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Heyman’s Safe Theorem is the theoretical basis for several calculation methods in masonry analysis.
According to the theorem, the existence of an internal force system which equilibrates the external loads
guarantees that the masonry structure is in a stable equilibrium state, assuming that a few conditions on
the material behaviour are satisfied: the stone blocks have infinite compressional resistance, and the con-
tacts between them resist only compression and friction. This paper presents simple examples in which
the Safe Theorem fails: collapse occurs in spite of the existence of an equilibrated force system. A theo-
retical analysis of the stability of assemblies of rigid blocks with frictional contacts is then introduced: the
virtual work theorem is derived, and a refined formulation of the Safe Theorem is given.
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1. Introduction

Using the idea proposed by Kooharian (1952), a classic paper by
Heyman (1966) suggested applying the concepts of Plastic Limit
State analysis to masonry systems in cases when the collapse of
the structure is caused by instability resulting from the unsuitable
geometry of the structure. Heyman made the following assump-
tions about the material:

(i) Stone has no tensile strength.
(ii) The compressive strength of the stone is infinite.

(iii) Sliding of one stone on another cannot occur.

In addition, though not stated explicitly, Heyman also assumed
that the blocks are rigid, so that the same given geometry of the
structure is valid for any analysed force system which the structure
is able to equilibrate.

Based on these assumptions, Heyman stated the Safe Theo-
rem for masonry arches: ‘‘If a line of thrust can be found which is
in equilibrium with the external loads and which lies wholly within
the masonry, then the structure is safe’’. (Kooharian (1952) stated
the dual pair of the Safe Theorem, i.e. the Unsafe Theorem, in the
following way: ‘‘Collapse will occur (or will have occurred previously)
if a kinematically admissible collapse state can be found. A ‘‘kinemat-
ically admissible’’ collapse state is one characterised by the condition
that in a virtual displacement of the mechanism, the work done by
the external loads must be at least as large as that done by the internal
forces’’. The Unsafe Theorem, often referred to as the kinematic the-
orem, will not be considered in the present paper, which focuses
purely on the Safe Theorem.

The Safe Theorem has been successfully applied in a vast num-
ber of engineering problems in practice, particularly to arches and
vaults; in spite of the fact that neither Heyman nor Kooharian gave
a precise proof for these theorems. It was implicitly accepted that
Plastic Limit Analysis can be directly applied to check whether the
structure stands in the given geometry under its self weight, with-
out making a distinction between the two types of problems which
may occur in the stability analysis of arches and vaults: (1) the sta-
bility analysis of a structure which is already definitely stable
under its selfweight and which is then loaded by an additional,
one-parameter load whose magnitude starts to increase from zero,
and whose allowable magnitude is to be determined, and (2) the
stability analysis of a structure under a non-parametric load such
as, for instance, its selfweight. (Speaking in the language of Plastic
Limit Analysis, for Problem (1) the zero load factor is within the
domain of admissible load factors if the structure was found to
be safe for its self weight.) While the application of Plastic Limit
Analysis seems to be straightforward for Problem (1) if certain
assumptions on the structural behaviour are met, the situation is
different for Problem (2): if the structure is not in equilibrium for
its selfweight, a stable state cannot be reached by proportionally
decreasing the selfweight by any factor. The validity of the Safe
Theorem for Problems (1) and (2) for masonry structures consist-
ing of rigid blocks is the subject of the present study.
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It will be useful to recognise how thinking on masonry has
changed over the past few decades. Engineers in the 1950s and
1960s tended to think of masonry not as a collection of precisely
described individual blocks, but rather as a kind of a continuum
whose behaviour could be described with the help of homogenisa-
tion methods, e.g. in soil mechanics. This view can be recognised in
Heyman’s approach and in that of several later authors such as
Como (1992). The following decades, however, brought dramatic
developments in both computational techniques and the hardware
widely available to engineers, and this development led to
masonry structures being considered rather as a collection of dis-
crete, well-defined blocks, in which the displacement of each block
should be analysed separately. A few examples of this discrete way
of thinking are the Discrete Element Method (e.g. UDEC invented
by Cundall, 1971; DDA by Shi, 1988), funicular analysis proposed
by O’Dwyer (1999), thrust network analysis in 2D (Block, 2005)
and in 3D (Block and Ochsendorf, 2007). From the 1980s onwards
it became numerically possible to simulate simple masonry struc-
tures by modelling the state of each individual block separately
and by the 1990s real practical problems were frequently being
solved with the help of discrete computational methods.

These developments also influenced views of Heyman’s condi-
tion (i). In reality, stone or brick voussoirs do resist tension and
joints (which are dry, or with very weak mortar) between blocks
are the only parts of the system where it is reasonable to assume
no-tension behaviour. While some authors (e.g. O’Dwyer, 1999;
Huerta, 2001; Ochsendorf et al., 2004) continue to use the original
formulation of the conditions, others (for instance Boothby, 2001
or D’Ayala and Tomasoni, 2008), thinking ‘‘discretely’’, replaced
Heyman’s assumption (i) by the requirement (perhaps physically
more realistic on the scale of voussoirs) that only joints are no-ten-
sional. Boothby (2001) formulated the basic assumptions of the
Safe Theorem as follows:

(a) the masonry units are infinitely rigid;
(b) the masonry units are infinitely strong;
(c) the masonry units do not slide at the joints;
(d) the joints transmit no tension.

