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ABSTRACT In this article we describe a recursive Bayesian estimator for the identification of diffusing fluorophores using
photon arrival-time data from a single spectral channel. We present derivations for all relevant diffusion and fluorescence
models, and we use simulated diffusion trajectories and photon streams to evaluate the estimator’s performance. We consider
simplified estimation schemes that bin the photon counts within time intervals of fixed duration, and show that they can perform
well in realistic parameter regimes. The latter results indicate the feasibility of performing identification experiments in real time.
It will be straightforward to generalize our approach for use in more complicated scenarios, e.g., with multiple spectral channels
or fast photophysical dynamics.

INTRODUCTION

Single-molecule confocal fluorescence microscopy has

become an important tool for studying the dynamics of

diffusing molecules in solution. In this technique, a stream of

photons is observed as fluorescent molecules diffuse through

a region of a sample that is illuminated by a laser. Current

apparatus can measure photon arrival times to subnano-

second precision, and observe fluorescence from single

molecules in low-concentration samples (Weiss, 1999). This

technique has been used to investigate a wide range of

chemical and biological problems, both in vitro and in vivo;

however, current methods for the analysis of the fluorescent

photon stream work indirectly and are limited in scope

(Böhmer and Enderlein, 2003; Dörre et al., 1997; Eigen and

Rigler, 1994; Elson, 2001; Goodwin et al., 1996; Lipman

et al., 2003; Magde et al., 1972; Schwille and Kettling, 2001;

Weiss, 1999, 2000). Here we present a rigorous quantitative

approach to single-molecule identification, in which we

derive a Bayesian estimator and relevant analytical models

for the diffusion and fluorescence. The benefit to using

analytical models is that they can provide a great deal of

insight in complicated experiments. This is not essential

for an identification scheme; however, it is our goal here

to demonstrate not only an identification scheme but also

a general approach applicable to a wide range of problems in

single-molecule microscopy. In a more complicated exper-

iment, such as tracking the movement of a molecule or

studying dynamics of interactions at the single-molecule

scale, only a physical model will suffice to provide rigorous

quantitative insight.

Several methods exist for the analysis of the observed

photon stream; most generate a particular histogram or

autocorrelation function from the stream, and extract in-

formation by fitting these to theoretical or simulated func-

tions for the species under examination or from data obtained

in reference experiments. These methods were initially de-

veloped for estimation of bulk statistical parameters of the

sample, such as diffusion coefficient or concentration,

although applications in single-molecule experiments have

been developed as the technical barriers to detecting single

molecules have been overcome (Böhmer and Enderlein,

2003; Eigen and Rigler, 1994; Maiti et al., 1997). Fluores-

cence correlation spectroscopy (FCS) analyzes fluctuations

in an autocorrelation of the fluorescence intensity signal to

extract information about the diffusion coefficient and con-

centration of the sample molecules, but cannot distinguish

between molecules differing in brightness, which we define

here as the number of bound dyes of a single color per

molecule (Eigen and Rigler, 1994; Elson and Magde, 1974;

Enderlein and Köllner, 1998; Hess et al., 2002; Magde et al.,

1972; Maiti et al., 1997). Alternative formulations of FCS

have employed multiple spectral channels and dye colors to

enable experiments with multiply-labeled fluorophores

(Rarbach et al., 2001; Schwille and Kettling, 2001).

Photon-counting histogram and fluorescence-intensity dis-

tribution analysis measure photon counts in time intervals of

fixed duration and fit these measurements to theoretical

distributions to differentiate between species with different

brightness, but cannot differentiate between molecules based

on diffusion coefficient (Chen et al., 1999; Kask et al., 1999,

2000). Fluorescence intensity multiple distributions analysis

(FIMDA) uses a similar photon-counting histogram but with

time intervals of varying duration, and can simultaneously

extract information about both diffusion and brightness (Palo

et al., 2000). The most recent autocorrelation method, photon

arrival-time interval distribution (PAID), combines the

autocorrelation approach of FCS with a photon-counting

histogram to extract information about diffusion and bright-

ness simultaneously, and can be applied to multiple spectral
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channels (Laurence et al., 2004). Bayesian estimation has

been used previously in identification of multiply-colored

fluorophores; however, the estimator was simplified con-

siderably in favor of probability distributions obtained by

running reference experiments (Prummer et al., 2000).

Additional work in time-correlated single photon counting

has used pulsed excitation lasers and measured the timing

of photon detections relative to these pulses to identify

molecules based on their diffusion coefficient and has been

shown to be more accurate than FCS in single-molecule

identification (Enderlein and Köllner, 1998; Enderlein and

Sauer, 2001). Here, though, we only consider experiments

with a stationary excitation profile.

While the estimation accuracy of the data-fitting methods

for bulk sample parameters can be quite good, these methods

suffer from several disadvantages when applied to single

molecules. Techniques requiring simpler calculations, such

as fluorescence correlation spectroscopy and fluorescence-

intensity distribution analysis, can be applied in real time but

are limited in the number of parameters that they can use to

distinguish between species (Elson and Magde, 1974; Kask

et al., 1999). More complex techniques such as PAID are

very specific, but the nonlinear fitting algorithms required for

data analysis become very computationally intensive and

make real-time analysis intractable (Laurence et al., 2004). In

addition, it is difficult to accurately evaluate measurements

made from single molecules using a statistical fit because of

the infinite number of very different paths that can be taken

by a molecule through the laser focus, and the consequently

infinite number of possible fluorescence observations. A

fitting algorithm will work better for some paths than for

others, depending on the similarity between the path taken

and the mean value of all possible paths.

Our approach, on the other hand, can be used to dis-

tinguish between species differing in virtually any parameter

in our model, and is computationally simple in that no fits are

required—a probability distribution is directly output at each

iteration of the estimator, making real-time signal analysis

feasible. It is derived for use specifically in single-molecule

experiments, as it includes a spatial component to incor-

porate variations in the path taken by the molecule through

the laser focus. It is not limited to measuring parameters of

single molecules, however. As with current methods, accu-

mulated measurements from multiple single-molecule ob-

servations can be used to estimate parameters on a larger

scale, such as reaction rates or relative concentrations.

