Flow injection analysis of picric acid explosive using a copper electrode as electrochemical detector

João R.C. Junqueira, William R. de Araujo, Maiara O. Salles, Thiago R.L.C. Paixão *

Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-900, Brazil

ARTICLE INFO

Received 15 October 2012
Received in revised form 14 November 2012
Accepted 16 November 2012
Available online 23 November 2012

Keywords:
Explosive sensor
In situ device
Disposable
Voltammetric
Flow injection analysis
Homeland security
Electrochemistry
Copper electrode

ABSTRACT

A simple and fast electrochemical method for quantitative analysis of picric acid explosive (nitro-explosive) based on its electrochemical reduction at copper surfaces is reported. To achieve a higher sample throughput, the electrochemical sensor was adapted in a flow injection system. Under optimal experimental conditions, the peak current response increases linearly with picric acid concentration over the range of 20–300 μmol L⁻¹. The repeatability of the electrode response in the flow injection analysis (FIA) configuration was evaluated as 3% (n = 10), and the detection limit of the method was estimated to be 6.0 μmol L⁻¹ (S/N = 3). The sample throughput under optimised conditions was estimated to be 550 samples h⁻¹. Peroxide explosives like triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD) were tested as potential interfering substances for the proposed method, and no significant interference by these explosives was noticed. The proposed method has interesting analytical parameters, environmental applications, and low cost compared with other electroanalytical methods that have been reported for the quantification of picric acid. Additionally, the possibility to develop an in situ device for the detection of picric acid using a disposable sensor was evaluated.

1. Introduction

High explosives consist of an intimate mixture of a chemical oxidant and reductant that on initiation undergo a highly exothermic decomposition to yield gaseous products [1]. Picric acid or 2,4,6-trinitrophenol is one of the explosive compounds that can be used for the manufacture of weapons and explosives. The detection of explosives is important because of the potential applications in fields such as tactical and humanitarian demining, remediation of explosives manufacturing sites, and forensic and criminal investigations. There are also environmental health and safety concerns on nitroaromatics [1]. Given the importance of monitoring these species in military security and forensic analyses, it is necessary to develop a simple, fast, and cheap analytical method for their detection and quantification [2].

In the literature [2], the methods for the quantification of 2,4,6-trinitrophenol have used the following techniques: spectrophotometry [3,4], fluorimetry [5–7], electrochemistry [8–11] and chromatography or chromatography/mass spectrometry [12,13]. In most cases, a preliminary derivatisation step is necessary, which will result in longer analysis times. Additionally, some methods need high-cost equipment, are labour-intensive or require professionals with good training, because they involve several analytical steps. An example of such a method is ion mobility spectrometry (IMS), which is commonly used as an explosive detection system at airports and has sensitivity in the range of picograms or nanograms. However, it is expensive, operator-dependent, prone to false positives, and spectrometers must be frequently calibrated [14]. Detecting picric acid is also important in the indirect analysis of other compounds or when it is used as a reagent for colorimetric tests, for example, in the quantification of creatinine based on Jaffé reaction [15,16].

The development of electrochemical sensors for the detection of explosives is focused on the possibility of in situ measurements, and it often includes high sensitivity and selectivity, a wide linear range, minimal space and power requirements, and low cost instrumentation [2,17]. The catalytic activity of copper electrodes has been evaluated by using sulphite, nitrate, sugars, polyols, carboxylic acids, amino acids and amines as substrates [18–31]. Notwithstanding, no specific study on the use of copper electrodes as electrochemical sensors for quantification of picric acid was found in the literature. In this paper, we propose a copper-based electrochemical sensor coupled to a flow injection analysis system for the detection of picric acid, without the need of modification of the electrode surface or previous stages of treatment or accumulation. This results in a rapid, accurate, and inexpensive analysis. Besides these analytical features, copper-based disposable devices, which are cheap, practical and...
miniaturisable, could be used in developing a portable method for the fast in situ detection of picric acid, and some preliminary studies will be reported in this article.

2. Methods and materials

2.1. Safety note

Different kinds of explosives were used in this work. It is important to highlight that an extra care must be taken when handling these type of materials. Their explosion may occur spontaneously, and not more than 1 g should be handled each time.