The Safe Theorem can now be stated thus: ‘‘If there exists any
system of forces satisfying (a–d) and being in equilibrium with the
loads, then the structure is safe’’. It was generally accepted without
proof that the Safe Theorem, being successful in so many practical
applications even for selfweight, would remain valid if Heyman’s
no-tension criterion for the material as a whole is replaced by a
no-tension criterion for joints only (assuming, of course, that fric-
tional sliding does not occur).

The occurrence of frictional sliding was excluded from the anal-
yses of Kooharian, Heyman and the numerous authors who fol-
lowed them, in order to ensure the validity of the normality
condition, an indispensable hypothesis of classic limit state analy-
sis. If normality fails the uniqueness theorem is no longer valid and
nor are the static and kinematic theorems in their classic forms.
Non-associated flow rules can be applied to Plastic Limit Analysis
in the absence of normality, although Orduna and Lourenco
(2005a) emphasise that the static and kinematic approaches can-
not be separated and that a mixed formulation must be used and
thus a multiplicity of solutions can exist in these situations.

For masonry structures, the failure of normality in the case of
Coulomb-type frictional contact sliding was demonstrated by
Drucker (1954). Parland (1982, 1995) also drew attention to this.
In his contact model surface roughness forces the frictionally slid-
ing contacts to dilate. Normality would be valid if the friction angle
according to which the tangential force is related to the compres-
sion force at sliding, and the angle (expressing the surface rough-
ness) according to which the normal deformation is related to
the tangential deformation at sliding were equal. However, there
is no physical reason to assume such a coincidence: the dilation
angle is usually significantly lower.

The lack of normality of Coulomb-type contacts posed a chal-
lenging problem for several researchers aiming at developing reli-
able computational techniques for masonry analysis. In the limit
state method of Livesley (1978, 1992) the problem was solved with
the help of additional correcting steps. Orduna and Lourenco
(2005a) applied a piecewise linear approximation of the yield sur-
face for 3D analysis, including torsional failure of the planar con-
tacts between voussoirs. They emphasise that the loading history
of a structure can significantly influence the results of the analysis,
and without knowledge of this history the reliability of the solu-
tions is questionable. In their next paper (Orduna and Lourenco,
2005b) a solution method is presented which is based on an
approximate simulation of the loading history. For axially symmet-
ric structures and loads, Casapulla and D’Ayala (2001) gave a proof
for the uniqueness of the solution and presented a computer pro-
cedure based on the static theorem. Later the method was
extended (D’Ayala and Tomasoni, 2008) and by finding the optimal
thrust surface vaults with more general shapes could be analysed.

These investigations and successful numerical techniques may
give the reader the false impression that if frictional sliding is
excluded from the possible behaviour of masonry structures then
the plastic limit theorems are valid and that, more particularly,
Heyman’s Safe Theorem holds. In the present paper the simple
examples given in Section 2 will demonstrate that even without
the presence of frictional sliding the static theorem may give incor-
rect results. Section 3 introduces the theoretical background of the
problem of the Safe Theorem, and argues that the theorem holds
only for a limited range of displacement systems where the tan-
gential component of the relative translations in the joints is zero
everywhere. This analysis reveals that there are two theoretically
different possible ways for a masonry structure to collapse in spite
of the existence of an equilibrated force system for the analysed
structure. Finally, Section 4 discusses the results, and presents
two very simple examples which capture the essence of the two
possibilities for collapse.
2. Examples when Heyman’s Safe Theorem fails

Section 2 presents two-dimensional examples in which rigid
block systems collapse in spite of the existence of an equilibrated
force system, even though frictional sliding is not present at col-
lapse. The failure of Heyman’s Safe Theorem is evident in these
examples, and even a very inexperienced engineer can easily rec-
ognise that the structures portrayed in Figs. 1–3 will collapse.
However, if a similar situation occurs somewhere hidden in a com-
plex 3D structure, a computer analysis based on the classic Safe
Theorem of masonry structures will find the analysed state to be
stable, even though failure may occur. The aim of introducing these
examples is to underline the necessity of finding an improved for-
mulation of the Static Theorem for masonry structures.
2.1. Example 1: The overloaded roof

This example focuses on the traditional problem of plastic limit
state analysis (Problem (1) in the Introduction). It shows that a
structure which is initially in a stable equilibrium state may col-
lapse as a result of increasing load, even though an equilibrated
force system exists for the increased load.

The structure is shown in Fig. 1a. The three vertical columns are
fixed. Block 1 is loaded with its given selfweight G1 and with the
additional load G2 exerted by the block in the upper right corner.
Block 1 is in a stable equilibrium state for a zero or negligible G2



Fig. 1. The overloaded roof, (a) force system equilibrating the loads, (b) collapse mechanism.

Fig. 2. The buckling arch, (a) force system equilibrating the loads, (b) collapse mechanism.

Fig. 3. The inclined tower, (a) force system equilibrating the loads, (b) collapse mechanism.
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for which the resultant G $ (G1, G2) acts along a vertical line on the
left side of point P. As the load G2 increases, the line of action of the
resultant G gradually shifts to the right side of point P. Fig. 1a
shows that even in this case an equilibrated force system satisfying
conditions (a–d) exists. However, collapse happens in the way
shown in Fig. 1b.
2.2. Example 2: The buckling arch

This example corresponds to the classical arch problem of
masonry analysis: the geometry of an arch is given (Fig. 2a), and
the question to decide is whether a structure with this geometry
is able to balance its selfweight (referred to as Problem (2) in the
Introduction).