The problem that we focus on is the identification of a

fluorescent molecule based on the data obtained from a single

pass of the molecule through the laser focus, when the set

of possible species identities is known. Note that this can be

considered a simplification of the parameter estimation

problem; to estimate a parameter such as the diffusion

coefficient, we simply perform such an identification where

the set of possible identities is a set with widely varying

values for that parameter. We deal with fluorescence detected

from a single spectral channel, although similar approaches

are possible with multiple-channel experiments for multiply-

labeled species. We derive a Bayesian estimator on the pho-

ton stream using distributions for the spatial dependence

of the fluorescence rate and the time dependence of the

diffusion. We derive analytical expressions for the relevant

models for diffusion and fluorescence, rather than relying

on Monte Carlo simulations to generate the models. Our

estimator is recursively updated after each detected photon,

although it may be updated at any desired time interval in the

absence of detection, thus maintaining a distribution over the

potential set of species inside the laser focus (including the

possibility that the focus is empty) at all times.

We present the results of the application of the estimator to

simulated two-dimensional diffusion experiments in which

molecules are distinguished based on both diffusion co-

efficient and brightness. Two-dimensional experiments are

chosen only for computational simplicity; the filter is derived

for diffusion in an arbitrary number of dimensions. Diffu-

sion coefficient and brightness are chosen as the standard

parameters used to differentiate between molecules; how-

ever, our derivations apply to experiments that distinguish

between any parameter in our model.

DERIVATION OF PROBABILITY DISTRIBUTIONS

In this section, we will derive the basic filtering equations

for identifying the type of a diffusing molecule based on

recorded fluorescence photon arrival times. The essential

component of this filter is a probability distribution over

space and over possible identities of the molecule under

observation conditioned on a sequence of fluorescence

photon arrival time measurements. We wish to update this

distribution in real time as photons are detected, and we

assume that at any time at most a single molecule is in

the laser focus (this can be ensured by a low sample

concentration). By maintaining this distribution, we may

specify the most probable identity of the diffusing molecule

at any time, given the observations made up to that time.

Recursive Bayesian estimator

Let S ¼ {s1, . . . , sn} denote the set of species present in the

sample. Let tk be the time at which the kth photon is detected,
and jn ¼ {t1, . . . , tn} denote the set of arrival times in

a particular experiment up to time tn. We wish to find an

expression for the probability P(sjjjk) the probability that at

time tk the signal we are observing is due to a molecule of

type sj (note that we will always use standard probability

notation in which—for example—p(A; BjC; D) represents
the probability of A and B given C and D; we use P(�) to
designate probabilities on strictly discrete spaces and p(�) for
probability densities on continuous spaces or joint densities

over both discrete and continuous spaces). Since the

fluorescence rate is dependent on the (time-correlated)
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molecular position r~k[r~ðtkÞ, we must start with a distribution

over species and spatial coordinates pðr~k; sjjjkÞ. Using

Bayes’ rule and the definition of conditional probability,

we find the following expression for the probability that

a molecule is of type sj and is at position r~k given the ob-

served photon stream jk:

pðsj; r~kjjkÞ

¼ pðjkjr~k; sjÞpðr~k; sjÞ
+

j#

R
dr~#kpðjkjr~#k; sj#Þpðr~#k; sj#Þ

¼ pðtkjr~k; jk�1; sjÞpðjk�1jr~k; sjÞpðr~k; sjÞ
+

j#

R
dr~#kpðtkjr~#k; jk�1; sj#Þpðjk�1jr~#k; sj#Þpðr~#k; sj#Þ

¼ pðtkjr~k; jk�1; sjÞpðr~k; sjjjk�1Þ
+

j#

R
dr~#kpðtkjr~#k; jk�1; sj#Þpðr~#k; sj#jjk�1Þ

: (1)

In our notation the event tk together with the measurement

record jk�1 is symbolically identical to the measurement

record jk. For diffusion in d dimensions, the integrals in Eq.

1 are over all of Rd.

We now expand pðr~k; sjjjk�1Þ over possible values for

r~k�1 to find

pðr~k; sjjjk�1Þ
¼

Z
dr~#k�1pðr~k; r~#k�1; sjjjk�1Þ

¼
Z
dr~#k�1pðr~kjr~#k�1; jk�1; sjÞpðr~#k�1; sjjjk�1Þ; (2)

which contains the recursive term pðr~#k�1; sjjjk�1Þ. We

substitute into Eq. 1 to find a formula for the time evolution

of the probability distribution over molecular species sj and
position r~k conditioned on a set of measured fluorescence

photon arrival times jk:

We were required to carry along a distribution over spatial

coordinates to develop a recursion formula. In the end,

however, we are interested in species identification through

the probability P(sjjjk) which we may now write in terms of

Eq. 3 as

PðsjjjkÞ ¼
Z

dr~kpðr~k; sjjjkÞ: (4)

We define our species identification estimator ŝ as the value
of sj 2 S which maximizes Eq. 4. The estimator ŝ defined by

Eqs. 3 and 4 is exact, in the sense that we have not made any

assumptions about the correlation between molecular

diffusion statistics and photon detection statistics. To update

an estimation based on the kth photon detection at time tk, we
only require knowledge of two distributions, pðtkjr~k;
jk�1; sjÞ and pðr~kjr~k�1; jk�1; sjÞ. The former distribution

represents the fluorescence emission statistics of a molecule

of type sj at a particular position in the laser focus, while the

latter distribution represents the diffusion statistics of a mole-

cule of type sj. Next, we will describe explicit functional

forms for these distributions which are relevant to confocal

microscopy experiments.

