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The vertex connectivity of a graph G is denoted by x(G) and the minimum degree of G is 
denoted by_ 6(G).  A finite simple graph G is said to be critically (k, k)-connected if 
x(G) = x(G) = k and for each vertex v of G x(G - v) = k - 1 or x((~ - v) = k - 1, where {~ is 
the complement of G. The following result is proved: If G is a critically (k, k)-connected graph, 
k I> 2, 6(G) t> ½(3k - 1) and 6((~) >/½(3k - 1), then tV(G)I ~< 4k. Furthermore, these bounds 
are sharp for k >1 3. 

1. Introduction 

In this paper, we consider only finite simple graphs. The set of the vertices and 
the set of the edges of a graph G are denoted by V ( G ) a n d  E(G) ,  respectively. 
The vertex connectivity of G is denoted by x ( G )  and the minimum degree of G is 
denoted by 6(G). A graph G is said to be critically k-connected if x ( G )  = k and 
x ( G -  v ) =  k -  1 for each vertex v of G. Chartrand, Kaugars and Lick [1] have 
shown that if G is a Critically k-connected graph, k>~2, then 6 ( G ) < ½ ( 3 k -  1) 
and that this bound is sharp. 

Let (~ be the complement of G. A graph G is said to b e  critically 
(k, k)-connected if x ( G )  = x ( G )  = k and for each vertex v of G x ( G  - v) = k - 1 
or x((~ - v) = k - 1. In this paper, we prove the following theorem. 

Theorem A.  I f  G is a critically (k, k)-connected graph, k i>. 2, 6(G) t> ½(3k - 1) 
and 6(G)  >1½(3k - 1), then 3k <~ IV(G)l 4k. 

We remark that this upper bound of IV(G)I is sharp. Define 1-11 = Kk, H2 = ~ik, 
//3 = Kk and H4 = Kk. We define a graph G as follows: 

V(G)= [...J V(Hi), 
i=1 

4 

E(G) = [...J E(Hi) U {(v, v') l v ~ V(Hi), v 
i=I 

E V ( H i + I )  , 1 <~ i <<- 3}. 

On the other hand for k ~> 3 the lower bound of minimum degree is sharp, since 
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there are infinitely many critically (k, k)-connected graphs with 6 ( G ) =  m for 
each integer m satisfying k ~< m < ½(3k-  1). These examples will be given in 
Section 4. 

2. Preliminaries 

We will give a few definitions and some notation (cf. [2]). If H is a subset of 
V(G), then we denote by IHI the number of the vertices in H. A subset H of 
V(G) may be identified with the induced subgraph (H)G in G (or the induced 
subgraph ( H ) ~  in t~). A subset S of V(G) is called a k-cut of G if the induced 
subgraph G -  S = ( V ( G ) -  S ) c  is disconnected and ISI = k. For a subset H of 
V(G),  set NG(H)=I,_Jx~HNG(x)--H, where NG(X) is the set of the vertices 
adjacent to x in G. Set dG(x) = ING(X)I. A non-empty subset C of V(G)  is called 
a fragment of G if NG(C) is a r (G)-cut  of G and V(G) - NG(C) - C 4= t~. If C is a 
fragment of G and N6(C) = S, then we say that C is a fragment with respect to S. 
A fragment C of G is called an end if [NG(C')I > r(G)  for any non-empty proper 
subset C'  of C. Clearly an end C is a component of G -  N6(C). An end of G 
with minimum cardinality is called an atom of G and its cardinality is denoted by 
a6. We define (~ = G -  (C U NG(C)) for a fragment C of G. We also define 
C_, = t~ - (C U N~(C)) for a fragment C of t~. 

We remark that if 6(G)  I> ½(3r(G) - 1), then aG > ½r(G). In Section 3, we will 
prove the following Theorem B which is a generalization of Theorem A. 

Theorem B. I f  G is a critically (k, k)-connected graph, k>~2, ac >½k and 
a~ > ½k, then IV(G)I <~ 4k. 