This structure consists of five blocks, each having equal self-
weight arranged symmetrically about a vertical axis. A system of
forces is shown in Fig. 2a which satisfies conditions (a–d) and
keeps the structure (all blocks, and all combinations of blocks) in
equilibrium. (The force diagram is symmetric, hence for the sake
of simplicity only the half of the force diagram is shown.)

An important feature of the structure is that the contact
between Blocks 1 and 2 consists of two parts, CD and DE. In the
force system presented here none of these partial contacts carry
tension, but the resultant R12 is far outside Block 1 and conse-
quently tension occurs in the material of the block.



Fig. 4. Forces acting on a block.
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Fig. 2b shows the following displacement system:

? The displacements are symmetric with respect to the vertical
axis, so Block 1 does not rotate, and does not translate horizon-
tally either. However, it will translate down-wards, i.e. a purely
vertical, identical translation happens in every point of Block 1.

? Block 3 rotates in a clockwise direction about point A, and Block
30 moves in the opposite direction;

? Block 2 is attached to Block 3 at their common point B, so this
point of Block 2 translates outwards together with Block 3. In
addition to this, Block 2 rotates about B by a counter-clockwise
angle to ensure that point C does not translate horizontally.
Block 20 moves in the opposite way.

? Consequently, the vertical translations of the points where the
selfweight forces act are downwards.

The structure collapses according to this displacement system,
in spite of the existence of a statically admissible force system.

2.3. Example 3: The inclined tower

The structure in Fig. 3 consists of two blocks, the lower of which
rests on an inclined foundation. For a horizontal or nearly-horizontal
foundation the structure would be in a stable equilibrium state. As
inclination increases, a geometry is reached as shown in Fig. 3a: the
line of action of G2 now goes exactly through point P and consequently
in any equilibrated force system the contact force between Blocks 1
and 2 must go through point P. Such an equilibrated force system is
shown in Fig. 3a. However, this is not a safe state: when subjected
to a small perturbation the structure collapses as shown in Fig. 3b.

Note that there is a basic difference between the examples given
above: in Examples 1 and 2 the structure cannot be in equilibrium at
all with the given geometry, while in Example 3 there is an equilib-
rium configuration, although this equilibrium is unstable.

Regarding Examples 1 and 2, the role of frictional resistance in the
contacts has to be emphasised. In both cases the equilibrating force
systems must contain contact forces which have a frictional compo-
nent. Heyman’s basic conditions assume infinite frictional resistance.
Indeed, without these frictional components the loads could not be
equilibrated and therefore the erroneous result that these structures
are safe would not be produced by the theorem. This question will
also be considered in the forthcoming theoretical analysis.

3. The static theorem

In Section 3 the static theorem for masonry structures consist-
ing of rigid blocks with no-tension Coulomb-frictional contacts will
theoretically be derived.

The forthcoming theoretical analysis was greatly inspired by the
rigorous proof given by Como (1992, 2012) for no-tension continua.
That proof is valid without considering any load factor or assuming a
proportional change of the loads from small values where the struc-
ture is still in equilibrium up to large values where the structure
already collapses. In that proof, however, the no-tension behaviour
of the voussoirs is assumed: the definite requirement is posed there
that tension cannot exist in any point of the blocks on any cut.

The analysis in the present paper does not include such a
requirement: tension may exist in any parts of the blocks except
for the contact surfaces which are assumed to be no-tension Cou-
lomb-frictional contacts.

3.1. Equilibrium of a masonry system

3.1.1. Geometry
The structure analysed consists of perfectly rigid blocks (vouss-

oirs) with planar contacts between them. A reference point is
assigned to every block, which is perhaps (but not necessarily)
the mass centre of the block. The vector xb denotes the position
of the reference point of the bth block (see Fig. 4). The translation
of the reference point, together with the rotation of the block about
this point, uniquely determines the displacements of any point of
the block. The blocks are referred to by their indices b. The vector
nbc is the outwards unit normal vector of the surface of block b at
its contact c.

In addition to the voussoirs that are able to translate and rotate,
the structure also contains support elements: these are fixed
blocks that cannot move. The indices of the support elements are
set to be larger than the index of any movable block.

The contacts formed by any two blocks are referred to according
to their contact index c. If two blocks, b1 and b2, form a contact,
then the block with the smaller index is considered to be ‘‘the first
block’’ of the contact and the other block (with the larger index) is
‘‘the second’’. Hence in a contact between a movable block and a
support element the support is always ‘‘the second’’.
3.1.2. Forces
The blocks are perfectly rigid, and able to resist tension, so there

is no restriction on the sign or magnitude of the principal stresses
in any internal point of a block (the strains are zero). Conservative
external static loads act on the blocks; they may be concentrated
forces, or forces distributed within the volume of or along a part
of the surface of the blocks. The external forces – but not those con-
tact forces exerted by the neighbouring blocks, which will be dealt
with a few rows below – are reduced to the mass centre, and pro-
duce a force and a moment (Gb, Mb), as shown in Fig. 4.

A distributed force acts on block b along the contact surface,
expressed by its neighbour on the other side of the contact. This
distributed force consists of a normal and a tangential component
both of which may vary from point to point along the contact. At
any point, the normal component can only be compressional, while
the direction of the tangential component is arbitrary in the plane
of the contact. According to Coulomb’s law of friction, at any point
of the surface the magnitude of the tangential component does not
exceed the magnitude of the normal component times the friction
coefficient (f).