Effective diffusion statistics

In a typical experimental situation, the motion of a molecule

between points r~k and r~k�1 is not correlated with any photon

detection events. This point is somewhat subtle, and relies on

our explicit inclusion of both fluorescence and diffusion

statistics. If we detect many photons in a small time interval,

it is very likely that a fluorescent molecule is at a position r~k
of high laser intensity, so that the position of a molecule r~k is
correlated with the measurement record jk. However, the
future probability that the molecule will move from position

r~k�1 to position r~k (without emitting a photon) in time Dtk [
tk � tk�1 is independent of the prior photon detections jk�1.

Symbolically, we have

pðr~kjr~k�1; jk�1; sjÞ ¼ pðr~kjr~k�1; Dtk; sjÞ; (5)

where the right-hand side of Eq. 5 is the usual Green’s

function solution to a Fokker-Planck equation for the

diffusion statistics of molecules of type sj.
In most cases of experimental interest, we may average

over three-dimensional distributions to obtain a set of

estimator equations which is effectively two-dimensional.

Furthermore, if we consider a cylindrically symmetric laser

excitation profile, we may reduce all of the (vector)

coordinates r~k to (scalar) cylindrical radial coordinates rk,
where as before rk[ r(tk). For isotropic, force-free Brownian
motion projected into d ¼ 2 dimensions, we can solve Eq. 5

analytically to find

pðrkjrk�1; Dtk; sjÞ ¼ 1

4pDjDtk
I0

rkrk�1

2DjDtk

� �

3 exp �r2k 1 r2k�1

4DjDtk

� �
; (6)

where Dj is the diffusion coefficient for molecules of type sj
and I0 is the 0th-order modified Bessel function of the first

kind.

pðr~k; sjjjkÞ ¼
pðtkjr~k; jk�1; sjÞ

R
dr~#k�1pðr~kjr~#k�1; jk�1; sjÞpðr~#k�1; sjjjk�1Þ

+
j#

RR
dr~#kdr~#k�1pðtkjr~#k; jk�1; sj#Þpðr~#kjr~#k�1; jk�1; sj#Þpðr~#k�1; sj#jjk�1Þ

: (3)
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Fluorescence photon detection statistics

Equation 6 contains all of the information we need to know

about diffusion to implement the filter, Eq. 3. Next we will

develop an explicit expression for the fluorescence photon

detection statistics p(tkjrk; jk�1; sj) (we have dropped the

vector notationon rk asbefore). For simplicity,weuse a simple

two-level, saturating emitter model of fluorescence, but the

implementation of the filter is essentially the same for any

rate-equation model or model incorporating the internal

dynamics of the fluorophore (Berglund et al., 2002). In this

model, the instantaneous rate gj(rk) of photon emission by

a molecule of type sj at position rk and labeled with mj

(identical) dye molecules is determined by the spatially

dependent laser excitation rateGL(rk), the relaxation rate of the
dye molecule Gj, and the background noise count rate GB as

gjðrkÞ ¼ mj

GLðrkÞGj

GLðrkÞ1Gj

1GB: (7)

GL(r) is proportional to the laser beam intensity which we

take to be Gaussian with beam waist w in the transverse

dimensions, and we neglect the variation of the excitation

intensity in the axial direction as

GLðrÞ ¼ GLð0Þexp � r
2

2w
2

� �
: (8)

It should be noted here that finite efficiency photon detection

does not affect the forms of the filter or the fluorescence

model. We can always scale the rates in Eq. 7 by the detection

efficiency h which has no effect on the spatial dependence of

fluorescence statistics (except to decrease the overall rate of

photon detection). Furthermore, for small h, we may assume

that a fluorophore emits many photons (;1/h) between any

two photon detections. This ensures that the fluorophore is in

its radiative steady state and we may safely neglect any

quantum statistics associated with single-molecule photon

detection. Since the form of Eq. 3 is largely independent of h,
we often neglect the distinction between photon emission and
detection rates, whose ratio is h by definition.

The probability 2ep(tkjrk; jk�1; sj) is the likelihood of

a photon detection in the infinitesimal interval tk 6 e with no
other photons detected at times t 2 (tk�1, tk). This probability
can be expressed as

2epðtkjrk; jk�1; sjÞ ¼ 4pegjðrkÞexpð�2egjðrkÞÞ
3

Z
drk�1rk�1pðnk ¼ 0jrk; rk�1; jk�1; sjÞpðrk�1jjk�1; sjÞ;

(9)

where nk is the number of photons emitted in time interval

Dtk. Note that the precise value of the factor e is unimpor-

tant because exp(�2eg(rk)) � 1 since e is very small by

definition. The integral represents an average over all

possible starting radial positions rk�1 from which the

molecule moves to radial position rk in the time interval

Dtk. In general, nk depends on the path taken by the molecule

over the time interval, which makes calculating an exact

analytical expression for Eq. 9 difficult, although a path

integral representation is possible (see Appendix). The

difficulty in calculating this function arises from the variation

of the photon emission rate over the possible paths that

a molecule can take from rk�1 to rk. We expect the

fluorescence count to obey Poisson statistics, so

pðnk ¼ 0jrk; rk�1; jk�1; sjÞ � expð�gjðrkÞDtkÞ; (10)

as long as a molecule does not move between photon

detections to a position of very different excitation intensity.

We expect the approximation in Eq. 10 to hold for w2gj(0)�
Dj, so that a molecules does not move too far between pho-

ton detections. This is precisely the experimental regime of

interest, since this condition is violated when few photons

are detected in a single-molecule transit through the laser

focus, and we would not expect to gain much information

in this case anyway. In the Appendix we calculate the first-

order correction to Eq. 10. For typical parameters in our

simulations, the numerical value of this correction factor is

,2% for regions within the beam waist of the laser.

Practical considerations

Several details must be considered before the filter can

actually be implemented. First, while the integrals in Eq. 3

are over all of Rd, we must truncate them numerically. We set

the integration limit Rmax . w, the laser beam waist, so that

GL� 0 in the regions excluded from the integrals; in practice,

we find that Rmax ¼ 4w is sufficient.

