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The vertex connectivity of a graph G is denoted by x(G) and the minimum degree of G is
denoted by 8(G). A finite simple graph G is said to be critically (k, k)-connected if
k(G) = k(G) = k and for each vertex v of G k(G ~v) =k —1 or k(G —v) =k — 1, where G is
the complement of G. The following result is proved: If G is a critically (k, k)-connected graph,
k=2, 8(G)=3(Bk —1) and 8(G)=1(3k — 1), then {V(G)| < 4k. Furthermore, these bounds
are sharp for k= 3.

1. Introduction

In this paper, we consider only finite simple graphs. The set of the vertices and
the set of the edges of a graph G are denoted by V(G) and E(G), respectively.
The vertex connectivity of G is denoted by x(G) and the minimum degree of G is
denoted by 8(G). A graph G is said to be critically k-connected if x(G) = k and
k(G —v) =k —1 for each vertex v of G. Chartrand, Kaugars and Lick [1] have
shown that if G is a critically k-connected graph, k=2, then 8(G)<3(3k —1)
and that this bound is sharp.

Let G be the complement of G. A graph G is said to be' critically
(k, k)-connected if x(G) = k(G) = k and for each vertex v of G k(G —v)=k — 1
or k(G —v) =k — 1. In this paper, we prove the following theorem.

Theorem A. If G is a critically (k, k)-connected graph, k =2, 6(G)=3(3k — 1)
and 6(G)=1(3k — 1), then 3k <|V(G)| < 4k.

We remark that this upper bound of |V(G)| is sharp. Define H, = K, H, = K,,
H; =K, and H,= K. We define a graph G as follows:

V()= U V(H),
E(G)= L:Jl E(H) U {(v, v") |v e V(H), v’ € V(H,.,), 1 <i<3}.

On the other hand for k =3 the lower bound of minimum degree is sharp, since
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there are infinitely many critically (k, k)-connected graphs with 6(G)=m for
each integer m satisfying k <m <3(3k —1). These examples will be given in
Section 4.

2. Preliminaries

We will give a few definitions and some notation (cf. [2]). If H is a subset of
V(G), then we denote by |H| the number of the vertices in H. A subset H of
V(G) may be identified with the induced subgraph (H)s in G (or the induced
subgraph (H)s in G). A subset S of V(G) is called a k-cut of G if the induced
subgraph G —S = (V(G) — S ) is disconnected and |S|=k. For a subset H of
V(G), set Ng(H) =;exz Ns(x) — H, where Ng(x) is the set of the vertices
adjacent to x in G. Set ds(x) = |Ng(x)|. A non-empty subset C of V(G) is called
a fragment of G if Ng(C) is a k(G)-cut of G and V(G) —Ng(C)—C#8. If Cis a
fragment of G and Ng(C) = S, then we say that C is a fragment with respect to S.
A fragment C of G is called an end if |[Ng(C')| > x(G) for any non-empty proper
subset C' of C. Clearly an end C is a component of G — Ng(C). An end of G
with minimum cardinality is called an atom of G and its cardinality is denoted by
ag. We define C=G — (CUNg(C)) for a fragment C of G. We also define
C =G — (CUNg(Q)) for a fragment C of G.

We remark that if 6(G) = 3(3x(G) — 1), then ag > 3k(G). In Section 3, we will
prove the following Theorem B which is a generalization of Theorem A.

Theorem B. If G is a critically (k, k)-connected graph, k=2, ag >3k and
ag> 3k, then |V (G)| < 4k.

The properties of ends in the following lemmas are essentially in our argument
in Section 3. Lemma C follows from Lemma 3 in [4]. Lemma D follows from Satz
2 in [3]. (We remark that |B|<|V(G)|-3kx(G) for any end B of G if
a>3x(G).)

Lemma C (Mader). If A is an end of G and ag > 3x(G), then AN S =@ for any
k(G)-cut S of G.

Lemma D (Mader). If ag > 3kx(G) and B, and B, are two distinct ends of G, then
Bl n Bz = ﬂ.
3. A proof of Theorem B

Let €(G) (resp. €(G)) be the set of the vertices contained in some x(G)-cut of
G (resp. x(G)-cut of G). Note that V(G) = 4(G)U €(G), if G is critically
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(k, k)-connected. In this section we suppose G is critically (k, k)-connected,
k=2, as >3k and ag>%k. Let {X;} (i=1,2,...) be all the ends of G and {Y;}
(j=1,2,...) be all the ends of G. Set Ng(X;) = S;, N5(Y;) = T, for each i and j.

