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A CBM20 low-affinity starch-binding domain from glucan, water dikinase
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The family 20 carbohydrate-binding module (CBM20) of the Arabidopsis starch phosphorylator glu-
can, water dikinase 3 (GWD3) was heterologously produced and its properties were compared to the
CBM20 from a fungal glucoamylase (GA). The GWD3 CBM20 has 50-fold lower affinity for cyclodex-
trins than that from GA. Homology modelling identified possible structural elements responsible for
this weak binding of the intracellular CBM20. Differential binding of fluorescein-labelled GWD3 and
GA modules to starch granules in vitro was demonstrated by confocal laser scanning microscopy and
yellow fluorescent protein-tagged GWD3 CBM20 expressed in tobacco confirmed binding to starch
granules in planta.
� 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Enzymes binding reversibly to leaf starch granules are required
during their synthesis or degradation as directed by photosynthe-
sis. One recent example is the diurnal partitioning of the starch
phosphorylator glucan, water dikinase 1 (GWD1) between the
plastid stroma and the starch granule surface [1], highlighting re-
dox-based regulation of starch metabolism during biosynthesis
and degradation. The GWDs contain dedicated starch-binding do-
mains (SBDs) (Fig. 1). Sequence-based classification gives SBDs in
carbohydrate-binding module (CBM) families; 20, 21, 25, 26, 34,
41, 45, 48 and 53 [2] (http://www.cazy.org/fam/acc_CBM.html).
CBM20 is encountered in archaea, bacteria, and eukaryota
and occur mainly in a-amylases, b-amylases, cyclodextrin
glucanosyltransferases, glucoamylases (GAs) and glucan, water
dikinase (GWD).

SBDs having 90–130 amino acid residues are situated N- or C-
terminally [3] and typically retain functionality in isolated form
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[4]. The structural fold of SBDs is conserved, consisting of a dis-
torted b-barrel with 7–8 anti-parallel b-strands arranged in two
b-sheets [5]. Most CBM20s possess two carbohydrate-binding sites
providing bivalent interaction involving two or three conserved
solvent accessible aromatic residues [6,7]. Site 1 is shallower and
more solvent exposed than site 2 that undergoes significant struc-
tural changes upon binding [6]. CBM20s bind maltoheptaose and
cyclodextrins [4,6] but their proposed main function is to attach
to granular starch, thereby locally increasing the enzyme concen-
tration at the substrate surface [8]. Another proposed role is to
‘‘unwind” a-glucan helices on the granule surface [9] resulting in
a higher hydrolytic rate [10].

SBDs typically belong to extracellular amylolytic enzymes pro-
viding starch binding [7]. However, newly discovered families
CBM45 [11] and CBM53 [12] in plant GWD and starch synthase
III, respectively, have weak affinities for starch, suggesting that cer-
tain enzymes involved in intracellular starch metabolism in plants
possess SBDs with new function. Recently, a putative CBM20 SBD
was identified in partly starch granule bound GWD3 from Arabid-
opsis thaliana [13,14]. The properties of the corresponding recom-
binant GWD3-SBD are reported here and compared with CBM20
from Aspergillus niger GA [4], probing oligosaccharide binding by
surface plasmon resonance (SPR) and binding to starch granules
in vitro and in vivo by confocal laser scanning microscopy (CLSM).
This first description of an isolated plant CBM20 demonstrates
lsevier B.V. All rights reserved.
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Fig. 1. Domain organisation of starch phosphorylating GWD homologues from Arabidopsis thaliana and Solanum tuberosum.
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distinct function from classical fungal CBM20s, supposedly charac-
teristic of intracellular non-hydrolytic enzymes involved in starch
metabolism.

2. Materials and methods

2.1. Homology modelling and sequence alignment

A. niger GA-SBD (PDB 1KUL) was used as template (26% identity,
58% similarity for residues 509–616) to generate a GWD3-SBD
homology model using Modeller v6.1 [15]. GWD3-SBD residues
170–184 lacking in the template were deleted from the model. Se-
quences were aligned using ClustalW.