Next, to account for the loss of probability at the bound-

ary Rmax due to the diffusion term, we add a distribution

representing the probability of molecules from the outer

regions diffusing into the region bounded by Rmax to the

spatial distribution in Eq. 3 at each iteration of the estimator.

This takes into account the concentrations of the different

species in the sample, and is given by

Pleakðr1jjk; sjÞ ¼ 2pCj

Z N

Rmax

dr0 r0pðr1jr0; jk; sjÞ; (11)

which is a convolution of Eq. 6 with the distribution of

molecules in the outer region, which we assume to be

uniform with concentration Cj. This leak term allows us to

run the estimator in the absence of a molecule in the laser

focus. To account for the possibility of an empty laser focus,

we include a dark species s0 with brightness m0 ¼ 0 in all

iterations of the estimator. Note that we have not yet defined

the initial distribution pðsj; r~0Þ; to obtain this distribution we
simply run the estimator on background noise, in the absence
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of fluorescent species, until a steady-state distribution is

reached.

Finally, we must decide how to determine when a

molecule has either entered or exited the laser focus. For

this we use the spatial distributions generated by the esti-

mator. We decide on a particular threshold radius Rth that

bounds what we consider to be the laser focus, and calculate

the probability that the focus is empty,

PðemptyjjkÞ ¼ Pðs0Þ1 2p

3 +
j 6¼0

Z Rmax

Rth

drk rkpðrk; sjjjkÞ: (12)

We decide on a minimum value Plow for this probability and

consider a molecule to have entered the laser focus when

Eq. 12 drops below this value. Additionally we choose

a maximum value Phigh and consider the molecule to have

exited the focus when Eq. 12 increases above Phigh. At this

point, we integrate the spatial distributions to obtain an

estimate of the identity of the observed molecule. We leave

detailed discussion of the motivation for this scheme to

a future publication.

With these details specified, our formulation of the esti-

mator is complete. Next, we discuss the expected strengths

and limitations of the estimator under particular experimental

conditions.

Experimental regimes

While the derivation of Eq. 3 is applicable to all cases of

molecular diffusion and fluorescence, we expect its perfor-

mance to be affected by the parameters of the experiment.

For instance, we stated that Eq. 10 is a poor approxima-

tion when the diffusion rate is very fast relative to the

fluorescence rate gjðr~Þ. We may attempt to evaluate Eq. 9

more accurately, but the performance of our estimator will

still be quite limited due to its dependence on a spatial

distribution that changes more rapidly than it is updated. We

expect the filter to be most effective when gjðr~Þ is high and

diffusion rate is low, so that the value we calculate for

pðr~k�1; sjjjk�1Þ remains a good estimate for pðr~jjk�1; sjÞ as
the molecule moves from r~k�1 to r~k.
It may be the case that the diffusion rate is very small

relative to gj—such is the case for diffusion of molecules on

a membrane, for example. In this case we expect to detect

large numbers of photons at a fairly constant rate, so that

little spatial information is gained from the time spacing

between photons. Hence we expect that we can ignore this

spacing and the exact arrival-time data, and instead count the

numbers of photons detected in individually spaced time bins

of arbitrary size tbin. Then we replace jk ¼ {t1, . . . , tk} with
jk ¼ {n1, . . . , nk} in deriving Eq. 3, where we define nk as
the number of photons counted in the time bin (tk�1, tk). We

define r~k ¼ r~ðtkÞ as before. Here the diffusion probabilities

pðr~kjr~k�1; jk�1; sjÞ are calculated as in Eq. 5, and the

fluorescence probabilities are calculated using

pðnkjrk; jk�1; sjÞ � expð�~ggjðrkÞtbinÞ
ð~ggjðrkÞtbinÞnk

nk!
; (13)

where the approximation, as in Eq. 10, comes from the

molecule’s path-dependent fluorescence rate.

This formulation of the estimator requires significantly

fewer computations, because the diffusion and fluorescence

probabilities can all be calculated before the experiment,

making real-time estimation easier to achieve. We expect the

performance to be determined in part by the bin time tbin that
we choose—a tbin that is too large ignores significant

diffusion dynamics, but more computations are required as

the bin time is made smaller—so the choice of bin time

requires balancing these tradeoffs.

Generalizing the approach

We have stated that the most important point that we are

presenting here is a general approach to computational

single-molecule studies. It is important, then, to consider

how our approach generalizes to other experiments. The re-

cursive estimator given by Eq. 3 is a valid form for any

experiment in which no more than a single molecule is likely

to be in the focus of the laser; modifications or extensions

of the models for diffusion and fluorescence do not affect

the form of the estimator. Obvious extensions to the fluores-

cence model may incorporate multiple spectral channels to

facilitate further identification or experiments using fluores-

cence transfer (Berglund et al., 2002). Additionally, more

fluorescence details may be incorporated if necessary, such

as dye photobleaching, blinking dyes, forbidden transi-

tions, and spatially dependent photon collection efficiency.

Extensions to the diffusion model can be made to incorporate

diffusion restricted to a particular spatial domain, diffusion

with net flow, and as we have stated, free diffusion in higher

or lower dimensions. Clearly this makes feasible the use

of this recursive estimator in many common chemical and

biological experiments.

As stated earlier, parameter estimation can be treated as an

extension of identification as we have defined it here. Any

parameter that can be incorporated into our model for

identification can also be approximated by our technique if

we simply perform identification over a set in which that

parameter is varied—this is precisely a maximum likelihood

estimator (see Degroot, 1986, for example). It is also possible

to use a similar approach to derive estimators for parameters

that are relevant on the bulk sample scale, not the single-

molecule scale. For example, the details of single-molecule

observations are not affected by sample concentration, al-

though the frequency of such observations is. It is not very
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difficult to write a concentration estimator using a model for

this frequency. Coupled with the identification estimator, this

could be used to estimate the concentrations of the different

components of a sample. Thus all of the functionality of FCS

and other current techniques can be achieved by rigorous

estimation and extended to include any exotic photophysical

or diffusion dynamics for which a suitable model exists.