The properties of ends in the following lemmas are essentially in our argument 
in Section 3. Lemma C follows from Lemma 3 in [4]. Lemma D follows from Satz 
2 in [3]. (We remark that IBI<IV(G)I-a2x(G) for any end B of G if 

aG>½x(G).) 

Lemma C (Mader). I rA  is an end of G and ac > lr (G) ,  then A N S = (J for any 
r(G)-cut S of G. 

Lemma D (Mader). f f  a6 > ½x(G) and B1 and BE are two distinct ends of G, then 
BlnB = . 

3. A proof of Theorem B 

Let ~ (G)  (resp. qg(t~)) be the set of the vertices contained in some x(G)-cut of 
G (resp. r( t~)-cut  of (~). Note that V ( G ) =  ~ (G)U ~(G), if G is critically 
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(k, k)-connected. In this section we suppose G is critically (k, k)-connected,  
k>-2, a~>½k and a~>½k. Let {Xi} (i = 1, 2 , . . . )  be all the ends of G and {Y~} 
(j  = 1, 2 , . . . )  be all the ends of t~. Set N~(Xi) = Si, N~(Y~) = T~ for each i and j. 

Lemma 1. The following hold: 
(i) X , n  ~ ( G )  = 0 and Y~n ~¢(t~) = 0, for all i, j; 

(ii) X~NXi,=O, Y~N Y~,=O for all i=/ : i ' , j~ j '  ; 
(iii) X~ tq Y~ = ~ for all i, j. 

Proof. L e m m a  C (resp. Lemma D) assures us of (i) (resp. (ii)). By Lemma C, 
Xi ~_ V(G)  - ~¢(G) = {~¢(G) t.J ~¢(t~)} - ~¢(G) = ~¢(t~) - ~¢(G) and Y~ =_ ~ ( G )  - 
~(t~).  Then Xi N Y~ = ~. Hence (iii) holds. [] 

From now on, we assume IV(G)I > 3k. 

Lemma 2. There exist only two ends X1, X2 of G (resp. Y1, Y2 of  G), and 
I,¢/I i> k + 1, I~1 >I k + 1, for each 1 <~ i, j <- 2. Furthermore, we can assume 
~ ~_ X~, T2 ~ X~, T~ ~b X2, T~ ~_ X2, S~ r~ Y~, S~ ~_ YI, S~ ~_ Y~ and S~ ~p Y~. 

Proof.  First we remark that in G, Yj LI g contains a complete bipartite graph with 
partite sets Yj and g as its spanning subgraph. Our second remark  is that if 
Yj t.J g - S~ is connected in G - Si and IX/I < IV(G)I- 2k ~< IY~ u ~ - Sil, then 
xi~_ ~. 

We claim that IXil, Igl > k for all i, j. Suppose IA'~l ~< k. Then IX, I = I V ( G ) I -  
I-¢~1- ISd > k. If X/. is an end in -~'i, then 

IYjl ~ IX, - Xi,I + ISd < a2k. 
aUj 

This implies IYjl ~< k < I V ( a ) l -  2k for all j. If Tj ¢ ~'i, then Xi t.J X / -  Tj is 
connected in t~ - Tj by the first remark.  Hence, as a consequence of the second 
remark,  Si ~_ Yj. If Tj _~ ~'i, then Si ~_ Yj, since X/tq Yj = ~ by Lemma 1. In any case 
S~ _~ Yj for any j. Hence 

k = ISil/> ~ IYjl > k, 
any 

a contradiction. In  case I~l ~< k we can show a similar contradiction to the above 
c a s e .  

