Finite groups whose all irreducible character degrees are Hall-numbers

Dengfeng Lianga, Guohua Qianb, Wujie Shia,∗

a School of Mathematics, Suzhou University, 215006 Suzhou, Jiangsu, PR China
b School of Mathematics, Zhongshan University, 510275 Guangzhou, Guangdong, PR China

Received 22 May 2005
Available online 13 November 2006
Communicated by Gernot Stroth

Abstract

We call \(m \) is a Hall-number for \(G \) if \(m \) is the order of a Hall subgroup of \(G \), that is, \(\gcd(|G|/m, m) = 1 \). The aim of this paper is to investigate the structure of the finite group \(G \) whose all irreducible character degrees are Hall-numbers for \(G \).

© 2006 Elsevier Inc. All rights reserved.

Keywords: Finite groups; Irreducible character degrees; Hall-numbers

1. Introduction

Throughout the following, all groups are assumed to be finite. For a group \(G \), we call the set \(\text{cd}(G) = \{\chi(1) \mid \chi \in \text{Irr}(G)\} \) the irreducible character degrees of \(G \). And the set \(\text{cd}(G) \) is very important in studying \(G \). Many results have been obtained about the relationship between the set \(\text{cd}(G) \) and the structure of \(G \) (see [8,10–12] for a few examples). The aim of this paper is to investigate the structure of \(G \) whose every irreducible character degree \(m \) is a Hall-number for \(G \), that is, \(\gcd(|G|/m, m) = 1 \) for all \(m \in \text{cd}(G) \).

The following are our main theorems.

☆ Project supported by the National Natural Science Foundation of China (Grant No. 10571128).

* Corresponding author.

E-mail addresses: dengfengliang@163.com (D.F. Liang), ghqian2000@yahoo.com.cn (G.H. Qian), wjshi@suda.edu.cn (W.J. Shi).

0021-8693/$ – see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2006.10.010
Theorem 1.1. Let G be a solvable group. Then every irreducible character degree of G is a Hall-number for G if and only if one of the following holds:

(i) G is an abelian group;
(ii) G is a semi-direct product of a cyclic Hall subgroup $M > 1$ acting on a normal abelian Hall subgroup F. And if $[F, P] > 1$, then P acts fixed-point freely on $[F, P]$ for every $P \in \text{Syl}_p(M)$;
(iii) G is a semi-direct product of a cyclic Hall subgroup L acting on a normal Hall subgroup H, where the order of L is square-free, H is a group satisfying the properties of (ii).

Theorem 1.2. Let G be a non-solvable group. Then every irreducible character degree of G is a Hall-number for G if and only if G has normal Hall subgroups M and L that satisfy:

(i) $|G : M|$ is square-free;
(ii) $L \cong L_2(2^f)$ with $f \geq 2$;
(iii) $M = N \times L$ where $N = C_G(L)$;
(iv) every degree in $\text{cd}(N)$ is a Hall-number.

Furthermore, if G is such a group, then M has a complement D which is isomorphic to a subgroup of the outer automorphism group of L. In particular, $D \cong G/M$ is cyclic and $|D| = |G : M|$ divides f.

2. Proof of Theorem 1.1

Lemma 2.1. [10] Let V, N be normal subgroups of G and $V < N$ such that G/N (respectively N/V) is cyclic of order a (respectively b). Moreover, let V be elementary abelian and suppose that both G/V and N are Frobenius groups with kernel N/V respectively V. Then $\text{cd}(G) \cup \{ab\} = \{1, a\} \cup \{ib \mid i \text{ divides } a\}$.

Lemma 2.2. Let N be a normal subgroup of G. If every element of $\text{cd}(G)$ is a Hall-number for G, then every element of $\text{cd}(N)$ (respectively $\text{cd}(G/N)$) is a Hall-number for N (respectively G/N).

Proof. We can conclude Lemma 2.2 by [6, Theorem 6.2] and [6, Theorem 11.29].