Our ultimate goal is the development of techniques that

facilitate experiments in which exotic dynamics will limit the

efficacy of current methods. Current techniques are limited

to experiments for which sufficient autocorrelation functions

or histograms can be generated for fitting to the experimental

data. We envision experiments in which fluctuations in the

quantities being measured affect the fluorescence stream

in such a way that realizing accurate results by fitting

observations to a small number of sample functions will be

impossible. For example, to study time-dependent mechan-

ical oscillations or rotations in single molecules—such

oscillations are common to proteins yet current techniques

for their study are quite limited (Bao and Suresh, 2003)—an

FCS experiment would require an enormous number of

model autocorrelations to explore a significant portion of the

infinite dimensional space that such oscillations lie in. In

contrast, with an appropriate model our recursive update

approach would be capable of making a statistically best

estimate of the oscillatory state of such a system continu-

ously in time for as long as the system can be observed. We

can also imagine the study of random events that have

a dramatic effect on diffusion dynamics, such as active

intercompartmental transport of free molecules in a living

cell, in which there is not only a random short-duration

change in the diffusion coefficient during transport, but also

a change in the topology of the space over which the

molecule is confined. Again, for such a process it will be

very difficult to calculate or simulate a sufficient set of

functions to fit the observations to, while a recursive update

formula with a sufficient model can be readily written down.

We believe our approach is the best path to take for the study

of such complex stochastic single-molecule dynamics.

Now we will present the results of simulations to

demonstrate and characterize the estimator in the single-

molecule identification experiment.

SIMULATIONS

In this section, we will simulate diffusion experiments in two

dimensions in MATLAB to illustrate the use of the recursive

filtering technique for the analysis of photon streams (for

computer code to implement the estimator, please contact the

authors). The simulations specify a set S of species with

varied diffusion coefficients Dj and brightness mj, and all

other model parameters held constant. Discrete, fine-grained

(Dt¼ 0.5 ms) Brownian motion trajectories are generated for

a particular species, and photon streams are generated from

a Poisson distribution with rate given by Eq. 7. We set the

beam waist w ¼ 0.5 mm and rates GL(0) ¼ 637 ms�1 and

Gj ¼ 500 ms�1 for all j. We first set GB ¼ 1 kHz to evaluate

the estimator in the presence of minimal background noise.

The arrival times of photons are extracted from the stream

and sent to the estimator for evaluation, and identifications

are made from the resulting distributions using Rmax¼ 2 mm,

Rth ¼ w ¼ 0.5 mm, Plow ¼ 0.25, and Phigh ¼ 0.75.

Identification based on diffusion coefficient

An experiment that we may perform using our identifica-

tion algorithm is one in which the dye-labeled sample mole-

cules may polymerize with unlabeled molecules, and we try

to distinguish between monomers and dimers. For example,

such an experiment could be used to distinguish between

single-stranded and double-stranded DNA. Figs. 1 and 2

show a sample trajectory and photon stream generated for

an experiment with S¼ {(1, 0.25), (1, 0.5)} where we denote

sj ¼ (mj, Dj) with Dj in units of mm2/ms; these values are

consistent with small nucleic acid polymers (Doi and

Edwards, 1986; Laurence et al., 2004). The trajectory shown

is for a molecule of type s1. This photon stream was run

through the estimator and some of the resulting spatial dis-

tributions are shown in Fig. 3. We see in these distributions

the effect that random fluctuations can play in the esti-

mate—whereas the peaks of the spatial distributions for the

molecule at positions A, B, and D are nearly exactly at the

molecule’s actual radial position, the estimator is off by

nearly one beam waist when the molecule is at position C.
Statistically, such momentary inaccuracies are expected; by

its recursive nature, however, the estimator corrects such

errors quickly as additional photons are detected.

To evaluate the performance of the recursive estimator in

this type of experiment over a range of possible S, we vary
the ratio of diffusion coefficients between species: we set S¼
{(1, 0.1), (1,D2)} with 0.1#D2# 0.5. Fig. 4 shows the final

probability distributions over space and species type for

a single simulated trajectory and set of photon arrival times

for a molecule of type s1, run through the estimator with

varied values for D2. This highlights an important aspect of

the estimator: in addition to providing an identification

scheme, it provides a quantitative evaluation of the accuracy

of the identification in the form of the probability that the

estimated species is indeed present. The estimator was not

able to correctly identify the molecule for D2 # 0.15,

however; as D2 increased to 0.5, P(s1jj) increased to 85%.

We now consider the accuracy of the estimator in

identifying molecules relative to theoretical upper and lower

performance bounds. A primary difficulty in extracting

information about the diffusion dynamics lies in the

uncertainty in estimating molecule position from fluores-

cence rate, since the detected fluorescence rate is not

a deterministic function of position (see Fig. 2). In theory,

the best possible identification estimate could be made if the

exact position of the molecule could be extracted from the
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data at each iteration of the estimator. To simulate this we

generate trajectories and photon streams in a manner

identical to that used for the recursive estimator, but we

record the exact radial position of the molecule at every

photon arrival time. We use a maximum likelihood estimator

(see Degroot, 1986, for an example) for species identity from

the position and arrival-time data; we take the probability of

successful identification by this method to be the theoretical

upper bound for performance in any simulated experiment.

In addition, we decide on a lower bound for the success

probability by considering only the duration of the iden-

tification trajectory—this should contain the least possible

information about the diffusion dynamics. We numerically

approximate p(tjDj), the probability distribution of the time

t spent within the laser focus given the diffusion coefficient

Dj, and let our identification estimate for each trajectory be

the species for which this probability is greatest. We take the

performance of such an estimator to be the minimal

performance that we should be able to achieve with data

from a single trajectory.

Fig. 5 compares the accuracy of the recursive estimator to

that of the theoretical upper and lower bounds. For clarity,

success probabilities are not shown for each species, but

rather the geometric mean of the two probabilities is shown.