Now IJ?il, Igl > k for all i, j. Then [Xil < I V ( G ) l -  2k and IYjl < I V ( G ) l -  2k for 
all i, ]. We claim that if Tj ~h Xi, then Yj ~_ S~. If Tj ~ Xi, then (Xi U J~) - Tj is 
connected in ( ~ - T j  by the first remark.  Consequently Yj =_ $~ by the second 
remark. Now if T1 ~ X1, T2 ~ X1, then Y1 U Y2 ~- S1, by the above claim. This is a 
contradiction. If T1 _~ X1 and T2 _~ X1, then T1 ~ X2 and T2 ~ X2, which is a 
contradiction similarly. Now we can assume T~ _~ X1 and T2 ~ X1 and there is no 
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T3. Then there exist only two ends Y~ and Y2 in G. Similarly we can show that 
there exist only two ends X1 and X2 in G. Hence the first statement holds. 

Since TI _~ X1 and T2 ~ XI, TI ~ X2, T2 _~ X2 and by the above claim Y2 -~ 
S~, Y~ _ $2. Hence the second statement holds. [] 

By Lemma 2 note that G - S consists of two components for any k-cut S of G. 
One contains X1 and the other contains X2. 

Lemma 3. Suppose S is a k-cut of  G. Then S ~ Y~ or S ~ Y2. I f  S ~ Y~, then the 
component C of  G - S containing Xi is contained in Ti and the other component of 
G - S has at least k + 1 vertices. 

Proof. The first claim holds since the fact that S _D Y~ implies that S ~ Y2. 
Suppose S ~ Y/. Since S ~ Y/and I~/- S :/:f~, (Y~ 13 Y//) - S is connected in G - S 
and one component C of G - S is contained in T~. Since Xi is the only end of G 
contained in T/, C must contain Xi. The last statement follows, since IV(G)I > 
3k. I-1- 

Lenuna 4. (i) There is only one maximal element X* in the set of  all the fragments 
of  G contained in Ti. 

(ii) I f  S is a k-cut of  G satisfying S ~ Yi, then f(* fq S = O. 
(iii) X~ N X~ f3 Ca(G)= O. 
(iv) l?~ Iq I7"~ ' I"1 Ca((~)=0 for the maximal element t1" in the set o f  all the 

fragments of  G contained in Si (i = 1, 2). 
(v) n n 

Proof .  Let C and C' be fragments of G contained in T~. First we will show C 13 C' 
is a fragment of G contained in T~. Clearly C U C' c_ T/. Note that 

IC n C'I >t IV(G)I - I C  U C'l - INc(C)I - INc(C ' ) l  

i> I V ( G ) I -  IT/I- 2 k -  I V ( a ) l -  3k >0.  

Since C N C'_~ Xi :/:t~ and C N C':/: f~, C 13 C' is also a fragment of G (cf. 
Lemma 2.1 in [2]). Hence (i) holds. 

If C is a fragment of G with respect to S contained in T~, then C ~ X*. Hence 
D J~* and go ~'* N S ~ C I"1 S = 0. Thus (ii) holds. If S is a k-cut of G, then 

S ~ Y1 or S ~ Y2. Hence from (ii), (iii) follows. By a similar argument for G, (iv) 
holds. Since V(G)  = Ca(G) 13 Ca((~), (v) follows. [] 

With these lemmas, we are now prepared to prove Theorem B. Set NG(X*) = 
S* and N~(Y~)=  T.*, . 

Clearly IX'?I > k  and 11771 > k  for i = 1, 2. First we claim V(G)  - T~ - S~ ~ X ~ .  
Note that Y~- S~' ~ f~. (If S~ ~ Yx, then S~ ~ Y2 and the component of G -  S( 
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containing X2 is contained in T2 by Lemma 3, which contradicts X2 c ~ ' t  and 
I~ ' t l>k. )  S2_DY~_~Y1 by Lemma 2 and Lemma 4(iv). Since Y ~ - S t ~ _ Y ~ -  
St ~ 0  and }'~z - S t  ~(J, V(G)  - T~ - S t  is connected in G - St. Since IV(G) - 
T~ - St] > k, V(G)  - T~z - St  ~_ f ( t  and the claim holds. Similarly V(G)  - T t  - 
S~ _~ X~. Then 

V(G) - (St U S~ U Tt U T~) ~_ Xt  n X~. 