2.2. Chemical and materials

All solid reagents were of analytical grade and were used without further purification. Acetic acid, acetone, acetonitrile, boric acid, citric acid, hydrogen chloride, hydrogen peroxide, methanol, sodium acetate, sodium hydroxide, sodium phosphate dibasic, sodium phosphate monobasic, sodium sulphate, sodium tetaborate decahydrate, and sulphuric acid were purchased from Merck (Darmstadt, Germany). Picric acid was purchased from Reagen (Rio de Janeiro, Brazil); nitrobenzene, from Carlo Erba (Milano, Italy); and hexamethylenetetramine, from Acros Organics (Geel, Belgium). Solutions were prepared by dissolving the reagents in deionised water, which was processed through a water purification system (Direct-Q®, 5 Ultrapure Water Systems, Millipore, MA, USA).

2.3. Electrodes and instrumentation

A µAUTOLABII (Eco Chemie, The Netherlands) with data acquisition software available from the manufacturer (GPES 103 4.9.007 version) was used for the electrochemical measurements. Gold, bismuth, glassy carbon, copper, and platinum were used as working electrodes. A homemade Ag/AgCl (KCl sat.) electrode and a platinum wire were used as reference and auxiliary electrodes, respectively. All the working electrodes were polished with an alumina suspension (0.3 mm, Alfa Aesar, MA, USA) on a micro-cloth polishing pad between each electrochemical measurement and washed thoroughly with deionised water.

2.3.1. Disposable devices

The procedure is based on the use of toner masks to protect the copper surface during a chemical etching process, as previously reported in the literature for gold electrodes [25,32,33,34,35]. Briefly, the layout of the electrodes was drawn using the graphic software (OpenOffice.org 2.4, Sun Microsystems Inc.) and it had three electrodes (working, reference, and auxiliary electrodes). The layout was then printed on the same type of waxed paper that is used as a support for adhesive label paper using an HP Laser Jet P2015 printer. No pre-treatment was needed. The layout was then printed on the same type of waxed paper that is used as a support for adhesive label paper using an HP Laser Jet P2015 printer. No pre-treatment was needed. The layout was then printed on the same type of waxed paper that is used as a support for adhesive label paper using an HP Laser Jet P2015 printer. No pre-treatment was needed. The layout was then printed on the same type of waxed paper that is used as a support for adhesive label paper using an HP Laser Jet P2015 printer. No pre-treatment was needed.

2.4. Electrochemical analysis

Picric acid determinations were performed by flow injection analysis (FIA) using 0.1 mol L$^{-1}$ phosphate buffer (pH=7.4) as a carrier solution. All the parameters involved in the FIA were optimised and are as follows: potential: -0.9 V, flow rate: 4.0 mL min$^{-1}$, sample volume: 75 µL.

2.5. Syntheses of peroxide explosives

Triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD) were synthesised as reported previously [34,35]. Solutions of these explosives were prepared by dissolving the reagents in an acetonitrile/methanol solution (1:1).

3. Results and discussion

3.1. Voltammetric experiments and reduction mechanism

The electrochemical response of picric acid was first evaluated using five different electrodes (gold, bismuth, glassy carbon, copper, and platinum) to estimate which electrode surface provides the highest analytical signal. Cyclic voltammograms were registered using these electrodes in a 0.1 mol L$^{-1}$ phosphate buffer solution containing 5 mmol L$^{-1}$ of picric acid. Except for the platinum electrode (voltammogram E), all electrode materials showed a well-shaped faradaic current signal for the picric acid reduction. Fig. 1 shows all the voltammograms obtained. With gold and glassy carbon electrodes (voltammograms A and C), the picric acid reduction occurs at around -1.0 V with currents of approximately -80 and -130 mA mm$^{-2}$, respectively. The best responses were obtained with bismuth and copper electrodes (voltammograms B and D) and the faradaic signal appears at less negative potentials than with gold and glassy carbon electrodes. With the bismuth electrode, a peak of -136 mA mm$^{-2}$ can be observed at -0.63 V, whereas the copper electrode gives a peak of -145 mA mm$^{-2}$ at a very similar potential (-0.67 V). Based on these results, copper was chosen as the working electrode material due to the best analytical signal in comparison with other bare electrode materials.

The reduction of picric acid on the copper surface was then evaluated at several pH values. The tested electrolytes were as follows: 0.1 mol L$^{-1}$ sodium sulphate (pH=2.2), 0.1 mol L$^{-1}$ acetic buffer (pH=4.7), 0.1 mol L$^{-1}$ phosphate buffer (pH=7.4), 0.1 mol L$^{-1}$ borate buffer (pH=9.1), and 0.1 mol L$^{-1}$ NaOH (pH=13). The voltammograms obtained at each pH value are shown in Fig. 2. The peak related to the picric acid reduction process could be observed at all conditions. The first conclusion we can draw from Fig. 2 is that the maximum peak potential shifts towards more negative potentials as the pH increases, as already observed by Ni et al. [36]. This is related to the fact that picric acid is deprotonated at a more basic medium and as a result, the negative charge of oxygen is strongly stabilised by the nitro groups, making the reduction more difficult.