The resultant of the normal components acting on c is a com-
pression force, QbcN, whose point of action cannot be outside the
contact area. The point of action of QbcN will have a particular
importance: this will be referred to as ‘‘the contact point’’, whose
position vector will be denoted by xc: this is either an internal or
a boundary point of the contact surface. The vector pointing from
the centre of b to the contact point is rbc. Note that the location
of the contact point is not the geometrical characteristic of the
structure: for different force systems acting on the same structure,
different xc and rbc vectors will be found.

Let the tangential component of the distributed contact force be
reduced to the contact point, resulting in a concentrated force



Fig. 5. Displacements of a block.
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vector QbcT parallel to the contact surface, and a moment vector Tbc

which is perpendicular to the contact surface. Since the distributed
tangential forces obey the Coulomb relation, |QbcT | 6 f � |QbcN |, but
in the presence of a nonzero torsional moment |QbcT | cannot reach
the value f � | QbcN | .

Using these notations, the equilibrium of block b is expressed by
the following equations:

Gb þ
X
ðbcÞ

Q bc ¼ 0 ð1Þ

Mb þ
X
ðbcÞ
ðrbc � Q bc þ TbcÞ ¼ 0 ð2Þ

The summation for index bc goes along the contacts of block b.
The symbol � stands for the vectorial product.

The total structure consists of several blocks each of which has
to be in equilibrium. Some of the blocks are in contact with non-
displacing supports; the forces expressed by these contacts on
the movable blocks are treated according to exactly the same
manner.

The external forces and moments can be collected into a hyper-
vector (G1, M1; G2, M2; . . .), symbolically denoted by (G, M). Simi-
larly, the contact forces and torsions for the hypervector (Q1, T1;
Q2, T2; . . .) are shortly written (Q, T).

3.1.3. Virtual displacement systems
The degrees of freedom of the structure are the translation and

rotation of all the blocks; a system of virtual displacements is
uniquely defined by specifying the infinitesimally small dub trans-
lations of the centres of blocks and the dub rotations of the blocks
about their centres. These vectors are collected into the hypervec-
tor (du, du), which consists of as many dub and dub vectors as the
number of voussoirs in the structure.

Since the displacements are small, the translation of a contact
point bc on block b can be calculated as (see Fig. 5):

dubc ¼ dub þ dub � rbc ð3Þ

The blocks b1 and b2 form contact c so that b1 < b2: as mentioned
above, by definition the block with the smaller index is considered
as ‘‘the first block’’ of the contact and the other is ‘‘the second’’. The
virtual relative translation ddc assigned to the contact point is
defined as the relative translation of the contact point on the first
block with respect to the second block. Similarly, the virtual rela-
tive rotation dhc of the contact is understood as the rotation of
the first block relative to the second block. The translational and
rotational deformation of the contact is:

ddc ¼ dub1c � dub2c ¼ dub1 þ dub1
� rb1c � dub2 þ dub2

� rb2c

dhc ¼ dub1
� dub2

ð4Þ

For those contacts which are formed between a block and a sup-
port, the same definition holds, but since for the support (i.e. for
the second entity of the contact) the translation of any point is
zero, the virtual relative translation belonging to the contact has
a simpler form:
ddc ¼ dub1c � dub2c ¼ dub1
þ dub1

� rb1c

dhc ¼ dub1

ð5Þ

These contact deformations are collected into the (dd, dh) vir-
tual deformation vector, a hypervector containing as many ddc

and dhc vectors as the number of contacts in the analysed structure.
Note that apart from being infinitesimally small, no other

restrictions apply for the chosen translations and rotations; corre-
spondence to the correct mechanical behaviour of the masonry
system is not required at all. Hence, in the system of virtual dis-
placements the blocks can e.g. penetrate into each other, translate
along each other in any tangential direction independently of the
magnitude and direction of frictional forces acting at the contacts
etc.

3.1.4. The theorem of virtual displacements
Now the equilibrium equations (1) and (2) will be transformed

into another form. Eq. (1) is true if and only if for any arbitrarily
chosen virtual translations of the blocks, the scalar equations

Gb � dub þ
X
ðbcÞ
ðQ bc � dubÞ ¼ 0 ð6aÞ

hold for every block. (Here the symbol � denotes scalar product.)
Similarly, Eq. (2) is true if and only if for any virtual rotations of
the blocks

Mb � dub þ
X
ðbcÞ
ððTbc þ rbc � Q bcÞ � dubÞ ¼ 0 ð6bÞ

holds. Considering the whole system of blocks and summing up the
above equations according to b, the sufficient and necessary condi-
tion of the equilibrium is that for any arbitrarily chosen system of
virtual displacements (du, du):

X
ðbÞ
ðGb � dubÞ þ

X
ðbÞ

X
ðbcÞ
ðQ bc � dubÞ

0
@

1
Aþ

X
ðbÞ
ðMb � dubÞ

þ
X
ðbÞ

X
ðbcÞ
ððTbc þ rbc � Q bcÞ � dubÞ

0
@

1
A ¼ 0 ð7Þ

Using the identity ða� bÞ � c ¼ b � ðc� aÞ, the last term on the
left side of this scalar equation can be rearranged:

X
ðbÞ
ðGb � dubÞ þ

X
ðbÞ
ðMb � dubÞ þ

X
ðbÞ

X
ðbcÞ
ðQ bc � dubÞ

0
@

1
A

þ
X
ðbÞ

X
ðbcÞ
ðTbc � dub þ Q bc � ðdub � rbcÞÞ

0
@

1
A ¼ 0 ð8aÞ

or equivalently:

X
ðbÞ
ðGb � dub þMb � dubÞ þ

X
ðbÞ

X
ðbcÞ
ðQ bc � ðdub þ dub � rbcÞÞ

0
@

1
A

þ
X
ðbÞ

X
ðbcÞ
ðTbc � dubÞ

0
@

1
A ¼ 0 ð8bÞ

On the left side the second term is a summation along the con-
tacts in the system. Those contacts which are formed by two blocks
(denote them by i from now, referring to ‘‘internal’’ contacts) are
considered twice (i.e. once for the first block and once for the sec-
ond block of the contact), while the contacts between a block and a
support (denoted below by e, for ‘‘external’’ contacts) are taken
into account once (the block is indeed considered, but the support
whose virtual displacements are zero does not take part). Eq. (8)
can be rearranged:
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X
ðbÞ
ðGb � dub þMb � dubÞ þ

X
ðiÞ

Q b1 i � dub1
þ dub1

� rb1 i

� ��

þ Q b2 i � dub2
þ dub2

� rb2 i

� ��
þ
X
ðiÞ

Tb1 i � dub1
þ Tb2 i � dub2

� �

þ
X
ðeÞ

Q b1e � ðdub1 þ dub1
� rb1eÞ

� �
þ
X
ðeÞ

Tb1e � dub1

� �
¼ 0 ð9Þ

For simplicity, introduce a new notation for the contact forces:
instead of the two opposite forces Qb1i and Qb2i belonging to the
same contact i, the contact force Qi is, by definition, the force acting
on the block with the smaller index (the same can be done for the
torque):

Q i :¼ Q b1 i; Q b2 i ¼ �Q i

Ti :¼ Tb1 i; Tb2 i ¼ �Ti

ð10Þ

For external contacts, the force and torque acting on the first
entity of the contact is considered only, so Qe := Qb1e and Te := Tb1-
e. Using these notations, Eq. (9) can shortly be written as follows:
X
ðbÞ
ðGb � dub þMb � dubÞ þ

X
ðiÞ

Q i ðdub1
þ dub1

� rb1 iÞ
�

� dub2 þ dub2
� rb2 iÞ

� �
þ
X
ðcÞ

Tcðdub1
� dub2

Þ

þ
X
ðeÞ
ðQ e � ðdub1

þ dub1
� rb1eÞÞ þ

X
ðeÞ
ðTe � dub1

Þ ¼ 0 ð11Þ

The virtual deformations (4) and (5) belonging to the contacts
can now be recognised in (11), and hence
X
ðbÞ
ðGb � dub þMb � dubÞ þ

X
ðcÞ
ðQ c � ddc þ Tc � dhcÞ ¼ 0 ð12Þ

The first sum whose index b runs along the blocks expresses the
external virtual work, done by the given loads on the chosen vir-
tual displacements of the blocks. The second sum (with index c
running along all internal and external contacts) is the internal vir-
tual work, done by the contact forces and torques on those contact
deformations that are caused by the chosen virtual block
displacements.

Eq. (12) formulates the principle of virtual displacements for
assemblies of rigid blocks:

Theorem 1. A force system composed by the (G, M) reduced loads
acting on the xb block centres and the (Q, T) contact forces acting at
the xc points is an equilibrium system if and only if for any arbitrary
(du, du) virtual displacements of the blocks and corresponding
(dd, dh) virtual contact deformations the sum of the external and
internal virtual work is zero.
3.2. Mechanically admissible displacement systems: Heymanian and
non-Heymanian displacements

3.2.1. Mechanically admissible virtual displacements
Rigid blocks cannot interpenetrate into each other, so the nor-

mal component of the relative translations at any point along a
contact surface may only mean separation but no overlap, if the
displacement system obeys the rigidity assumption of the blocks.
Virtual displacement systems do not necessarily satisfy this no-
penetration criterion, hence from now the special name ‘‘mechan-
ically admissible’’ will be given to those virtual displacement sys-
tems which obey the no-penetration requirement. Denote the
normal component of ddc by ddcN. Since the contacts do not resist
tension, the following relation holds for every contact in the case
of such displacement systems:

Q cN � ddcN P 0 ð13Þ
Virtual displacement systems (du, du) for which (13) is valid for
all systems of no-tension contact forces and for all contacts, will be
called, by definition, mechanically admissible virtual displacement
systems. (Note that since (13) must hold for any system of no-ten-
sion contact forces, (13) means that in every point of the contact
surfaces only separation or zero relative normal displacement –
and no interpenetration – may occur.)

The set of mechanically admissible virtual displacement sys-
tems can be separated into two subsets, i.e. Heymanian and non-
Heymanian systems, according to whether a tangential component
of the relative translation exists in any point of any contact. A dis-
placement system is said to be Heymanian if the tangential compo-
nents of the relative translations (ddc) and the normal components
of the relative rotation vectors (dhc) are zero at every point of every
contact surface. Fig. 6 shows three possibilities: (a) pure relative
translation in the normal direction; (b) relative rotation about a
corner; and (c) the combination of the two: separation in normal
direction together with relative rotation. On the other hand, if a
tangential component of ddc or a normal component of dhc exists
anywhere among the contacts in the structure, the displacement
system is called non-Heymanian. As illustrated in Fig. 7, such a con-
tact deformation is not necessarily accompanied by frictional slid-
ing: it may also occur while the two blocks are completely separate
from each other. Fig. 7 shows several different possibilities: rela-
tive translation without or together with contact separation (7a
and 7b); relative rotation around an axis in the contact plane,
accompanied by contact sliding (7c) and also by contact separation
(7d); relative torsional rotation without (7e) or together with (7f)
contact separation and sliding.