Proof of Theorem 1.1. (\Leftarrow) Suppose G satisfies the properties of (ii). By induction on $|G|$, we may conclude that m is a Hall-number for every $m \in \text{cd}(G)$: Take $\chi \in \text{Irr}(G)$ such that $\chi(1) = m$, let $M = P \times Q$ be a direct-product of a Sylow p-subgroup $P > 1$ and a Hall p'-subgroup Q. If $P < M$, let θ_1 (respectively θ_2) be an irreducible constituent of the restriction of χ on $P F$ (respectively $Q F$), then by induction we conclude that gcd$(\theta_1(1), |PF|/\theta_1(1)) = 1 = \text{gcd}(\theta_2(1), |QF|/\theta_2(1))$. This implies that gcd$(\chi(1), |G|/\chi(1)) = 1$. Therefore we can assume that $P = M$ is a Sylow p-subgroup of G, we easily see that $[F, P] = G'$ is a splitting normal abelian subgroup of G. So every irreducible character of $[F, P]$ is extendible to its inertia group in G. Let λ be an irreducible constituent of $\chi_{[F, P]}$. If $\lambda = 1_{[F, P]}$, then λ is extendible to G, by [6, Theorem 6.17] we see that $\chi(1) = 1$ is a Hall-number. Suppose $\lambda \neq 1_{[F, P]}$. As P acts fixed-point freely on $[F, P]$, it follows that P acts fixed-point freely on $\text{Irr}([F, P])$. So $I_G(\lambda)$
the inertia group of λ in G is F, we also conclude that $\chi(1) = |P|$ is a Hall-number by Clifford theorem [6, Theorem 6.2].

Suppose G satisfies the properties of (iii). Let $\chi \in \text{Irr}(G)$, θ be an irreducible constituent of χ_H, and $M = 1_G(\theta)$ the inertia group of θ in G. As H is a Hall subgroup of G, θ is extendible to M, and $\chi(1)/\theta(1) = |G:M|$. Furthermore by previous argument and H is a Hall subgroup of G satisfying the properties of (ii), we can conclude that $\theta(1)$ is a Hall-number for G. And the order of L is a square-free Hall-number for G, $M \geq H$, so we can conclude that $|G:M|$ is Hall-number for G. Hence $\chi(1) = \theta(1)(\chi(1)/\theta(1))$ is a Hall-number for G.

(\Rightarrow) Obviously, by Lemma 2.2 if the character degrees of G are Hall-numbers for G, then the character degrees of M/N are Hall-numbers for M/N, where M/N is a section of G (M be a subnormal subgroup of G, N be a normal subgroup of M).

Step 1. Every nilpotent section M/N of G is an abelian group.

By induction, we can suppose that $G = M/N$. Note that since $(\chi(1))^2$ divides $|G:Z(G)|$ to every non-linear irreducible character χ of G. It follows that $\chi(1)$ is a Hall-number for G, so nilpotent group G is an abelian group.

Step 2. Let $F = F_1$ be the Fitting subgroup of G, and $F_i \triangleleft G$ such that $F_{i+1}/F_i = \text{Fit}(G/F_i)$ for $i \geq 1$. We claim that F_{i+1}/F_i is cyclic and isomorphic to some Hall subgroup of G for $i \geq 1$.

Now we can assume that $F_m = G$ and $F_m-1 < G$. It suffices to show that G/F_m-1 is a cyclic group and isomorphic to some Hall subgroup of G by induction and Lemma 2.2.

We know that G/F_m-1 is an abelian group by Step 1, so $|G:F_{m-1}| \in \text{cd}(G)$, we conclude that G/F_m-1 is isomorphic to some Hall subgroup of G by $|G:F_m-1|$ is a Hall-number for G.

The following we prove G/F_m-1 is a cyclic group. We can assume that G/F_m-1 is a p-group by induction, where p is a prime. Let Φ be a pre-image of the Frattini subgroup of G/F_{m-2} in G. Note that F_{m-1}/Φ is a faithful and completely reducible G/F_{m-1}-module, so there is a chief factor F_{m-1}/E of G such that G/F_{m-1} non-trivially acts on F_{m-1}/E. By investigating the factor group G/E, it is easy to conclude that G/E is a normal abelian and F_{m-1}/E is a normal abelian Sylow q-subgroup of G/E (prime $q \neq p$). Now we consider the minimal non-abelian factor subgroup G/B of G/E, by [6, Theorem 12.3] and Step 1, we conclude that G/B is a Frobenius group, Frobenius kernel written as A/B and A is a cyclic group, $|G/A| \in \text{cd}(G/B) \subseteq \text{cd}(G)$. Note that G/E is a $\{p,q\}$-group and the Sylow q-subgroup of G/E is a normal abelian subgroup of G/E, we see that A/B is a q-group, and A/G is a cyclic p-group. By the hypotheses of the theorem we conclude that $|G/A|$ is the order of a Sylow p-subgroup of G, so G/A is isomorphic to some cyclic Sylow p-subgroup of G. Now we have proved that p-group G/F_m-1 is cyclic.