2.2. Expression and purification of GWD3-SBD

GWD3-SBD (Asp68–Gly184) was cloned from full-length GWD3
cDNA [13] into NcoI and XhoI sites of pET-28a(+) (Novagen,
Madison, WI), using sense: AACATGCCATGGCAGATGGATCA-
GGAACGAAAGTG (NcoI site underlined) and antisense primer:
AACCGCTCGAGACCAACATCATCATCATTACCAAC (XhoI site under-
lined) and standard molecular biology procedures. Escherichia coli
BL21(DE3) harbouring the GWD3-SBD construct was grown at
37 �C (LB medium; 50 lg/mL kanamycin) to OD600�0.5. Expression
was induced by adding isopropyl b-D-thiogalactopyranoside to
250 lM, followed by incubation at 20 �C for 20 h. After cell harvest,
sonication and centrifugation, the extract was passed over a 1 mL
His-trap column (QIAGEN, Hamburg, Germany). The GWD3-SBD
was eluted as recommended by the manufacturer, applied to a
6 mL b-cyclodextrin Sepharose column and eluted with 10 mM b-
CD. b-CD traces were removed by an additional His-trap purifica-
tion and desalting using 0.5 mL Zeba Desalt Spin Columns (Pierce,
Rockford, IL). Final yield was �0.7 mg/L culture. A. niger recombi-
nant GA-SBD was produced as described [16].

2.3. Surface plasmon resonance (SPR) analysis

Surface plasmon resonance (Biacore T100; GE Healthcare, Upp-
sala, Sweden) sensorgrams were recorded of binding 0.01–10 mM
(15 concentrations) a-, b-, c-CD, linear maltooligosaccharides (DP
3–7) and b-CD with 2–6 phosphate groups (Sigma, Steinheim, Ger-
many) to biotinylated protein (900–1000 RU on streptavidin-chip).
Kd values were calculated by steady-state affinity fitting (BIAeval-
uation 1.1 software) to the response after subtracting the reference
cell signal.

2.4. In vitro imaging of SBD binding

Fluorescein 5-EX succinimidyl ester (Invitrogen, Paisley, UK) in
4-fold molar excess was reacted with 100 lL GWD3-SBD (1 mg/
mL, 50 mM HEPES-carbonate, pH 8.0, 10 mM b-CD) (final 140 lL)
for 1 h at 20 �C. Fluorescein-conjugated protein was His-trap puri-
fied, desalted twice and 10 lM protein was incubated with starch
granules (10 mg/mL) for 45 min at 4 �C with gentle rotation. Visu-
alisation by CLSM (TCS SP2, Leica Microsystems, Germany) [17]
used fluorescein excitation at 488 nm and recorded emission at
500–550 nm with 25% laser power and the gain varied to prevent
saturation of the detector and to ensure comparable intensities.
The objective used was HCX PL APO 63.0�1.20 W CORR UV. Image
analysis was performed by the TCS SP2 software.

2.5. Transient expression of GWD3-SBD-YFP

The region encoding residues 1–201 of GWD3, containing the
chloroplast transit peptide and SBD, was amplified using uracil-
containing primers (sense: GGCTTAAUATGGAGAGCATTGGCAGCC-
ATTG, antisense: GGTTTAAUCCCACTACTCTATCATCACCAACATCA)
and fused to YFP [18]. The fusion protein was transiently ex-
pressed in Nicotiana benthamiana and analysed in situ by CLSM
[18].