At highly acidic conditions (pH 2.2, Fig. 2A), it is possible to see two overlapped electrochemical reduction processes in the current peak (-0.4 V and -0.5 V). At a higher reduction potential, -0.85 V, a small electrochemical reduction process can also be observed. This process could be clearly visualised at low concentrations of picric acid and when differential pulse technique was used to record the voltammetric behaviour (not shown). Earlier papers on the electrochemical reduction of three nitro explosives,
such as 2,4,6-trinitrotoluene (TNT) [37–39], have shown that the reduction of the nitro group usually occurs in two steps; through the reduction of the amino group to hydroxylamine (Eq. (1)), followed by the reduction of the hydroxylamine to amine (Eq. (2)).

\[
\begin{align*}
\text{RNO}_2 + 4\text{H}^+ + 4e^- &\rightleftharpoons \text{RNHOH} + \text{H}_2\text{O} \quad (1) \\
\text{RNHOH} + 2\text{H}^+ + 2e^- &\rightleftharpoons \text{RNH}_2 + \text{H}_2\text{O} \quad (2) \\
\text{RNO}_2 + 6\text{H}^+ + 6e^- &\rightleftharpoons \text{RNH}_2 + 2\text{H}_2\text{O} \quad (3)
\end{align*}
\]

Each nitro group goes through a sequential six-electron reduction to the amine form (Eq. (3)). Hence, the three electrochemical signals could be attributed to the stepwise reduction of three amino groups of picric acid to the corresponding amines [37–39]. In addition, the voltammograms recorded in Fig. 2A and B were similar, and both currents were approximately ~250 μA. Upon increasing the pH value to 7.4, a much higher reduction peak is observed (almost two times higher than that at lower pH values). With a continuous increase in pH, the values of current decrease. Thus, the phosphate buffer solution (pH = 7.4) was the preferred electrolyte to achieve better analytical performance.

The reduction of picric acid (Fig. 1) has already been reported in the literature. However, depending on the experimental conditions, one–four reduction signals were observed [8,11,40,41]. This means that the reduction of nitroaromatic compounds, such as picric acid, is a rather complex process and can occur via several paths, depending on the number of nitro groups, their relative position in the aromatic ring, and the nature and position of other groups [37–39,41].

Previous works [10,36] have shown that at moderately acidic conditions, the nitroaromatic compounds are reduced to hydroxylamines in two steps involving four electrons (Eq. (1)). In the slow first step (Eq. (4)), the nitro compound is reduced to a radical anion (RNO₂⁻). In the second step (Eq. (5)), three electrons and four protons are consumed and the radical is reduced to a hydroxylamine (RNHOH) [10,36]. However, it has been reported in the literature [11] that in a strong alkaline medium, the first step (Eq. (4)) involves a fast reversible uptake of one electron, and the second one corresponding to Eq. (5) is a slow and irreversible three-electron process. Hence, a decrease in the current of overlapped peaks and a shift in the potential of the second step towards more negative values could be observed at acidic conditions, which could explain the new process observed in Fig. 2 D and E at the more negative potentials and the decrease in current upon increasing the pH values above 7.

\[
\begin{align*}
\text{RNO}_2 + e^- &\rightleftharpoons \text{RNO}_2^- \quad (4) \\
\text{RNO}_2^- + 3e^- + 4\text{H}^+ &\rightarrow \text{RNHOH} + \text{H}_2\text{O} \quad (5)
\end{align*}
\]

3.2. Flow injection analysis

After the voltammetric studies, the analysis of picric acid was conducted by a flow injection system. The parameters were optimised to achieve best possible analytical figures of merit.
The first optimised parameter was the potential applied to the electrode. Fig. 3 shows that the highest cathodic current was obtained at \(E = 0.9 \) V. The cathodic current decreased with higher potential values, which could be associated with the electrochemical consumption of hydrogen ions at the bare electrode. This affects the electrochemical process described in Eq. (2), i.e., it decreases the current responsible for the electrochemical reduction of picric acid. Based on this hydrodynamic voltammogram behaviour, taking into consideration that the FIA determinations were performed at the best sensitivity conditions, the value of \(E = 0.9 \) V (against Ag/AgCl\(_{\text{KCl sat.}}\)) was chosen as the working potential.