Step 3. The last step.

By Step 2, F_2/F is a cyclic group, so G/F_2 is an abelian group, and $F_3(G) = G$.

Now we assume that $F_2 = G$. Let P be a Sylow p-subgroup of G and $P \neq F$, we claim that P acts fixed-point freely on $[F, P]$. In fact, by induction we can assume that $G = P[F]$. Note that F is an abelian Hall subgroup of G, so we have $F = C_F(P) \times [F, P]$, and $G = P[F] = P[F, P] \times C_F(P)$. Also by induction we can assume that $C_F(P) = 1$, so $F = [F, P] = G'$.
In this case, we let $\lambda \in \text{Irr}(F)$ be an arbitrary non-principal irreducible character of F. We know that all irreducible constituents of λ^G are non-linear (otherwise, $C_{\text{Irr}(F)}(P) > 1$, so $C_F(P) > 1$ and this contradicts $C_F(P) = 1$), so it follows that for any irreducible constituent χ of λ^G we have $\chi(1) > 1$ and $\chi(1)$ is a Hall-number for G, and thus $\chi(1) = |P|$. Now we have proved that λ^G is irreducible for every non-principal $\lambda \in \text{Irr}(F)$, so P acts fixed-point freely on $\text{Irr}(F)$, and P acts fixed-point freely on F. We can conclude that G satisfies (ii).

The following we assume that $F_2 < G$ and $F_3 = G$. We claim that $|G/F_2|$ is square-free. By induction we can assume that G/F_2 is a p-group, and by Step 2, G is the semi-direct product of P acting on F_2 where P is a Sylow p-subgroup of G. Let $A \cong G/F$ be a Hall subgroup of G, $P \leq A$ and B be a Hall p'-subgroup of A, so $A = P[B]$, $G = (PB)F$, where $B \cong F_2/F$.

By the last paragraph we conclude that $A = P[B]$, $G = (PB)F$, note that $P[B]F < G$, so by induction we can assume that $G = P[B, P]F$, that is $B = [B, P]$. Note that $|B, P| = B > 1$, by the previous argument we know that $P[B]$ is a Frobenius group with kernel B. As B acts non-trivially on F/E and F/E is a chief factor, we have $BF = F_2$, $(BF/E)' = F/E$. Because the irreducible character degrees of F_2/E are Hall-numbers for F_2/E, it is easy to conclude that F_2/E is a Frobenius group with kernel F/E. So G/E is a 2-Frobenius group (so-called), by Lemma 2.1 we have $p'|B| \in \text{cd}(G)$ for all i, so that $p'| |P|$. Therefore, by the hypothesis that all character degrees in $\text{cd}(G)$ are Hall-numbers, we see that $|P| = p$, so $|G/F_2|$ is square-free, and thus, G satisfies (iii). \[\square \]

3. Proof of Theorem 1.2

At first, we consider the simple groups. Let G be a non-abelian simple group. By the classification theorem for finite simple groups we know that G is one of the following: a sporadic simple group, an alternating group of degree at least 5, and a simple group of Lie type.

Now we consider G is an alternating simple group. We refer to [7] for details about partitions, Young diagrams and hooks. Consider a partition $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_m)$ of the integer n. Thus $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_m > 0$ and $\lambda_1 + \lambda_2 + \cdots + \lambda_m = n$. We call the λ_i ($i = 1, 2, \ldots, m$) the part of λ and m the length of λ. Moreover, for $i \geq 1$, $m_i = m_1(\lambda)$ denotes the number of parts equal to i in λ. Thus $m = \sum_{i \geq 1} m_i$. The Young diagram of λ consists of n nodes (boxes) with λ_i nodes in the ith row. We refer to the nodes in matrix notation, i.e. the (i, j)-node is the jth node in the ith row. The (i, j)-hook consists of the nodes in the Young diagram to the right and below the (i, j)-node, and including this node. The number of nodes in this hook is its hooklength, denote by h_{ij}.