Lemma 1. The following hold:
(i) X;N6(G)=9and Y,N€(G) =0, forall i, j;
() X.NX;: =0, ,NY. =@ foralli+i,j#j';
(iii) X;NY; =0 forall i, j.

Proof. Lemma C (resp. Lemma D) assures us of (i) (resp. (ii)). By Lemma C,
X.c V(G) — 4(G) = {%(G) U %(G)} — 4(G) = 6(G)—~ 4(G) and Y,c €(G) -
%(G). Then X; N'Y;=0. Hence (iii) holds. O

From now on, we assume |V (G)| > 3k.

Lemma 2. There exist only two ends X,, X, of G (resp. Y,, Y, of G), and
| Xil=k+1,|Y;|=k+1, for each 1<i,j<2. Furthermore, we can assume
T;.:QXI, 712¢X'1) T'I¢X2) EQXZ’ SI¢Y1’ SZQ Yl; SIQIIZandSZ¢ 1,2'

Proof. First we remark that in G, Y; U Y; contains a complete bipartite graph with
partite sets Y; and Y, as its spanning subgraph. Our second remark is that if
Y;UY,—S; is connected in G—S; and |X;|<|V(G)|-2k<|Y;UY,—S,|, then
Xi c 7; : :

We claim that |X;|, |¥;|> k for all i, j. Suppose |X;| <k. Then |X;| = |V(G)| -
|X.| — 1S:| > k. If X; is an end in X}, then

XY <|X; - Xi| + S| <3k.
allj

This implies |V|<k <|V(G)| -2k for all j. If T, X, then X,UX,—T; is
connected in G — T; by the first remark. Hence, as a consequence of the second
remark, §; 2 Y. If T, o X, then §; 2 Y}, since X; NY; =0 by Lemma 1. In any case

S; 2 Y, for any j. Hence
k=182 |y|>k,
all j

a contradiction. In case |Y;| <k we can show a similar contradiction to the above
case.

Now |X;|, |¥;| >k for all i, j. Then |X;| <|V(G)|— 2k and |Yj| < |V (G)| — 2k for
all i, j. We claim that if 7,3 X, then Y, c ;. If T, X, then (X;UX)- T is
connected in G —T; by the first remark. Consequently Y;c S; by the second
remark. Now if 7, 3 X;, T, p X;, then Y, U Y, c §;, by the above claim. This is a
contradiction. If T, o X; and T, X;, then T, X, and T, X, which is a
contradiction similarly. Now we can assume 7; 2 X, and T, 3 X, and there is no



18 K. Ando, Y. Usami

T,. Then there exist only two ends ¥; and Y; in G. Similarly we can show that
there exist only two ends X, and X, in'G. Hence the first statement holds.

Since T12X; and L, X,, T, 2X,, T,2X, and by the above claim Y, c
S;, Y1 = S,. Hence the second statement holds. O

By Lemma 2 note that G — S consists of two components for any k-cut S of G.
One contains X; and the other contains X,.

Lemma 3. Suppose S is a k-cut of G. Then Sp Y, 0r S Y,. If S Y, then the
component C of G — S containing X; is contained in T; and the other component of
G — S has at least k + 1 vertices.

Proof. The first claim holds since the fact that _S 2 Y; implies that S Y,.
Suppose S 2 Y;. Since SpY; and ¥, —S#6, (Y,UY))—§ is connected in G —§
and one component C of G — S is contained in 7;. Since X, is the only end of G
contained in 7;, C must contain X;. The last statement follows, since |V(G)|>
3k. O

Lemma 4. (i) There is only one maximal element X} in the set of all the fragments
of G contained in T..
(i) If S is a k-cut of G satisfying S D Y;, then X*ns=4.
(iii)) XFNX3N€(G)=4.
(iv) YINY3NG(G)=0 for the maximal element Y} in the set of all the
fragments of G contained in S; (i =1, 2).
V) XInX3nyYinyYs=4.

Proof. Let C and C’ be fragments of G contained in 7;. First we will show C U C’
is a fragment of G contained in 7;. Clearly C U C’ ¢ T;. Note that

ICNC’|=|V(G)|—|CUC’| - Ng(C)| - INs(C")|
=|V(G)| - |T| - 2k = |V(G)| — 3k >0.

Since CNC'2X;#0 and CNC'+#@, CUC’ is also a fragment of G (cf.
Lemma 2.1 in [2]). Hence (i) holds.

If Cis a fragment of G with respect to § contained in 7;, then C < X}. Hence
Co X} and so X} NS<=CNS=@. Thus (i) holds. If § is a k-cut of G, then
S3 Y, or S 3 Y,. Hence from (ii), (iii) follows. By a similar argument for G, (iv)
holds. Since V(G) = €(G) U €(G), (v) follows. [

With these lemmas, we are now prepared to prove Theorem B. Set Ng(X[) =
S and Nx(Y)=TY.