Fig. 4 shows the optimisation of the flow rate and sample volume. From Fig. 4A, it can be seen that the peak current increases with the flow rate up to 4.0 mL min\(^{-1}\). This confirms that up to this flow rate, the electrochemical reduction is governed by a mass transport rather than by the electron transfer process. For the higher flow rate values, mass transport does not dominate over the electron transfer process. To obtain the best sensitivity for the developed analytical method without consuming more carrier solution, a flow rate of 4.0 mL min\(^{-1}\) was chosen. On the other hand, no significant changes in the peak current values were observed with the sample volume. For this reason, a low sample volume of 75 \(\mu \)L with enhanced peak current value was chosen. Under these experimental conditions, the sample throughput was calculated as 550 samples h\(^{-1}\).

An analytical curve was then constructed, and a linear relation between the peak current and concentration was obtained in the range from 20 to 300 \(\mu \)mol L\(^{-1}\) (Fig. 5). The straight line obeys the equation \(\left(I (\mu A) = -2.6 + 0.18(C_{\text{picric acid}}) (\mu \text{mol L}^{-1}) \right) (R=0.996) \). The detection limit of the method and the repeatability were...
estimated to be 6 μmol L\(^{-1}\) and 3\% (\(n=10\)), respectively. Additionally, the lack of system memory reported in Fig. 5 could be attributed to the configuration of the flow injection system and/or to the small sample volume used.

Some of the advantages of the proposed method, as mentioned earlier in Section 1, are the use of non-chemically modified electrode and simple materials to fabricate an electrochemical device for a rapid detection of explosives. The disposable devices reported in the literature \[25\] could be fabricated for in situ measurements. Fig. 6 shows a cyclic voltammogram recorded for a small sample volume (300 μL) in the presence and absence of picric acid explosive using a disposable device made of copper sheets.

The analytical figures of merit for the proposed method have been compared with the literature in Table 1. The proposed method has a similar detection limit with the bismuth sensor and a better detection limit than the potentiometric sensor. Moreover, it is important to note that these analytical figures of merit were obtained without any pre-concentration steps or prior modification of the electrode surface.

3.3. Interference experiments

Interference experiments were conducted to find out if other explosives had an effect on the picric acid reduction signal. Three explosives were tested: two peroxi-explosives (TATP=triacetone triperoxide, and HMTD=hexamethylene triperoxide diamine) and one nitro-explosive (nitrobenzene).

The interference from nitrobenzene was evaluated by a flow injection analysis. Both picric acid and nitrobenzene were solubilised in a phosphate buffer. Picric acid concentration was maintained at 0.1 mmol L\(^{-1}\) with a 0–5-fold increase in the nitrobenzene concentration. According to the results shown in Fig. 7, interference of the picric acid signal can be seen at all ratios. This effect increases with the increasing concentration of nitrobenzene. As commented previously, the reduction process of nitrocompounds is strong dependents of the position of the nitrogroup at the ring and the structure of the species. Voltammetric experiments not shown and the literature \[17\] demonstrates that the reduction of nitrobenzene occurs at different potential than the picric acid (i.e. it is more difficult than the
concentration as picric acid (0.1 mmol L\(^{-1}\) solution). The interfering substances were evaluated at the same potential as picric acid. Experiments were performed in triplicate.

Explosives that can potentially interfere with the electrochemical reduction signal of picric acid. Experiments were performed in a 0.1 mol L\(^{-1}\) phosphate buffer solution (pH=7.4) containing 100 µmol L\(^{-1}\) picric acid (a) or 100 µmol L\(^{-1}\) nitrobenzene (b). Nitrobenzene concentrations: 100 (c) 200 (d), 300 (e), and 500 µmol L\(^{-1}\) (f).

Potential: \(-0.9\) V, flow rate: 4 mL min\(^{-1}\), sample volume: 75 µL, carrier solution: 0.1 mol L\(^{-1}\) phosphate buffer (pH=7.4).

4. Conclusions

Copper is an interesting material to promote the electroreduction of picric acid. Its use as an amperometric detector in a flow injection system provides a new, rapid, low-cost, and simple analytical method for the identification of picric acid explosives. The proposed method could be employed by a person without a chemical background, it could give fast results (in less than 10 min) by using a flow injection system or a disposable device, and it can have potential field applications.

Acknowledgements

The authors are grateful to Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP); Grant numbers 2012/12106-5, 2011/11115-8, and 2011/19903-5, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq); Grant numbers 470919/2011-6 and 302700/2011-0) for financial support.

References