3. Results and discussion

3.1. Sequence analysis and homology modelling of the GWD3-SBD

The sequence of A. thaliana CBM20 has 26% identity/58% simi-
larity to A. niger GA-SBD compared to 50% identity/69% similarity
with a putative GWD3-SBD from Oryza sativa. Tryptophans at
GWD3-SBD putative binding site 1 (W102 and W142) are con-
served as are W115 (putative binding site 2) and W164 (structural
in GA-SBD) (Fig. 2). The GWD3-SBD model exhibited a similar fold
as GA-SBD with seven b-strands distributed in two b-sheets, and
ligand-binding site 1 was readily identified (Fig. 3A). Only F86
and W115 are conserved in GWD3-SBD from site 2, containing
Y527, Y556 and W563 in GA-SBD. Noticeably, GWD3-SBD has a 7
residue deletion in the third, flexible GA-SBD loop including
Y556 that is strongly involved in binding at site 2 (Fig. 2). The
GWD3-SBD model (Fig. 3B) illustrated this structural difference
presumably affecting the binding.

3.2. Purification and characterisation of GWD3-SBD

A GWD3-SBD construct containing residues 68–184 was the
most stable one among those tested (not shown). The purified
module had an apparent molecular weight in SDS–PAGE consistent
with the calculated 14.2 kDa (Fig. 4). Nonetheless, the stability of
GWD3-SBD was lower (Tm = 44.6 �C, Supplementary data) than
that of GA-SBD (Tm = 56.7 �C) [19]. Stability was lower after re-
purification for efficient removal of b-CD indicative of ligand-stabi-
lisation. It is also possible that interactions with the catalytic



Fig. 2. Alignment of bacterial and eukaryotic CBM20s. Highly conserved binding site 1 and 2 tryptophans are highlighted in blue and red, respectively, other conserved
residues are in yellow. Binding residues in site 1 and 2 are marked by red and green dots, respectively. b-Strands of GA-SBD and the GWD3-SBD model are boxed. GA:
glucoamylase, CGT: cyclodextrin glucanosyl transferase, MGA: maltogenic a-amylase, BMY: b-amylase, GEN: genethonin-1, LAF: laforin, 4AGT: 4-a-glucanotransferase,
GWD3: glucan, water dikinase 3.

Fig. 3. (A) Structures of GA-SBD (PDB 1KUL, blue) and A. thaliana GWD3-SBD model
(template 1KUL, green). (B) Superimposition of binding site 1 (left) and 2 (right) of
b-CD (not included for clarity) GA-SBD complex (magenta), free GA-SBD (blue), and
the GWD3-SBD model (green).

Fig. 4. SDS–PAGE of recombinant GWD3-SBD. Lanes M: Marker (kDa), 1: GWD3-
SBD after His-trap elution, 2: GWD3-SBD after b-CD-Sepharose.
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GWD3 domain provide stability to SBD when present in the native
enzyme.

3.3. Affinity to cyclodextrins as determined by SPR

Differential affinity of GWD3-SBD and GA-SBD towards a-, b-,
and c-CD was demonstrated using SPR (Table 1). GWD3-SBD
showed strongest binding towards a-CD, and no detectable affinity
for linear maltooligosaccharides (DP 3–7) or for phosphorylated b-
CD. The b-CD affinity minimum was at neutral pH. GWD3-SBD



Table 1
Dissociation constants for GWD3-SBD and GA-SBD determined using SPR.

CBM20 Buffer Ligand Kd (mM)

GWD3-SBD pH 5.0 b-CD 0.62 ± 0.02
pH 5.5 a-CD 0.22 ± 0.01

b-CD 0.38 ± 0.07
c-CD 0.84 ± 0.66

pH 6.0 b-CD 0.94 ± 0.02
pH 6.5 b-CD 1.09 ± 0.08
pH 7.0 a-CD 0.45 ± 0.01

b-CD 1.07 ± 0.19
c-CD 1.47 ± 0.40

pH 9.0 a-CD 0.59 ± 0.16
b-CD 0.56 ± 0.12
c-CD 5.56 ± 2.07

GA-SBD pH 5.5 b-CD 7.5 ± 1.30 � 10�3

Samples were analysed in duplicates.

