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GRATITUDE AND APPRECIATION

A recently discovered family of indecomposable polynomials of nonprime
power degree over [, (which include a class of exceptional polynomials) is set
against the background of the classical families and their monodromy groups are
obtained without recourse to the classification of finite simple groups. © 1995
Academic Press, Inc.

1. INTRODUCTION

Let [, be the finite field of order ¢, a power of a prime p. All polynomi-
als fover [, will be assumed to be separable, i.e. f + f. For g prime at
least the notion of an exceptional polynomial (EP) f over F, was first
isolated in 1963 by Davenport and Lewis [6], who had to exclude such
from general results related to the nature of the set of values of a polyno-
mial f of given degree n (=2) over a finite field of large size (compared to
n). Though their definition was in terms of the reducibility of the polyno-
mial f(X) — f(Y) rather than the permutation properties of £, it turned out
that a property of an EP on F, that can be used as a defining one is that fis
a permutation polynomial (PP) on [, (i.e., as a function, permutes [ ) for
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infinitely many values of ¢ (and so, in particular, is a PP on F,). In fact,
Davenport and Lewis recognized that an EP is ‘‘close’ to being a PP and
conjectured that an EP must actually be a PP. Of course, the connection
with PPs renders it transparent why EPs are exceptional to the estimates
of [6].

The condition for a polynomial to be an EP is stringent but there are
some basic examples that (essentially) flow from classical investigations
of Dickson around 1900 (e.g., [7]). Indeed, these constitute core items in
the (small) stock of known, easily describable families of PPs over [, (see
[16]). In brief, for appropriate ¢, these comprise cyclic polynomials X"
(p | n), Dickson (or Chebyshev) polynomials D,(X, a), (¢« € F,. p | n),
which satisfy the identity

DX + (a/X), a) = X" + (a/X)" (1.1}

and reduce to cyclic polynomiais when ¢ = 0, and linearized (additive)
polynomials L(X), where L has the form

n

LX) =2 a X",  a(#0),a,...,.a,(#0EF, (1.2

i—0

Then, in 1990, Cohen [3] (using the Davenport-Lewis *‘reducibility’”
definition) discovered there are EPs among the members of a ‘‘neo-classi-
cal’’ family, called sublinearized polynomials. These are related to (and
incorporate) linearized polynomials and like the latter all have degree a
power of p. In the simplest case of degree p, the corresponding polynomi-
als had been recognized as permutation polynomials by Dickson, who
conjectured that all PPs whose degree equalled the field characteristic
were of this type. In [11] this was established for EPs and in [10] this was
extended to PPs with g > p?.

Now, composites of EPs over I, (and of linear polynomials) are also
EPs and, until very recently, all known EPs were formed in this way from
the basic classical examples. Conversely, any EP over |, can be decom-
posed over |, to be a composition of indecomposable EPs and linear
polynomials. In particular, an indecomposable cyclic or Dickson polyno-
mial has degree n, a prime (# p). Thus, all classical indecomposable EPs
have degree a prime or a prime power. Moreover, without detracting from
their significance or usefulness, when examined in the right way, there is a
relatively simple ‘‘explanation’ for the exceptional nature of each.

By contrast, starting from a set of three related polynomials of degree
28 over > found by Miiller [20], the authors [S] have discovered, for each
k = 2, a set of related indecomposable polynomials {f; 4: d | 2* + 1} of
degree n = n, = 2¢7'(2* — 1) with remarkable reducibility and permutation
properties; in particular, those with odd & are EPs over F,. Thus, Miiller’s
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examples (those with & = 3) are the first nonclassical EPs. They were
found by means of a computer search (facilitated by some group theory)
using the permutation property and verified (also by computation) to sat-
isfy the reducibility definition of an EP. For the rest, a whole new theory
had to be developed in [5] (though computation had played a part in its
formulation).

Specifically, the polynomials f; , are defined as follows. Let

k-1
SiX)y=> X', k=2,

i—Q
Then, with ¢d = 2% + 1, set
Sra(X) = X ASu(X )}, k=2 (1.3)

In particular, abbreviate f; | to f,. Their properties are evidently deeper
than those of the classical families, yet there are connections (albeit sub-
tle) with the latter. In fact, the interplay between these families is in-
volved in the establishment of the properties which was achieved ulti-
mately by direct means working with the fields and polynomials alone.

Nevertheless, the motivation for he discovery of the f; , and direction
for the theory was provided by the known connection between indecom-
posable EPs and the theory of primitive permutation groups which was
first observed by Fried [8] in 1970 and subsequently involved in other
papers, such as those of Klyachko [14] and Cohen [4]. Other papers also
considered the ‘‘monodromy groups’ of EPs as permutation groups with-
out exploiting primitivity [2, 9]. The climax was the work of Fried et al.
[11], which employed the classification of finite simple groups (CSG) and
covering theory in prime characteristic to eliminate all but a few candi-
dates for the monodromy groups of an indecomposable EP. They con-
cluded that, over F,, ¢ even (p = 2), the only possible non-prime power
degrees for an indecomposable EP were members of the sequence {n,, &
(=3) odd} of the degrees of the f; ,. There is a similar sequence of possible
degrees over fields F, of characteristic 3 but, in fields of characteristic
exceeding 3, all indecomposable EPs (other than Dickson and cyclic ones)
must have degree a power of the characteristic p. These findings were the
motivation for Miiller’s search and the eventual discovery by the authors
of the polynomials f; . Further, although all necessary reducibility and
permutation properties of the fi , were established independently of this
theory in [5] and it was clear that their monodromy groups ought to be
those permitted by [11], formal verification of their identity had been
made only for odd values of &, by elimination, from [11] and therefore was
dependent on CSG.