Similarly for t~ 

V(G) - (st u s~ u Tt u T~) c_ Yt n t~. 

Then 

V(6 ) - (T tU  T~ USt US~)~_~t n ~  n ?~ n £~=0, 

by Lemma 4(v). Hence IV(G)I ~< 4k and Theorem B holds. 

4. Examples 

For any given positive integer n and k >t 3, we will give a critically (k, k)- 
connected graph G(k, n) with 6(G(k,  n) )=  [½(3k- 3)1 and 6(G(k,  n)) = 
[½(3k- 1)1 and IG(k, n)l = [½(7k + 1)] + [½k- 1]n. It is convenient to set 
k ' =  [½k- 11 and k"=  [½(k + 1)1. Define/-/1 = Kk and//2 = Kk and set V(H~)= 
{vl, v2 , . . . }  and V(H2) = {ul, u2 , . . . } .  Also define Mj= Kk, and set V(Mj) = 
{xj.1, x j . 2 , . . . ,  Xj, k'} for each j (1 ~<j ~< n). Let Go(k, n) be a graph such that 

and 

V(Go(k, n)) = V(HO U V(I-I9 U V(~)  

E(Go(k, n) )=  (j=q E(Mj)) U E(H1) U E(H2) 

U {(vi, Xl,h), (ui, x,,,h) l l  <~i ~ k ,  1 <-h <~k'} 

U {(X~_l,,,Xj.h) l l ~ i , h ~ k ' } ) .  

Define Ho = F2k,,, L1 = Kk.-t  and L2 = KK,+I. We define G(k, n) as follows: 

v(a(k,  n)) = V(Co(k, n) U V(L1) U V(L,) U V(~o), 

E(G(k,  n)) = E(Go(k, n)) U E(Lx) U E(L2) 

U {(v, v ' ) l v  e V(Li),  v '  ~ V(Hi), 1 <~i <~2} 

U {(u, u ' ) l u  ~ V(Go(k, n)), u' ~ V(Ho)}. 

Now dG(k,n)(Z)= [½(3k - 3)1 = 6(G(k ,  n)) for a vertex z of L1 and d(~(k,,,)(z') = 
[½(3k- 1)] = 6(t~(k, n)) for a vertex z'  of Ho. The graph given in Fig. 1 is 
G(5, 4). 
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Fig. 1. 

If we define L1 = Km-k+l and L2 = K2k-m-1,  for each fixed integer m satisfying 
k ~< m < ½(3k - 1), then the graph G'(k, n, m) with n >I 2 constructed in the same 
way as G(k, n) is a critically (k, k)-connected graph with t3(G'(k, n, m))= m and 
6(t~'(k, n, m ) ) =  [½(3k- 1)]. 

In [3] Hamidoune proved that a critically k-connected graph contains two 
vertices of degree not exceeding 3k - 1 and there is a critically k-connected graph 
having exactly two vertices of degree not exceeding ~2k - 1 for each k i> 3. On the 
other hand, there are infinitely many critically (k, k)-connected graphs having 
exactly one vertex of degree in G or in t~ not exceeding 3k - 1 for every k I> 5 
and k = 3 .  For k ~ 5  and k = 3  the graphs G'(k,n,k)  with ni>2 are such 
examples. 

By tedious calculation, we can show a critically (2, 2)-connected graph with 
6(G)~>2 and di(t~)~>3 satisfies IV(G)[ = 8  or 9. There are infinitely many 
critically (2, 2)-connected graphs with 6 ( G ) = / t ( G )  = 2. If we define //1 =/(2,  
HE = K2, Mj = K1 (1 ~<] <~ n), H0 = K1, L~ = Kt, and L2 = K1, then the graph 
G"(2, n) constructed in the same way as G(k, n) is one of such graphs for each 
positive integer n. 
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