3.2.2. Work done on a mechanically admissible virtual displacement
system

Consider now the virtual external and internal work on the left
side of Eq. (12), and focus on the sign of the second term. If our
analysis is restricted to Heymanian displacement systems only,
then (13) ensures that for any arbitrary contact force system (obey-
ing the no-tension criterion) this second term cannot be negative.
It is definitely positive if there exists at least one contact in which
the xc contact point opens up in the chosen virtual displacement
system; and it is zero if none of the contacts open up in the contact
points. Consequently, the first term cannot be positive, indepen-
dently of the exact details of the contact force system; and two
possibilities may occur:

(i) If an equilibrium force system can be found for which for
any nonzero Heymanian virtual displacement system at
least one contact point opens up, then the existence of the
equilibrated force system proves that the external work is
negative on any arbitrarily chosen mechanically admissible
Fig. 6. Heymanian contact displacements.
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Heymanian system. (It is important to emphasise again that
the locations of the ‘‘contact points’’ are not the geometric
characteristic of the structure: these are the points where
the chosen contact forces act.)

(ii) However, if there exists any mechanically admissible Hey-
manian virtual displacement system for which the structure
moves with none of the contact points opening up, then the
work of the external forces done on this displacement sys-
tem is zero.

An example for case (ii) was shown in Fig. 3. Obviously, in any
equilibrated force system the contact force between Blocks 1 and 2
must go through point P. Consider a mechanically admissible vir-
tual displacement system which consists of zero displacements
for Block 1, and an infinitesimally small rotation of Block 2 about
point P. The internal virtual work is zero now, so in accordance
to this, the external work should also be zero because of (12).
Indeed, the small rotation of Block 2 causes a horizontal translation
of its reference point, on which the work of the G2 vertical force is
zero. (Note that there are several mechanically admissible dis-
placement systems for which the lower or the upper contact opens
up, and for these systems the external work is negative because of
(12) and (13), but there also exists a system for which the external
work is equal to zero.)

It is important to emphasise that for non-Heymanian systems
the internal virtual work may be either positive or negative, so
no conclusion can be drawn about the sign of the external virtual
work.

The role of frictional resistance in the contacts should also be
emphasised here. Note that without the existence of tangential
force components and twisting moments the internal work cannot
be negative for any mechanically admissible virtual displacement
system. Consequently the external work cannot be positive, irre-
spective of whether the displacement system is Heymanian or
non-Heymanian, if an equilibrium system of forces exists without
friction. The existence of frictional components is what makes the
sign of the total work ambiguous for non-Heymanian displacement
systems.

3.2.3. Mechanically admissible finite displacements
In the forthcoming stability analysis in Section 3.3 finite dis-

placements will be considered: the stability of an analysed state
will be decided according to the sign of the work done by the exter-
nal and internal forces along finite displacements which perturbate
the actual position of the structure. The displacements will be
finite in the sense that instead of the first-order approximations
in (4) and (5), the contact deformations and the displacements of
the characteristic points should be derived with the help of exact
Fig. 7. Non-Heymanian contact displacements.
geometrical relations (i.e. points of rotating bodies move along cir-
cular paths), but they will be assumed to be sufficiently small not
to cause the creation of new contacts between initially non-con-
tacting elements. Crack opening or contact separation is, however,
possible, and the contact force and torque which act at an existing
contact in the analysed state, will either change position, or disap-
pear in these cases. The two possibilities are illustrated in Fig. 8.

The (Du, Du) finite displace system is mechanically admissible if

(a) the boundary points of the blocks do not penetrate into the
interior of any other blocks, and

(b) tangential or torsional sliding happens only if the corre-
sponding friction force or torsion moment actually acting
in the contact has reached its Coulomb-limit in the direction
opposite to the contact deformation.

Note that for mechanically admissible finite displacements the
internal work in a sliding contact is always negative.

Finally, a system of finite displacements is called Heymanian or
non-Heymanian according to whether its first-order approximation
is Heymanian or non-Heymanian, respectively.

3.2.4. The sign of the work done along mechanically admissible finite
displacements
3.2.4.1. External work. It was shown in Section 3.2.2 that for those
structures for which nonzero Heymanian virtual displacement sys-
tems exist only when at least one contact opens up (either in the
way shown in Fig. 8a, or as illustrated in Fig. 8b), the existence of
an equilibrated force system proves that the external work is neg-
ative on any arbitrarily chosen mechanically admissible Heyma-
nian virtual system. Since the first order approximation of any
mechanically admissible Heymanian finite displacement system
is a virtual displacement system of this kind, for sufficiently small
(but still finite) displacements the external work is negative. This
conclusion will be very important for the forthcoming stability
analysis.