The degree f_{λ} of λ is

$$f_{\lambda} = n! / \left(\prod_{i,j} h_{ij} \right).$$

It is known that this is the degree of the complex irreducible representation of the symmetric group S_n labeled by λ.

We denote the another partition $\lambda' = (\lambda'_1, \lambda'_2, \ldots, \lambda'_m)$ the conjugate (associated) partition of λ, where $\lambda'_i = \sum_{j: \lambda_j \geq i} 1$. So the irreducible representation of S_n labeled by λ remains irreducible when restricted to A_n if and only if $\lambda \neq \lambda'$. If $\lambda = \lambda'$, then the restriction is a sum of two irreducible representations of the same degree.
Lemma 3.1. Let G be an alternating simple group and every irreducible character degree of G is a Hall-number for G. Then $G \cong A_5$.

Proof. If $G \cong A_5$, then $cd(G) = \{1, 3, 4, 5\}$, so every irreducible character degree of A_5 is a Hall-number for A_5.

For $n > 5$, let us investigate the characters corresponding to the following non-self-associated partition of n where: $\lambda = (n - 2, 1, 1)$. Then

$$f_\lambda = (n - 1)(n - 2)/2$$

is an irreducible character degree of A_n,

$$|A_n|/f_\lambda = n!(n - 1)(n - 2) = n(n - 3)!.$$

If either $n \geq 7$ is odd or $n \geq 6$ is even, then

$$\text{gcd}(n(n - 3)!, (n - 1)(n - 2)/2) > 1.$$

So $\text{gcd}(|A_n|/f_\lambda, f_\lambda) > 1$ when $n > 5$, a contradiction. □

Next we consider the simple groups of Lie type. For notation and basic properties of finite groups of Lie type, we refer to [1]. We will denote by L a finite simple group of Lie type over a field of q elements, where $q = p^f$ is a power of a prime p. If we denote by S a simple linear algebraic group of adjoint type, and by σ an endomorphism of S, then the set S_σ of fixed points is finite and the derived subgroup of S_σ is isomorphic to L. The order of out automorphism group of L is a product of d (diagonal automorphisms), f (field automorphisms), and g (graph automorphisms). Note that the degrees of the unipotent characters of S_σ and L are the same and that $|L| = |S_\sigma|/d$. Thus, if ψ is some unipotent character of L, then for any irreducible constituent χ of $\psi^{\text{aut}(L)}$, $\chi(1)$ divides $gf\psi(1)$, and we know $\psi(1) | \chi(1)$ by Clifford theorem [6, Theorem 6.2].

Lemma 3.2. Let G be a simple group of Lie type and every irreducible character degree of G is a Hall-number for G. Then $G \cong L_2(2^f)$ where $f \geq 2$.

Proof. We know that G is one of the following types: type $A_n(q) \ (n \geq 1)$; type $2A_n(q^2) \ (n \geq 2)$; type $B_n(q) \ (n \geq 2)$; type $C_n(q) \ (n \geq 3)$; type $D_n(q) \ (n \geq 4)$; type $2D_n(q^2) \ (n \geq 4)$; and exceptional type.

- For type $A_n(q), n \geq 1$.

If $n \geq 2$, then the unipotent character $\psi^{(1,n)}$ has degree $m = q(q^n - 1)/(q - 1)$, where $q = p^f$ for some prime p,

$$|G| = q^{n(n+1)/2} \prod_{i=1}^{n}(q^i + 1)/\text{gcd}(n+1, q-1).$$

So $\text{gcd}(|G|/m, m) > 1$ for $n \geq 2$, a contradiction.
Suppose that $n = 1$ and q is odd. Let $m = q - 1$ when $q = 3 \pmod{4}$, and $m = q + 1$ when $q = 1 \pmod{4}$, by [5, Chapter XI], we conclude that $m \in \text{cd}(G)$ and $\gcd(|G|/m, m) > 1$, a contradiction. Therefore $n = 1$, q is even, and $G \cong L_2(2^f)$.