The geometric mean was chosen as a simple measure of both

the accuracy and the bias of the estimator; it is highest only

when the estimator is nearly unbiased and accurate for both

species. For diffusion coefficient ratios less than 1.5, the

probability of successful identification lies near 50% for all

three estimators. For ratios greater than 1.5, the recursive

estimator lies well within the bounds. Note that here we only

consider the probability that the estimator correctly reports

the species present, not the reported probability of the

estimate. We expect to be able to improve the performance

FIGURE 1 Data generated by two-dimensional simula-

tion. The plot shows a trajectory of a molecule with Dj ¼
0.25 mm2/ms and mj ¼ 1 through the circular region

centered at the laser focus with radius Rmax ¼ 2 mm. The

inner, dashed circle represents the laser beam waist. Entry

and exit points are indicated. Displayed molecule positions

are updated in 0.5-ms increments. Circles indicate the

molecule’s position at each photon arrival time. Labeled

points correspond to the times at which the distributions in

Fig. 3 are shown.

FIGURE 2 Simulated photon counts detected in time intervals of 50 ms as

the molecule traversed the path in Fig. 1. Also shown is the expected photon

count over these intervals based on the actual laser intensity at the

molecule’s position, given by Eq. 7. Note the difference between expected

and detected fluorescence rates—this contributes to the difficulty of ex-

tracting accurate spatial information from the photon stream.
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by specifying a minimum threshold for this probability and

thereby only accepting estimates that are made with a high

degree of certainty; these data represent a minimal level of

performance for our estimator.

Identification of diffusing fluorophores by diffusion

coefficient alone is a problem addressed by FCS. Using this

method, a nonlinear fit to simulated data or a maximum

likelihood estimator is used to identify a species given its

autocorrelation function (Enderlein and Köllner, 1998). Our

technique has several advantages over this method, in that

the estimator provides a rigorous probability distribution

over species present in the sample. Thus in addition to a most

probable identity, it provides a measure of how certain the

estimate can be considered to be. In addition, such an

estimate can be made at any time during the fluorophore’s

path through the beam focus, allowing an experiment to

interact with sample molecules before they leave the focus,

as is necessary for a tracking or sorting experiment. FCS

methods, in contrast, rely on an autocorrelation that may not

provide a good identification estimate with incomplete data.

Of course, a major advantage over FCS is that we can

consider additional molecular parameters in our identifica-

tions. Next we consider an experiment in which the species

present may differ in brightness mj.

Multiple species identification

Here we propose a hypothetical experiment in which four

dye-labeled species exist in solution: one small molecule,

one large molecule, one small-large molecule complex, and

one small-large complex where one of the dyes has

photobleached. Such experiment could be useful if, for

instance, we wanted to measure the kinetics of complex

formation. We can also imagine an experiment using real-

time feedback to isolate only the complex with two in-

tact dyes from solution. To simulate such experiments, we let

S ¼ {(1, 0.4), (1, 0.2), (1, 0.15), (2, 0.15)} to test low

diffusion coefficient ratios and S¼ {(1, 2), (1, 0.4), (1, 0.08),

FIGURE 3 Sample spatial distributions resulting from the stream of 253

photons presented in Fig. 2, using S ¼ {(1, 0.25), (1, 0.5)}. The distribution

after the 62nd photon detected (point A in the trajectory) is in the top left.

The top right, bottom left, and bottom right distributions are after the 125th,

188th, and 252nd photons, with the molecule at positions B, C, and D,
respectively. Integrated probabilities given by Eq. 4 are reported for each

species. Dotted vertical lines indicate the actual radial position of the

molecule.

FIGURE 4 Performance of recursive estimator in iden-

tifying species with varied diffusion coefficient ratios. One

trajectory and resulting set of 91 photon arrivals was

generated for molecule type s1 with the set S ¼ {(1, 0.1),

(1, D2)}, for six logarithmically spaced values of D2.

Shown are the radial distributions for each species after the

final photon arrival time was processed. Integrated prob-

abilities are indicated.
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(2, 0.08)} to test high ratios. The ratios between molecular

diffusion coefficients of complexes and their constituents are

largely dependent on the relationships between the geometry

of the individual components and that of the complex. Hence

both cases have some physical relevance, with the low-ratio

case an example where geometry is largely not altered by

binding, and the high-ratio case an example in which the

individual constituents may be tightly folded, for instance,

while the complex takes a large, extended form.

Figs. 6 and 7 show distributions resulting from trajectories

generated by each species type in the multiple species

experiments. In the low diffusion coefficient ratio experi-

ments, the estimator identifies s1 and s4 with high prob-

ability, but cannot distinguish well between s2 and s3 due to
their very similar diffusion coefficients. For higher diffusion

coefficient ratios, all species are identified with high probabi-

lity. Note that in both cases, s4 is identified with probability

nearly 1, indicating that brightness is a much stronger cri-

terion for distinguishing between species than diffusion co-

efficient.

Experiments to distinguish between species based on both

diffusion coefficient and brightness are the focus of the

FIMDA and PAID methods (Laurence et al., 2004; Palo

et al., 2000). Our method has several advantages over

these. Again, our estimator reports identification probability,

a rigorous measure of the confidence in the estimate. This is

useful in any experiment—for kinetics experiments, we can

calculate the appropriate uncertainties in whatever values we

measure; for sorting, we can be highly certain that we extract

the correct molecules. Second, FIMDA and PAID require

multidimensional nonlinear fits of their data to simulated or

theoretical results, making real-time experiments nearly

impossible with modern computer hardware. Third, as in the

comparison with FCS, our technique always provides the

statistically best estimate of the species present at all times,

providing information for real-time experiments while the

fluorophores are within the focal volume. While we are not

aware of any studies that examine the performance of

FIMDA and PAID in the identification of single diffusing

molecules, we expect that our estimator should be at least as

accurate as these methods.

