Breakpoints for extended-spectrum β-lactamase-producing Enterobacteriacae: pharmacokinetic/pharmacodynamic considerations

A. MacGowan

Department of Medical Microbiology, Bristol Centre for Antimicrobial Research and Evaluation, University of Bristol and North Bristol NHS Trust, Southmead Hospital, Westbury-on-Trym, Bristol, UK

ABSTRACT

An understanding of antibacterial pharmacokinetics and pharmacodynamics is central to setting clinical breakpoints. It is important to understand any impact that a resistance mechanism may have on these basic drug properties. With extended-spectrum β -lactamase (ESBL)-producing strains of Enterobacteriacae, it is known that MIC, and hence *T*>MIC, for β -lactams predicts outcome. Therefore, pharmacodynamic modelling can be used to set breakpoints for ESBL-producing bacteria with β -lactams.

Keywords *Escherichia coli*, extended-spectrum β-lactamase, Monte–Carlo simulation, pharmacodynamics, pharmacokinetics, review

Clin Microbiol Infect 2008; 14 (Suppl. 1): 166–168

INTRODUCTION

The determination of clinical breakpoints for extended-spectrum β-lactamase (ESBL)-producing strains of Enterobacteriacae is an essential element of the laboratory support of antimicrobial therapy [1]. In addition, appropriate categorisation of strains as susceptible, intermediate or resistant to certain agents—especially β-lactams-ensures that appropriate infection control measures can be taken. A clinical breakpoint needs to have predictive value in terms of microbiological and/or clinical outcomes. Susceptibility has been defined by EUCAST as 'a level of antimicrobial activity associated with a high likelihood of therapeutic success' (http:// www.EUCAST.org). In contrast, resistance is defined as 'a level of antimicrobial activity associated with a high likelihood of therapeutic failure'. If the breakpoint provides these relationships, then infection control and therapeutic decisions based on laboratory testing are likely

E-mail: alasdair.macgowan@nbt.nhs.uk

to prevent adverse patient outcome and improve patient safety, and probably will be cost-effective.

In this article, the development of clinical breakpoints for β -lactam antibiotics against ESBL-producing *Escherichia coli*, *Klebsiella* spp. and some other Enterobacteriaceae is discussed. It is well-known that ESBL producers are often also resistant to a wide range of other antimicrobials, e.g., fluoroquinolones, aminoglycosides and dihydrofolate reductase inhibitors [2], and these are not discussed further.

Modern clinical breakpoints depend on three key areas of information, namely, pharmacodynamics, MIC values and distributions, and clinical trial data. In order to set a breakpoint related to a specific resistance mechanism, several factors are required:

- 1. The basic pharmacokinetic (PK)/pharmacodynamic (PD) properties of the drug class against which the resistance mechanism operates need to be known.
- 2. The impact of the resistance mechanism on the PK/PD relationships of drug concentration and outcome needs to be established—usually using in-vitro or in-vivo PD models.
- 3. It must be determined whether the existing tools used to decide breakpoints (i.e., models) are valid for the resistance mechanism.

Corresponding author and reprint requests: A. MacGowan, Department of Medical Microbiology, Bristol Centre for Antimicrobial Research and Evaluation, University of Bristol and North Bristol NHS Trust, Southmead Hospital, Westburyon-Trym, Bristol, BS10 5NB, UK

- 4. It must be determined whether the PK/PD prediction based on in-vitro, in-vivo and insilico models can be validated in clinical trials.
- 5. It must be determined whether the proposed breakpoints predict microbiolog-PK/PD ical/clinical outcomes in humans.

The PD properties of β -lactams are welldescribed. β-Lactams show time-(non-concentration)-dependent killing within the therapeutic range, with moderate persistent effects against Gram-positive bacteria and minimal effects against Gram-negatives. The goal of dosing is to maximise the duration of pathogen exposure to the drug (i.e., to increase the time for which the drug remains over a threshold value); hence, T>MIC is regarded as the dominant PK/PD index [3].