- For type $^2A_n(q^2)$, $n \geq 2$.

 The unipotent character $\psi^{(1,n)}$ has degree $m = q(q^n - (-1)^n)/(q + 1)$, where $q = p^f$ for some prime p,

 $$|G| = q^{n(n+1)/2} \prod_{i=1}^{n} (q^{i+1} - (-1)^{i+1})/\gcd(n + 1, q + 1).$$

 So $\gcd(|G|/m, m) > 1$ for $n \geq 2$, a contradiction.

- For type $B_n(q)$ ($n \geq 2$) or $C_n(q)$ ($n \geq 3$).

 The unipotent character ψ^α corresponding to the symbol $\alpha = (1^n)$ has degree $m = (q^n - q)(q^n + 1)/2(q - 1)$,

 $$|G| = q^{n^2} \prod_{i=1}^{n} (q^{2i} - 1)/\gcd(2, q - 1).$$

 So $\gcd(|G|/m, m) > 1$ for $n \geq 2$ except for $B_2(2)$, but $B_2(2) \cong S_6$ is not a simple group, a contradiction.

- For type $D_n(q)$.

 Corresponding to the symbol $\alpha_1 = (1^n)$, the unipotent character ψ^{α_1} of $D_n(q)$ has degree $m_1 = q^2(q^n - 1)/(q^2 - 1)$,

 $$|G| = q^{n(n-1)}(q^n - 1) \prod_{i=1}^{n-1} (q^{2i} - 1)/\gcd(4, q^n - 1).$$

 So $\gcd(|G|/m_1, m_1) > 1$ for $n \geq 4$, a contradiction.

- For $^2D_n(q^2)$ ($n \geq 4$).

 Corresponding to the symbol $\alpha_2 = (1^{n-1})$, the unipotent character ψ^{α_2} of $^2D_n(q^2)$ has degree $m_2 = q(q^{n-2} - 1)(q^n + 1)/(q^2 - 1)$,

 $$|G| = q^{n(n-1)}(q^n + 1) \prod_{i=1}^{n-1} (q^{2i} - 1)/\gcd(4, q^n + 1).$$

 So $\gcd(|G|/m_2, m_2) > 1$ for $n \geq 4$, a contradiction.
Now suppose that G is of exceptional type. Checking the unipotent characters of G listed on [1, pp. 477–490], we can easily conclude that there is some unipotent character ψ^α of G such that $\gcd(|G|/\psi^\alpha(1), \psi^\alpha(1)) > 1$, a contradiction. □

Lemma 3.3. Let G be a non-abelian simple group, and every irreducible character degree of G is a Hall-number for G. Then $G \cong L_2(2^f)$ where $f \geq 2$.

Proof. If G is one of the sporadic simple groups, then by [2] there is $m \in \mathrm{cd}(G)$ such that $\gcd(|G|/m, m) > 1$, a contradiction. Thus by Lemmas 3.1 and 3.2, we can conclude that $G \cong L_2(2^f)$ where $f \geq 2$. □

Lemma 3.4. Let $S = L_2(2^f)$, and $S \leq G \leq \Aut(S)$. If p is an odd prime divisor of $|G:S|$, then there is a character $\chi \in \Irr(S)$ such that $\chi(1) = 2^f + 1$, and its stabilizer H in G satisfies $|H:S| = p$.

Proof. Let v be an element of order $2^f - 1$ in the field F with 2^f elements. By [3] we know that we can associate the characters χ_i of degree $2^f + 1$ for $1 \leq i \leq 2^f - 1 - 1$ with $\{v^i, v^{-i}\}$. We can identify the outer automorphisms of S with the Galois automorphisms of F. Let ϕ be the Frobenius automorphism of F, and recall that the outer automorphisms of S are generated by ϕ. Hence, we can view the action of ϕ on the χ_i’s where χ_i is mapped to χ_{2i^*} where $2i^*$ is the unique integer between 1 and $2^f - 1 - 1$ that is congruent to $\pm 2i$ modulo $2^f - 1$. Then H is generated by S and an element h where the action of h on S corresponds to the action of $\phi^{f/p}$. Take $j = (2^f - 1)(2^f/p - 1)$, and we claim that v^j generates the subfield of F fixed by $\phi^{f/p}$. Then one can show that H will be the stabilizer of χ_j in G as desired. □