Fig. 6. GWD3-SBD-YFP transiently expressed with its A. thaliana GWD3 transit
peptide in tobacco leaf mesophyll cells, showing binding at the surface of starch
granules. Scale bar: 10 lm.
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forms expressed in Pichia pastoris and as a glutathione S-transfer-
ase (GST) fusion in Escherischia coli (not shown) gave similar Kd val-
ues for b-CD at pH 7.0, excluding artefacts due to expression host
or affinity tag. The optimum affinity for b-CD of A. niger GA is at
pH 4.5 [20] and comparison at the GWD3-SBD optimum pH 5.5
showed affinity 50-fold higher for GA- than for GWD3-SBD (Table
1) – consistent with GA UV difference spectroscopy (Kd = 14.4 lM
[21]) and NMR titration (Kd = 9 lM [22]). Affinity differences be-
tween the two GA-SBD sites assessed for the mutants, W563K (site
2) and W590K (site 1) [21] are reflected in Kd of 28 lM and 6.4 lM,
respectively. This agrees with Kd1 of 2.0 and Kd2 of 31.3 lM ob-
tained by fitting a two binding site model to our GA-SBD SPR data
(not shown).

The 50-fold higher Kd for b-CD (Table 1) clearly identifies
GWD3-SBD as a low-affinity SBD compared to GA-SBD. The physi-
ological relevance and generality is substantiated by the plant
CBM45 in GWD1 [11] and CBM53 in starch synthase III [12] both
having low affinity. As for GWD3 these enzymes are predomi-
nantly found in soluble form when extracted. Furthermore,
GWD1 binding to starch in planta is stronger in the dark [1,23] as
a possible effect of the redox potential in stroma [1]. However,
GWD3 does not possess the suggested CFATC redox motif found
in GWD1 and might not be redox regulated. The slightly lower
affinity found at pH 6.5 as compared to pH 9 may suggest slightly
stronger binding during the day when stromal pH increases indi-
cating differential dynamics of binding for the GWD3-SBD in re-
sponse to physiological needs.
Fig. 5. Interaction of fluorescein-labelled GWD3-SBD (top panels) and GA-SBD (bottom p
(D) waxy maize; and (E) potato.
3.4. Binding of GWD3-SBD to starch granules in vitro and in vivo

CLSM visualised binding of fluorescein-labelled GWD3-SBD to
starch granules, including normal and waxy (high amylopectin
content) barley and maize endosperm starch (type A) and normal
potato tuber starch (type B). Clear fluorescence was detected at
the granule surface (Fig. 5) and in channels – characteristic of
maize starches [24]. The sites of label in the starch granules indi-
cate identical binding sites for the two SBDs. However, some
subtle differences in binding distribution to specific starches
were observed. While both SBDs interacted internally with the
waxy granules, they showed more discrete surface binding to
normal cereal granules. The potato starch showed least penetra-
tion. For the maize granules the label for the GA-SBD had higher
contrast than the GWD3-SBD indicating a tendency for more dis-
tinct surface localisation for GA-SBD than for GWD3-SBD sug-
gesting that GWD3-SBD more efficiently penetrates these
granules. Fluorescein labelled bovine serum albumin gave no
starch granule fluorescence and free dye penetrated the granules
and resulted in unspecific binding (Supplementary data). In vivo,
a GWD3-SBD-YFP fusion demonstrated affinity for starch gran-
ules by transient expression in tobacco leaves (Fig. 6). YFP fluo-
rescence was localised in the chloroplasts (red chlorophyll
autofluorescence) and was essentially confined to the starch
granules.
4. Conclusion

The present functional characterisation of an isolated plant
CBM20 provides evidence for in vitro and in vivo binding of a group
of intracellular CBM20s with substantially lower and therefore
anels) with different starches: (A) normal barley; (B) normal maize; (C) waxy barley;



C. Christiansen et al. / FEBS Letters 583 (2009) 1159–1163 1163
potentially more dynamic affinity for starch granules than CBM20s
from microbial hydrolases. Structural difference between GWD3-
and GA-SBD in a flexible loop at binding site 2 probably plays a role
in the low affinity of GWD3-SBD.
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