Clearly | X?| >k and |V}| > k for i = 1, 2. First we claim V(G) — T3 — S < X7.
Note that Y; —S7#0. (If S{2Y;, then ST 2Y; and the component of G — ST
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containing X, is contained in 7, by Lemma 3, which contradicts X, c X{ and
|IX3|>k) $,2Y32Y, by Lemma 2 and Lemma 4(iv). Since Y3 —Sf2Y; -
St #0 and Y3 — S7 #8, V(G)— T3 — S7 is connected in G — S7. Since [V(G) —
T3 — ST|>k, V(G) — T — §7 = X7 and the claim holds. Similarly V(G) ~ T} -
S5 < X3. Then

V(G)-(STUS;UTIUTY) cXiNnX;
Similarly for G

V(G)—-(STUS;UTIUT)cYiNYs:.
Then

V(G)—(TTUT;USTUS ) cXinXINYINY; =46,
by Lemma 4(v). Hence |V(G)| <4k and Theorem B holds.

4. Examples

For any given positive integer n and k=3, we will give a critically (k, k)-
connected graph G(k,n) with 8(G(k, n))=[3(3k—3)] and 8(G(k, n))=
13k —1)] and |G(k, n)|=[3(7k +1)] + [3k —1]|n. It is convenient to set
k' = [3k — 1] and k" = [3(k + 1)]. Define H, = K; and H, = K, and set V(H,) =
{vy, va, ...} and V(Hy) = {uy, u,, . . .}. Also define M; = K,. and set V(M;)=
{xj1, X2, - . ., Xjx} for each j (1=<j <n). Let Gy(k, n) be a graph such that

V(Golk, n)) = V(Hy) U V(H;) U (]L=J1 V)
and
E(Go(k, n)) = (,:1 E(M,-)) U E(H,) U E(H,)
U{(ws X0, (s %) | 1<i <k, 1<h<k'}
U (J:L"JZ (v X0) |1 <0, R<K'}).

Define Hy= K, L, = K;»_; and L, = K,..,. We define G(k, n) as follows:
V(G(k, n)) =V (Golk, n) UV (L) UV (L) UV (Hy),
E(G(k, n)) = E(Go(k, n)) U E(L,) U E(L,)
U{(v,v)|veV(L),v' eV(H), 1<i<2}
U{(u, u') |u e V(Gyk, n)), u' € V(Hy,)}.

Now dgu »)(2) = [3(3k —3)] = 6(G(k, n)) for a vertex z of L, and dg,y(2') =
[3(3k — 1)] = 8(G(k, n)) for a vertex z’' of H,. The graph given in Fig. 1 is
G(5, 4).
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If we define L, =K,, ., and L, =K, _,,_,, for each fixed integer m satisfying
k <m <3(3k — 1), then the graph G'(k, n, m) with n =2 constructed in the same
way as G(k, n) is a critically (k, k)-connected graph with 6(G’'(k, n, m)) =m and
8(G'(k, n, m)) = [3(3k — 1)].

In [3] Hamidoune proved that a critically k-connected graph contains two
vertices of degree not exceeding 3k — 1 and there is a critically k-connected graph
having exactly two vertices of degree not exceeding 3k — 1 for each k = 3. On the
other hand, there are infinitely many critically (k, k)-connected graphs having
exactly one vertex of degree in G or in G not exceeding 3k — 1 for every k=5
and k=3. For k=5 and k=3 the graphs G’'(k, n, k) with n=2 are such
examples.

By tedious calculation, we can show a critically (2, 2)-connected graph with
8(G)=2 and 6(G)=3 satisfies |V(G)|=8 or 9. There are infinitely many
critically (2, 2)-connected graphs with 6(G) = 6(G)=2. If we define H,=K,,
H,=K,, Mi=K,(1<j=<n), Hb=K,, L,=K,, and L,=K,, then the graph
G"(2, n) constructed in the same way as G(k, n) is one of such graphs for each
positive integer n.

/

References

[1] G. Chartrand, A. Kaugars and D.R. Lick, Critically n-connected graphs, Proc. Amer. Math. Soc.
32 (1972) 63-68.

[2] Y. O. Hamidoune, On critically h-connected simple graphs, Discrete Math. 32 (1980) 257-262.

[3] W. Mader, Ein Eigenshaft der Atome endlicher Graphen, Arch. Math. 22 (1971) 333-336.

[4] W. Mader, Disjunkte Fragmente in kritisch n-fach zusammenhingenden Graphen, European J.
Combin. 6 (1985) 353-359.