Proof of Theorem 1.2. (\Leftarrow) Consider $m \in \mathrm{cd}(G)$ and $\chi \in \Irr(G)$ so that $\chi(1) = m$. Let θ be an irreducible consistent of χ_M. By Lemma 3.3, we know that all the degrees in $\mathrm{cd}(L)$ are Hall-numbers. Combining this with the facts that all degrees in $\mathrm{cd}(N)$ are Hall-numbers and $\gcd(|N|, |L|) = 1$, it follows that all degrees in $\mathrm{cd}(M)$ and particularly $\theta(1)$ are Hall-numbers for M. Let T be the stabilizer of θ in G. Since M is a Hall subgroup of G, it follows that θ will be extendible to T. Since G/M is cyclic, we determine that $\chi(1) = |G:T|\theta(1)$, and as $|G:M|$ is square-free, we conclude that $m = \chi(1)$ is a Hall-number for G.

(\Rightarrow) Conversely, suppose that G is non-solvable and every degree in $\mathrm{cd}(G)$ is a Hall-number. We take N normal in G and maximal with respect to G/N is non-solvable. Then G/N possesses a unique minimal normal subgroup M/N. By Lemma 2.2, every degree in $\mathrm{cd}(N)$ is a Hall-number.

Step 1. $M/N \cong L_2(2^f)$ where $f \geq 2$.

Let $M/N = M_1/N \times \cdots \times M_s/N$ where all of the subgroups M_i/N are isomorphic to some non-abelian simple group S. By Lemma 2.2, every degree in $\mathrm{cd}(M_i/N)$ is a Hall-number for M_i/N. Applying Lemma 2.2 again, every degree in $\mathrm{cd}(M_1/N) = \mathrm{cd}(S)$ is a Hall-number for S, and by Lemma 3.3, $S \cong L_2(2^f)$ where $f \geq 2$. If $s > 1$ and $\phi \in \Irr(M_1/N)$ is any non-principal character, then $\phi \times 1 \times \cdots \times 1 \in \Irr(M/N)$ and $\phi \times 1 \times \cdots \times 1(1) = \phi(1)$ is not a Hall-number for M/N. Therefore, we must have $s = 1$ and $M/N \cong S \cong L_2(2^f)$.

Step 2. If A and B are normal in G such that $A/B \cong L_2(2^f)$, then $\gcd(|B|, |L_2(2^f)|) = 1$.
By Lemma 2.2, we know that every degree in cd(A) is a Hall-number for A. Since cd(L_2(2^f)) = \{1, 2^f + 1, 2^f, 2^f - 1\} and |A : B| = |L_2(2^f)| = (2^f + 1)2^f(2^f - 1), it follows that |B| and |L_2(2^f)| are relatively prime.

Step 3. If A and B are normal in G such that A/B \cong L_2(2^f), then A = B \times L, where L \cong L_2(2^f).

Notice that by Step 2, B is a normal Hall subgroup of A, so by the Schur–Zassenhaus theorem, we know that B has a complement L in A. We work to prove that L is normal in A. We work by induction on |B|. If B = 1, then the result is trivial. Thus, we may assume that B > 1.

Suppose now that B is a minimal normal subgroup of G. Let P be a Sylow 2-subgroup of A. We know that 2 does not divide |B|, so P is isomorphic to a Sylow 2-subgroup of A/B \cong L_2(2^f). This implies that P is an elementary abelian 2-group of order 2^f. Since B is solvable and minimal normal, it must be abelian. Now, P acts coprimely on B, so by Fitting’s lemma, we have B = CB(P) \times [B, P].

Suppose B > CB(P). Now, as f ≥ 2, we see that P is not cyclic, and so, [B, P]P is not a Frobenius group. Thus, there is a character \(\lambda \in \text{Irr}([B, P]) \) so that \(CP(\lambda) > 1 \). Let \(v = \lambda \times 1_{CB(P)} \), and write T for the stabilizer of v in A. Observe that \(CP(\lambda)B \leq T \). Since B is a Hall subgroup of T, we see that v is extendible to \(\psi \in \text{Irr}(T) \), and \(\psi^A \in \text{Irr}(A) \). We have \(\psi^A(1) = |A:T|v(1) = |A:T| \). Since \(\psi^A(1) \) is a Hall-number, we determine that T is a Hall subgroup of M.