It was also pointed out that in cases when at least one mechan-
ically admissible Heymanian virtual displacement system exists by
which the structure moves without any contact opening up, the
work of the external forces upon this infinitesimally small dis-
placement system is zero. For such structures no conclusion can
be drawn about the sign of the external work along finite displace-
ments. Such a structure was shown in Fig. 3. Obviously, for any suf-
ficiently small (but finite) mechanically admissible rotation of
Block 1 about its left or right bottom corner G1 produces negative
work. But for Block 2 the situation is different: consider a finite dis-
placement system which contains zero displacements for Block 1,
and a small clockwise rotation of Block 2 about its lowest point,
Fig. 8. Contact opening possibilities: case (a): crack opening with the blocks
remaining in contact, case (b): contact separation with complete detachment of the
blocks. Thick black arrows represent the resultant contact force and torsion
moment exerted by the right block on the left block.
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A. The reference point of Block 2 starts to move along the horizon-
tal tangent line of a circular path about the contact point. First-
order approximation would give zero external work, but higher-
order analysis reveals that the external work done on the chosen
finite displacement system is positive.

3.2.4.2. Internal work. For mechanically admissible Heymanian
systems of finite displacements the internal work (i.e. the work
done by the existing internal forces and torques along the contact
deformations) is always zero. A contact may (i) remain
unchanged, (ii) open up in such a way that the boundary of the
contact still remains in touch, or (iii) it may completely be
opened. In the first case the contact force and torque work on
zero deformations. In the second case (Fig. 8a) the contact force
gets shifted (in a direction parallel to the contact plane) into a
new position where the contact remains closed, so the internal
work is zero again. In the third case (Fig. 8b) the contact force
and torque disappears as soon as the contact starts to open up,
so their work is zero.

For mechanically admissible non-Heymanian systems of finite
displacements the internal work of the contact forces and torques
may be either negative or zero: negative for those contacts where
sliding (translational or torsional) occurs, and zero for contacts
which remain unchanged, are cracked, or which completely open
up. Without a frictional force component and twisting moment,
however, the internal work is exactly zero.

3.3. Stability analysis

3.3.1. Definitions
Stability is a concept that has been inspiring intense scientific

debates for more than a century. There exists no general agree-
ment on what to mean by ‘the stability’ of a process or of a state;
Szebehely (1984), for instance, collected nearly 50 different con-
cepts of stability that are applied in dynamics and celestial
mechanics. Regarding the stability of a solid or a structure, the sit-
uation is similar: as emphasised for instance by Belytschko et al.
(2000), there exist several different definitions for stability: ‘‘stabil-
ity is a concept that depends on the observer and his objectives’’.
Consequently, every author has a significant freedom to settle
his/her own definition for stability, but the concept must clearly
and exactly be defined.

In accordance to the usual engineering approach and particu-
larly corresponding to the rigorous criteria of the theory presented
by Parland (1995), in the present paper the following definitions
are used:

(1) Stable equilibrium state:
The actual state of a masonry system is stable if there exists a
continuous, finite-sized domain of mechanically admissible
finite displacement systems (Du, Du) containing (Du = 0,
Du = 0) as an interior point, for which the total work done
by the actual external and internal forces on any (Du, Du)
of the set is negative.

(2) Unstable equilibrium state:
The actual state of a masonry system is unstable if there
exists any mechanically admissible finite displacement sys-
tem (Du, Du) for which the total work done by the actual
external and internal forces on (aDu, aDu) is positive for
any a < 1 multiplier.

(3) Neutral equilibrium state:
The actual state of a masonry system is neutral if it is not
unstable, and there exists any mechanically admissible finite
displacement system (Du, Du) for which that the total work
done by the actual forces on (aDu, aDu) is zero for any a < 1
multiplier.
(4) Critical equilibrium state:
The actual state of a masonry system is critical if there exists
any mechanically admissible virtual displacement system
(du, du) for which the total virtual work of the actual exter-
nal and internal forces is zero. (In this case higher-order
analysis can reveal whether the actual state is stable, unsta-
ble or neutral.)

3.3.2. The static theorem
Assume now that for a given structure with given external

loads, a force system was found which gives equilibrium with
the loads, and obeys the no-tension criterion in the contacts. This
‘‘trial’’ force system may be very different from the forces actually
acting in the structure, i.e. from the ‘‘real’’ force system. Though the
trial force system is precisely known, the real forces are usually
unknown (and not unique in a statically indeterminate structure
like most masonry constructions). However, two characteristics
of the real system can be recognised: first, the normal components
of the contact forces are zero or compressional; and second, con-
tact sliding (translational or rotational) is possible only if the dis-
tributed tangential contact forces along the contact surface are
opposite to the relative tangential translation in every point of
the surface.

The data of the trial force system contain the locations of the
‘‘contact points’’, i.e. the points where the QcN compression forces
act. Depending on whether there is any possibility to introduce a
mechanically admissible Heymanian virtual displacement system
in such a way that none of the contact points open up, the follow-
ing two cases may occur:

? If such a possibility does not exist (so at least one contact point
always opens up, in every case), then the existence of the equil-
ibrated trial force system ensures that for any arbitrary
mechanically admissible Heymanian virtual displacement sys-
tem the external work is negative. Since the first-order approx-
imation of any finite displacements is a virtual displacement
system, the external work is always negative for sufficiently
small, mechanically admissible finite Heymanian systems. As
discussed in Section 3.2.4, the internal work is zero for these
finite displacements, so the total work is negative. Conse-
quently, the structure is in a stable equilibrium state provided
that non-Heymanian displacements are excluded from the anal-
ysis. On the other hand, no protection is given against non-Hey-
manian collapse modes.