The T>MIC, either in vitro or in vivo (neutropenic murine thigh models) for a static to one log pathogen kill at 24 h is taken to be most predictive of outcome in humans. For cephalosporins against Gram-negatives, this value is c. 25-40%, while for Gram-positives it is 20-30%. Carbapenems have a lower T>MIC value for a given effect than do cephalosporins, and if the requirement is to kill more than one log bacteria, then a higher T>MIC is needed (Table 1).

Data from the neutropenic murine thigh infection models obtained using a range of cephalosporins (cefotaxime, ceftriaxone, ceftazidime and cefepime) to treat bacteria with a range of ESBLs (TEM-3, TEM-7, TEM-10, TEM-12, TEM-26, SHV-2, SHV-4, SHV-5, SHV-7, CTX-M) has indicated that the T>MIC for static or bactericidal effects is the same, whether or not the strain carries an ESBL [4]. There are similar data for ertapenem (Table 2) [5]. In conclusion, these data indicate

Table 1. The T>MIC antibacterial effect relationship for Escherichia coli in an in-vitro dilutional model simulating free drug concentration in humans

Table 2. The antibacterial effect relationship of ertapenem against Enterobacteriaceae containing TEM or SHV β-lactamases in a neutropenic thigh infection model

	T>MIC%		
	Static effect at 24 h	ED ₅ at 24 h	
Extended-spectrum β-lactamase (ESBL)+ ESBL–	17 ± 17	37 ± 17	
	21 ± 12	30 ± 23	

that the β -lactam MIC of an ESBL-producing strain can be used to predict likely human outcomes from PK/PD models; that is, as long as a certain T>MIC value is achieved, the microbiological outcome can be predicted. The data in Table 3 illustrate the effect of MIC on the antibacterial effect of ceftriaxone, piperacillin-tazobactam and ertapenem, at standard simulated human doses, on ESBL producers.

The use of Monte-Carlo simulations is central to clinical breakpoint determination. Monte-Carlo analysis is a mathematical tool that allows for random number generation within a defined distribution of values. It is used in setting breakpoints, as it allows the possible range of PK values to be modelled and combined. It also allows a range of MIC values to be modelled. Clearly, Monte-Carlo analysis is critically dependent on the quality of the data used to define the modelled distributions [6]. If these do not accurately represent the clinical situation of interest, then the model will not be predictive. Examples of Monte-Carlo simulations are shown in Tables 4 and 5 for ceftriaxone and piperacillin–tazobactam [7]. The analysis indicates that if the T>MIC target for ceftriaxone is c. 30%, as indicated by animal models, then this value will be achieved in

Table 3. Activity of ceftriaxone (CEF), piperacillin-tazobactam (P-T) and ertapenem (ERTA) at simulated standard doses against extended-spectrum β-lactamase producers,

	% T>MIC dosing for effect with		studied in an in-vitro pharmacokinetic model						
Antibacterial effect at 24 h (log CFU/mL)				MIC (mg/L)		Kill at 24 h (log CEU/mL)			
	Ceftriaxone	Ertapenem							
		<u> </u>		CEF	P-T	ERTA	CEF	P-T	ERTA
Static	25	20							
–1 log drop	40	25	Escherichia coli	1.5	6	0.02	0	-4.2	-4.1
-2 log drop	55	35		4.0	8	0.06	-2.7	-2.8	-4.1
-3 log drop	70	50		14.0	20	0.09	+2.1	-0.5	-4.0
-4 log drop	95	70	Klebsiella	40.0	28	0.12	+1.8	-1.7	-4.0
r ²	0.98	0.98	pneumoniae						

© 2008 The Author

Journal Compilation © 2008 European Society of Clinical Microbiology and Infectious Diseases, CMI, 14 (Suppl. 1), 166–168

	TAR at T>MIC rates of					
MIC (mg/L)	20%	30%	40%	50%	60%	
0.25	100	100	97	55	6	
0.5	100	100	72	9	0	
1.0	100	90	16	0	0	
2.0	99	29	1.0	0	0	
4.0	54	0	0	0	0	

 Table 4. Monte-Carlo simulations and target attainment rates (TAR) for intravenous ceftriaxone 2 g every 24 h