FIGURE 5 The performance of the recursive estimator as a function of

diffusion coefficient ratio, compared to that of the estimators representing

theoretical upper and lower performance bounds. We set S ¼ {(1, 0.1),

(1, D2)} and generate trajectories resulting in at least 200 identifications for

each species type, for each estimator, for variedD2. Plotted are the geometric

mean success probabilities for each estimator.

FIGURE 6 (Left) The performance of the recursive estimator in the multiple component experiment with S ¼ {(1, 0.4), (1, 0.2), (1, 0.15), (2, 0.15)}.

Trajectories were generated for each species, and the resulting photon arrival-time data was run through the estimator. The distributions shown are the

distributions before the final exit time of the molecule for each trajectory. (Right) The table shows the integrals of the probability distributions shown in the

figure, giving the probability of each species being present according to the data generating each plot.
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Slow-diffusion identification

In experiments where species diffusion coefficients are small

relative to the fluorescence rates, we expect that a reduction

of the photon stream from a series of arrival times to a series

of photon counts in time windows of length tbin will be both
effective and computationally simpler than the arrival-time

estimator that we have been using. We test this by running

a series of two-species diffusion-based identification simu-

lations, setting S ¼ {(1, D1) (1, 3D1)} and varying D1. Fig. 8

shows the results of these simulations, run using bin times of

0.1 ms and 0.5 ms. We see that for small diffusion

coefficients, with sufficiently small bin time, the binned-

data estimator’s performance reaches as high as 90%—

roughly 10 percentage points higher than the performance of

the arrival-time estimator. For D1 $ 0.02 mm2/ms, both

estimators achieve roughly the same performance. When

a larger bin time is used, the performance of the binned-data

estimator is degraded, falling as low as 50% before the data

become too coarse-grained to make identifications, which

happens for D2 . 0.3 mm2/ms.

FIGURE 7 (Left) The performance of the recursive estimator in a high diffusion coefficient ratio multiple component experiment with S ¼ {(1, 2), (1, 0.4),

(1, 0.08), (2, 0.08)}. Trajectories were generated for each species, and the resulting photon arrival-time data was run through the estimator. The distributions

shown are the distributions before the final exit time of the molecule for each trajectory. (Right) The table shows the integrals of the probability distributions

shown in the figure, giving the probability of each species being present according to the data generating each plot.

FIGURE 8 Comparison of estimator performance using

binned photon-count data and arrival-time data. Geometric

mean success probabilities are shown for simulations in

which we set S ¼ {(1, D1), (1, 3D1)} and vary D1. A

minimum of 100 identifications was made for each species,

for each value of D1, for both estimators. Binned data

were generated with bin times tbin ¼ 0.1 ms and tbin ¼ 0.5

ms, as indicated in the legend. For tbin ¼ 0.5 ms, the

estimator cannot successfully observe species s2 for D3 .
0.3 mm2/ms, so the plot does not continue beyond this

point.
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It is somewhat surprising to see the binned-data estimator

outperform the exact arrival-time estimator. We attribute this

result to accumulated numerical error as many photon arrival

times are processed; finite precision mathematics (MATLAB

uses 64-bit data types) limits the accuracy of each iteration of

the estimator. The binned-data estimator may update as little

as 10% as frequently as the arrival-time estimator, and as

a result the difference in accumulated error is great enough

that the binned estimator performs better despite the arrival-

time estimator’s theoretical advantage. The effect is par-

ticularly pronounced for molecules with small diffusion

coefficients because a very large number of photons is

typically detected as such molecules diffuse through the laser

focus. This results in a large number of recursive updates,

each introducing some numerical error to the distribution.

As shown in Fig. 8, the performance of the binned-data

estimator will be limited by selection of the bin time; to

achieve best results, the bin time must be made sufficiently

small to capture essential features of the fluorescence stream,

yet not too small to cause numerical error to hurt accuracy.

Initial speculation about the implementation of the recursive

estimator on a field programmable gate array (Stockton et al.,

2002) leads us to believe that the binned-data estimator with

reasonable bin time reduces the frequency of computations

sufficiently to enable its use in experiments requiring real-

time feedback.

Clearly the binned-data estimator, not the arrival-time

estimator, is the best tool for the current problem both for

computational efficiency and accuracy, at least when

numerical precision is limited to 64-bit. However, the

arrival-time formulation will be essential for experiments

in which fast photophysical dynamics, such as blinking

or energy transfer, are incorporated into the fluorescence

model. The binned-data estimator will never be able to

accurately handle dynamics on a timescale smaller than tbin,
whereas the arrival-time estimator’s time resolution is

limited only by photodetector resolution.

Background noise and estimator performance

So far we have only presented results showing the

performance of the estimator with 1 kHz background noise.

Here we consider the effect of higher-rate background

fluorescence on the estimator. The model that we derived for

the fluorescence incorporated a constant rate background

count GB. We expect that Eq. 7 will provide fluorescence

rates that are exact assuming that the noise has a constant rate

that can be measured or approximated before the experiment.

Figs. 9 and 10 show the identification accuracy of the

estimator on data containing constant-rate Poisson back-

ground noise. The plots are generated by setting S ¼ {(1,

D1), (1, D2)} with D1 constant at 0.1 for the arrival-time data

and 0.01 for binned data, and varying the ratio D2/D1. Note

that a direct comparison between the probabilities in these

figures is irrelevant because the plots are over different

diffusion coefficient regimes. We see that there is little

noticeable difference in the performance of the estimator on

either data type with noise at 1 kHz and 2 kHz, but for noise

strengths of 5 kHz there is a performance loss of a few

percentage points for the arrival-time data. The difference in

noise-rejection performance between the data types is again

attributed to numerical issues: higher noise count rates

increase the number of iterations of the arrival-time estimator

and therefore increase propagated error. A typical experi-

mental apparatus is capable of a background count rate of

1–2 kHz, and both estimators successfully handle noise at

FIGURE 9 Performance of the arrival-time estimator on

data with varied background noise strengths indicated. The

plots were generated using S ¼ {(1, 0.1), (1, D2)}, and

0.1 , D2 # 1.0, with a minimum of 200 identifications

made for each species. Data shown are the geometric

means of the success probabilities for each species.
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these levels (Berglund et al., 2002; Enderlein and Sauer,

2001).