Because \(CP(\lambda) \leq T \), we see that 2 divides |T|, and so, T contains a Sylow 2-subgroup \(P_1 \) of A with \(CP(\lambda) \leq P_1 \). This implies that \(P_1B/B \cap P\ B/B > 1 \), and so \(PB = P_1B \) by [4, Satz III, Theorem 8.2]. Hence \(P \leq T \), and thus, \(\lambda \) is invariant in T. This implies that \(C_{BP}(P) > 1 \), which contradicts Fitting’s lemma.

We now have B = CB(P). This implies that \(BP \leq CA(B) \), and thus, B < CA(B). Since A/B is simple and CA(B) is normal in A, we deduce that \(A = CA(B) \). Since B is now central in A, this proves that L is normal in this case.

We now assume that B is not a minimal normal subgroup of G. Let E be a minimal normal subgroup of G contained in B. Notice that G/E satisfies the hypotheses of the theorem. Hence, we may apply the inductive hypothesis to obtain \(A/E \cong B/E \times LE/E \). Now, LE and E are normal subgroup of G, E is minimal normal in G, and LE/E \cong L \cong L_2(2^f). Thus, we can use the previous argument to see that \(LE = L \times E \). Since L is a Hall subgroup of LE, this implies that L is normal in A, and so A = B \times L as desired.

Step 4. The last step.

Applying Steps 2 and 3 to M and N, we deduce that M = N \times L where L \cong L_2(2^f) and gcd(|N|, |L|) = 1. This implies that L is a normal subgroup of G. Let C = CG(L), and observe that \(C \cap L = 1 \) and \(N \leq C \). On the other hand, \(CL/C \cong L \), so G/C is non-solvable. By the maximality of N, we have N = C. This implies that G/N is isomorphic to a subgroup of the automorphism group of M/N. Since the outer automorphism group of L is cyclic of order f, we conclude that G/M is cyclic and \(|G:M| \) divides f.

We can find a character of degree \(2^f - 1 \) in \(\text{Irr}(M/N) \) that induces irreducibly to G (see [9, Theorem 2.7 and Remark 2.8]). This implies that \(|G:M|(2^f - 1) \) is in cd(G), and hence, a Hall-number for G. It follows that \(|G:M| \) is relatively prime to \(|N|, 2^f, \) and \(2^f + 1 \), and in particular, \(|G:M| \) is odd. If \(f = 2 \), then this implies that \(G = M \), and we are done in this case. Thus, we
may assume that \(f \geq 3 \). With \(f \geq 3 \), we can find a character of degree \(2^f + 1 \) in \(\text{Irr}(M/N) \) that induces irreducibly to \(G/N \) (see [9, Theorem 27]). Hence, \(|G:M|(2^f + 1)\) is a Hall-number for \(G \). We deduce that \(|G:M|\) is relatively prime to \(2^f - 1 \). Now, \(M \) is a Hall subgroup of \(G \).

We now work to show that \(|G:M|\) is square-free. Let \(p \) be a prime divisor of \(|G:M|\) (and note by the previous paragraph that \(p \) must be odd). There is a unique subgroup \(K \supset M \) such that \(|K:M| = p\). We can find a character \(\theta \in \text{Irr}(M/N) \) (with \(\theta(1) = 2^f - 1 \) or \(\theta(1) = 2^f + 1 \)) such that \(K \) is a stabilizer of \(\theta \) in \(G \) (see Lemma 3.4). Since \(M \) is a Hall subgroup, \(\theta \) is extendible to \(K \), and so \(|G:K|\theta(1) \in \text{Irr}(G)\). Now, \(|G:K|\theta(1)\) is a Hall-number for \(G \). Because \(p \) divides \(|K|\), we deduce that \(p \) does not divide \(|G:K|\), and hence, \(p^2 \) does not divide \(|G:M|\). We conclude that \(|G:M|\) is square-free. \(\square \)

Acknowledgments

The authors are grateful to Professor Donald L. White for his help. The authors are also thankful to the referee who gives valuable comments and suggestions, especially gives Lemma 3.4.

References