph contains two vertices of degree not exceeding $\frac{3}{2}k - 1$ and there is a critically k-connected graph having exactly two vertices of degree not exceeding $\frac{3}{2}k - 1$ for each $k \ge 3$. On the other hand, there are infinitely many critically (k, k)-connected graphs having exactly one vertex of degree in G or in \overline{G} not exceeding $\frac{3}{2}k - 1$ for every $k \ge 5$ and k = 3. For $k \ge 5$ and k = 3 the graphs G'(k, n, k) with $n \ge 2$ are such examples.

By tedious calculation, we can show a critically (2, 2)-connected graph with $\delta(G) \ge 2$ and $\delta(\bar{G}) \ge 3$ satisfies |V(G)| = 8 or 9. There are infinitely many critically (2, 2)-connected graphs with $\delta(G) = \delta(\bar{G}) = 2$. If we define $H_1 = K_2$, $H_2 = K_2$, $M_j = K_1$ ($1 \le j \le n$), $H_0 = K_1$, $L_1 = K_1$, and $L_2 = K_1$, then the graph G''(2, n) constructed in the same way as G(k, n) is one of such graphs for each positive integer n.

References

- G. Chartrand, A. Kaugars and D.R. Lick, Critically n-connected graphs, Proc. Amer. Math. Soc. 32 (1972) 63-68.
- [2] Y. O. Hamidoune, On critically h-connected simple graphs, Discrete Math. 32 (1980) 257-262.
- [3] W. Mader, Ein Eigenshaft der Atome endlicher Graphen, Arch. Math. 22 (1971) 333-336.
- [4] W. Mader, Disjunkte Fragmente in kritisch n-fach zusammenhängenden Graphen, European J. Combin. 6 (1985) 353-359.