CONCLUSION

We derived a recursive Bayesian estimator to calculate

a probability distribution for the identity of a single diffusing

fluorophore given its photon arrival-time stream as it makes

a single pass through the focus of a confocal fluorescence

microscope. We derived analytical models for the diffusion

and fluorescence dynamics in such an experiment, and tested

our estimator by running experimental simulations in two

dimensions.

We showed that our estimator is capable of identify-

ing single molecules based on differences in their diffusion

coefficients and brightness, but we stress that our method

provides a means of identification that is based on any

species-specific parameter. Our simulations indicated that

the accuracy of the estimator in identification by diffusion

coefficient is reasonable, as it lies within the performance

bounds set by a minimal-data estimator and an ideal,

theoretical one. We showed that our estimator is significantly

more sensitive to brightness than it is to diffusion coefficient

by demonstrating that species with twofold differences in

brightness can be identified with probability 1, whereas esti-

mator accuracy on species with twofold differences in diffu-

sion coefficient is not much better than random guessing.

A key feature of our identification scheme is that it

provides a probability distribution over the set of possible

species identities. This provides a measure of the certainty of

an identification, as we demonstrated that relatively similar

species are identified with fairly low probability, and rela-

tively dissimilar ones are identified with high probability.

We showed that by counting photon arrivals in time

windows of fixed duration we can significantly reduce the

number of calculations necessary while maintaining accu-

racy in diffusion coefficient-based identification for slowly

diffusing molecules. In fact, accuracy improved by doing

this because of issues with the accumulation of numerical

errors over many estimator iterations. We believe that this

approach is experimentally tractable, in that it is both

accurate and computationally simple enough to facilitate

experiments requiring real-time feedback.

It is important to note that our work was done in two

dimensions purely for computational simplicity and to

illustrate the technique. The estimator is valid in an arbitrary

number of dimensions, and the models we derived are easily

extended to three dimensions. Assuming a correct model, we

believe that the performance of the estimator applied in three

dimensions will not be much different than that which we

have presented.

The most important point we wish to address is the

prospect of using approaches similar to what we have

presented to tackle more complicated problems in single-

molecule spectroscopy. Rigorous mathematical tools exist

for the treatment of stochastic processes such as diffusion

and fluorescence, and when applied properly they yield

direct quantitative approaches to the same problems that

have previously been addressed using more limited and

circuitous methods. These quantitative tools are only limited

in the extent to which the physical processes underlying the

experiments are understood; for any system that we can write

an accurate model for, we can develop an estimator to

measure something about that system. We hope we have

made clear the motivation for our belief that coupling

a rigorous quantitative approach to data analysis with clever

FIGURE 10 Performance of the identification estimator

on binned data with bin time 0.1 ms and varied

background noise strengths as indicated. The plots were

generated with S ¼ {(1, 0.01), (1, D2)}, and 0.01, D2 #

0.1, with at least 100 identifications made for each species.

Shown are the geometric means of the success probabil-

ities for each species.

3420 McHale et al.

Biophysical Journal 86(6) 3409–3422



experiments will allow for novel studies of complex sto-

chastic dynamics on the single-molecule scale.

APPENDIX

Perturbative calculation of p(nk 5 0jrk; rk21; jk; sj)

Let gj½r~ðtÞ� be a position-dependent Poisson rate with r~ðtÞ as some fixed path

satisfying r~ðtk�1Þ ¼ r~k�1 and r~ðtkÞ ¼ r~k. Let p�½r~ðtÞ� be the probability that

no photon is emitted along the path r~ðtÞ. From an elementary probability

calculation, we have

p�½r~ðtÞ� ¼ exp �
Z t

0

dt#gj½r~ðt#Þ�
� �

; (14)

where the notation is to indicate that p� is a functional of the path r~ðtÞ.
p(nk ¼ 0jrk; rk�1; jk; sj) is the average of the functional over all (scalar)

paths r(t) with r(0)¼ rk�1 and r(t)¼ rk. Since the sample paths are generated

by Brownian motion, we take the Wiener measure dmW[r(t)] with diffusion

coefficient Dj as our probability measure on this function space (Chaichian

and Demichev, 2001). We may now write p(nk ¼ 0jrk; rk�1; jk; sj) as a path

integral over the class F of all continuous functions from (rk�1, tk�1) to

(rk, tk) as

pðnk ¼ 0jrk; rk�1; jk; sjÞ ¼
R
F dmW½rðtÞ�p�ðtjrðtÞÞR

F dmW½rðtÞ�
¼ 1

pðrkjrk�1; Dtk; sjÞ
Z
F
dmW½rðtÞ�

3ðexpÞ �
Z t

0

gj½rðt#Þ�dt#
� �

: (15)

If we now write the instantaneous rate function as

gj½rðtÞ� ¼ ~gg1ðgj½rðtÞ�� ~ggÞ; (16)

where

~gg¼ 1

2
ðgj½rk�1gj½rk�1�Þ; (17)

we may make a perturbation expansion of Eq. 15 around the constant

potential ~gg.

For the constant rate ~gg, we have

Z
F
dmW½rðtÞ�exp �

Z tk

tk�1

~ggdt#

� �

¼ pðrkjrk�1; Dtk; sjÞexp½�~ggDtk�: (18)

Including the first-order contribution from the perturbing term gjðrÞ � gives

the next lowest-order correction of

pðnk ¼ 0jrk; rk�1; jk; sjÞ ¼ exp½�~ggDtk�� 2p

pðrkjrk�1; Dtk; sjÞ

3

Z tk�1

tk

dt

Z
dr r pðrkjr; tk� t; sjÞ½gjðrÞ� ~gg�

3pðrjrk�1; t� tk�1; sjÞ1 � � � : (19)
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