Table 5. Monte-Carlo simulations and target attainmentrates (TAR) for intravenous piperacillin-tazobactam 4 gevery 6 h

	TAR at T >MIC rates of						
MIC (mg/L)	20%	30%	40%	50%	60%		
4	100	100	100	100	99		
8	100	100	100	99	83		
16	100	100	97	57	9		
32	100	83	13	1	0		
64	24	2	0	0	0		

>90% of patients, provided that the ceftriaxone MIC for the pathogen is $\leq 1 \text{ mg/L}$. An equivalent value for piperacillin–tazobactam is $\leq 16 \text{ mg/L}$. Work by Moczypamba *et al.* [8] has indicated that, with a *T*>MIC target of 20-30%, this value will be achieved in >99% of patients with standard doses of imipenem or meropenem against ESBL-producing strains. The equivalent value for ertapenem was $\geq 83\%$ of patients.

In conclusion, the use of PK/PD models, human PKs and Monte-Carlo simulations allow rational clinical breakpoints to be proposed for ESBL-producing bacteria. Such proposals form the basis for discussion, which can be modified in the light of MIC distribution and clinical data. PK/PD modelling indicates that carbapenems (ertapenem, imipenem and meropenem) are likely to represent best therapy as a drug class for all ESBL producers. Other β -lactams are likely to present adequate therapy, provided that the strain MICs fall below the PK/PD breakpoint (Table 6).

How such proposed PK/PD breakpoints are incorporated into routine clinical microbiology

Table 6. Pharmacokinetic/pharmacodynamic (PK/PD) systemic breakpoints for representative cephalosporins and penicillin against extended-spectrum β-lactamase-producing bacteria

Agent	PK/PD breakpoint for effective therapy MIC (mg/L)
Cefotaxime	≤1
Ceftriaxone	≤1
Cefepime	≤4–8
Piperacillin-tazobactam	≤16
Temocillin	≤4–8

testing and reporting systems after modification in the light of MIC and clinical data is a subject for further discussion.

REFERENCES

- 1. Jacoby GA, Munoz-Price LS. The new β-lactamases. *N Engl J Med* 2005; **352**: 380–391.
- Paterson DL, Mulazimoglu L, Casellas JM *et al*. Epidemiology of ciprofloxacin resistance and its relationship to extended-spectrum β-lactamase production in *Klebsiella pneumoniae* isolates causing bacteraemia. *Clin Infect Dis* 2000; **430**: 473–478.
- 3. Craig WA. Pharmacodynamics of antimicrobials: general concepts and applications. In: Nightingale CH, Murakawa T, Ambrose PG, eds, *Antimicrobial pharmacodynamics in theory and clinical practice*. Basel: Marcel Dekker, 2002; 1–22.
- Andes D, Craig WA. Treatment of infections with ESBLproducing organisms: pharmacokinetic and pharmacodynamic considerations. *Clin Microbiol Infect* 2005; **11** (suppl 6): 10–17.
- Maglio D, Banevicius MA, Sutherland C, Babalola C, Nightingale CH, Nicolau DP. Pharmacodynamic profile of ertapenem against *Klebsiella pneumoniae* and *Escherichia coli* in a murine thigh model. *Antimicrob Agents Chemother* 2005; 49: 276–280.
- 6. Ambrose PG, Grasela DM. The use of Monte-Carlo simulations to examine pharmacodynamic variance of drugs: fluoroquinolone pharmacodynamics against *Streptococcus pneumoniae*. *Diagn Microbiol Infect Dis* 2000; **38**: 151–157.
- Ambrose PG, Bhavnani SM, Jones RN. Pharmacokineticspharmacodynamics of cefepime and piperacillin-tazobactam against *Escherichia coli* and *Klebsiella pneumoniae* strains producing extended spectrum β-lactamases: report from ARREST Program. *Antimicrob Agents Chemother* 2003; 47: 1643–1646.
- Moczygemba LR, Frei CR, Burgess DS. Pharmacodynamic modelling of carbapenems and fluoroquinolones against bacteria that produce extended spectrum beta lactamases. *Clin Ther* 2004; 28: 1800–1806.