? If there exists any possibility to perform nonzero mechanically
admissible Heymanian virtual displacements without contact
opening (i.e. if the structure can slightly be moved while all
the xc contact points remain closed), then along such an (infin-
itesimal) displacement system the external work is also zero,
even though there may exist several other displacement sys-
tems for which the external work is negative. Consequently,
no conclusions can be drawn concerning the sign of the external
work along finite displacements, hence higher-order analysis is
necessary to check whether Heymanian collapse modes exist.
Even for Heymanian collapse modes, the state of the structure
may be stable, unstable or neutral.

The trial force system does not give any hint on whether tan-
gential relative displacements happen in the contacts. Regarding
the real forces, for a mechanically admissible finite non-Heyma-
nian system the internal work is always negative if sliding happens
anywhere; but the sign of the sum of external and internal work
cannot be predicted from the existence of a trial force system. So
the structure may collapse according to a non-Heymanian collapse
mode even if an equilibrium force system was found.
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To summarize, for structures satisfying the following
assumptions:

(a) the masonry units are infinitely rigid;
(b) the masonry units are infinitely strong;
(c) the joints transmit no tension, but resist arbitrary friction,

the Safe Theorem can be stated as follows:

Theorem 2. If there exists any system of forces satisfying (a–c) being
in equilibrium with the loads, and if there does not exist any
mechanically admissible Heymanian virtual displacement system for
which all contact points of this force system remain closed, then the
structure is safe against collapse along any Heymanian displacements.
4. Discussion

Section 2 contained three examples (Figs. 1–3) in which Hey-
man’s classic static theorem failed. In the light of the results of Sec-
tion 3, the reasons can now be explained:

? The structures in Figs. 1 and 2 are safe against Heymanian col-
lapse modes: the existence of an equilibrated force system
guarantees that without tangential relative displacements in
the contacts, the structures will not collapse. Indeed, collapse
happens in these cases with tangential relative displacements
in certain contacts: non-Heymanian collapse occurs. (Note that
the equilibrating force systems shown in Figs. 1 and 2 contain
frictional force components.)

? The structure in Fig. 3 is in a geometrical position for which, in
order for it to have an equilibrated force system, the contact
force between Blocks 1 and 2 must go through point P, so it is
not possible to find any other xc contact point between the
two blocks. A mechanically admissible Heymanian virtual dis-
placement system can be found, namely the clockwise rotation
of Block 2 about P, for which no contact point opens up. Hence,
the existence of an equilibrium force system does not guarantee
that the sign of the external work is negative. Indeed, higher-
order considerations immediately reveal that the structure can-
not be in a stable equilibrium state: the external work is posi-
tive for a finite clockwise rotation of Block 2.

The two possible failure modes which may occur for frictional
structures even if an equilibrated force system exists may be illus-
trated by two elementary examples, shown in Fig. 9a and b:

4.1. Boy with the backpack

The essence of the problem in Examples 1 and 2 is captured by
the witty example proposed by Várkonyi (2012), which originated
from Or (2007). As shown in Fig. 9a, the ‘‘structure’’ consists of a
Fig. 9. (a) Boy with the backpack; (b) inverted pyramid.
rigid body in the shape of a sitting boy with a heavy backpack, sup-
ported by a brick-shaped rigid bench. The force G is the weight of
the boy together with his backpack; its line of action is definitely
outside the domain where the boy is supported from below.
Fig. 9a shows an equilibrium system in which both contact forces,
F1 and F2, are compressional, having a frictional component.
Although an equilibrium system exists, the body does not remain
in the given position: it will fall over, rotating about point A. Col-
lapse happens according to a non-Heymanian displacement
system.

4.2. Inverted pyramid

The structure shown in Fig. 9b consists of a triangular block
which is supported at a single point (A). Obviously, with suitable
vertical contact force acting at A, an equilibrated force system is
easy to find. However, as the total work done by the external
and internal forces on a small finite rotation about A is positive,
the triangular block will topple over about point A.

Note that there is a basic difference between the two examples:
in Fig. 9a the structure cannot be in equilibrium at all with the
given geometry, while in Fig. 9b an equilibrium configuration
exists though this equilibrium is unstable.

Finally it is important to note the role of the frictional compo-
nent of the contact forces and moments in the trial equilibrium
system. These components play a fundamental role in the failure
of Heyman’s Safe Theorem. It was pointed out at the end of Sec-
tion 3.2.2 that without the existence of these frictional components
the external work done on any mechanically admissible virtual
(infinitesimally small) displacement system cannot be positive
and consequently the external work is zero or negative also for
any sufficiently small but finite mechanically admissible displace-
ment system, regardless of whether they are Heymanian or non-
Heymanian. This suggests an alternative formulation of the Safe
Theorem:

Theorem 3. If there exists any system of forces satisfying the following
conditions:

(i) the masonry units are infinitely rigid;
(ii) the masonry units are infinitely strong;

(iii) the joints transmit no tension and no friction

being in equilibrium with the loads, and if there does not exist any
mechanically admissible virtual displacement system for which all
contact points of this force system remain closed, then the structure
is safe against collapse along any Heymanian or non-Heymanian
displacements.

Though this theorem is an interesting result from a theoretical
point of view, it should be emphasised that it applies only if finding
a force system which equilibrates the loads without containing any
frictional components. Theorem 2, which is a refined formulation
of Heyman’s original Safe Theorem, has wider validity.
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