In this paper we remedy this deficiency and confirm the monodromy
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group of all polynomials f, 4 (k = 2) (independently of CSG) by further
direct analysis of the polynomails plus a key characterization of the linear
groups PSL,(2%) of McDermott [19]. We also set the new polynomials
against the classical scheme.

In 1966 Leonard Carlitz, in a conjecture that has driven much of the
work on EPs, asserted that, over a sufficiently large finite field of odd
order, there is no PP of given even degree. The immediate subsequent
activity clarified the equivalent formulation in terms of the non-existence
of an EP of even degree over a ficld of odd order [13]. Then there was a
period in which little seemed to be happening in the theory of EPs, but it
coincided with one in which CSG was developed, a process that is gener-
ally accepted as complete but that lacks a cohesive treatment. Eventually,
the weight of this machinery sufficed to settle the conjecture affirmatively
in [11} and, in attacking it, even more general resuits on EPs were ob-
tained. We believe that Carlitz would be satisfied that his insight into the
nature of PPs has had such deep consequences and also that he would
appreciate the particular structure of the f; 4.

2. PRELIMINARY RESULTS

The Dickson polynomial D,(X, a) satisfies (1.1) and is given explicitly
by

[ni2] n— 1
Dn(X. (l) = z n ( ) ) (_a)ith'Qi.
]

o — 1

When q is prime or a € F,, D,(X, a) may be regarded as a polynomial in
Z[X]interpreted as one in F,[X]. (See [16] for a book devoted to these and
related polynomials.) We note that in characteristic 2 there are relation-
ships between certain Dickson polynomials and the linearized polynomial

TAX)=X""+X¥ "+ -+ X+ X, k=1, (2.1
We also define
UX)=TyXx) + 1, 2.2)

and set D, (X) = D,(X, 1).
LemMa 2.1, Forany k = 1,

(i) Dy (X) = X*HTX1/X),
(i) Da.(X) = X¥UX).
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Proof. By induction on k. For k = 1,

D(X) =X, DyX) =X+ X = XX+ 1.
(i) By [16, p. 11],

Daiioi(X) = Do (X)Ds(X) + X
= XXX (1/X)) + X,

and the result follows since

TIY) 1 (T«(Y)+ Y¥?  Ti (Y)
y¥F + Y Y2 RN

(1) Similarly, using
Dy (X) = Du(X)Dy (X)) + X. =

Given f, let ¢s(X, Y) = (f(X) f( YW(X —Y) € F,[X, Y] and denote
the algebraic closure of [, by [F (= {F,,) Then ¢, factorizes as a product of
distinct irreducible factors in IFq [X, Y]. If such an irreducible factor re-
mains irreducible in @_Fq[X, Y], then it is said to be absolutely irreducible.
Let F, = [F, for some [ = 1 be the finite extension of F, obtained by
adjoining all the constant coefficients of all the irreducible factors of ¢,
over |, to F,. Then a factor of ¢, over F, is absolutely irreducible if and
only if it is irreducible over F;. Then fis exceptional on F, if ¢, has no
absolutely irreducible factors, i.e., every irreducible factor over [, is
reducible in some extension such as [F,.

Let z be an indeterminate and L the splitting field of the (separable)
polynomial f(X) — z over F(z). FurtherletQ={Y=Y,,. . .,Y,}CL
be the roots of f(X) — z. The arithmetic monodromy group G of f (over
F,) is the Galois group of the irreducible polynomial f(X) — z over F,(z),
regarded as a (transitive) group on (2. The subgroup G = Gal(f(X) - Z,

F,(2)) is the geometric monodromy group of f. Indeed, if [F = [y, say,
is the algebraic closure of [, in L, then G = Gal(f(X) - z, F, )and G/G =
Gal([F /E,), a cyclic group_ of order k. We also write Gy and Gy for the
stablllzers of Y (in G and G, respectively) acting either on Q or on Q\{ Y}
Thus Gy is the Galois group of f(X) — f(Y) (or of &/(X, ¥)) over F (Y).
Since F(z) is a normal extension of F,(z) it follows immediately that Gis
a normal subgroup of G and G/G = CA The groups all act as permutation
groups on the roots of f(X) — z. The critical property relating to EPs lies
in the subgroup Gy = G N Gy. The property of f'being exceptional trans-
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lates into the statement that every orbit of Gy (other than Y) splits into
strictly smaller orbits under Gy. Since Fyu(z) is a normal extension of
F,(z) there is a homomorphism 6: G — C; with kernel G. We denote by G*
the union of the cosets which generate C;. Consequently |G*| = ¢(k)|G| =
(¢p(k)/ky |G|, where ¢ is the Euler ¢-function. G* may be characterized as
those g € G which, in their action on F,, fix only F,.

Exceptional polynomials can also be characterized as those polynomi-
als which permute infinitely many extensions of F,. In fact the following
result holds [11].

LEMMA 2.2, If fis an EP on [, then there exists € > 1 such that, if
(e, €) =1, then fis a PP on F,.

We enlarge on the factorization of ¢, . where D,(X) = D (X, |). We
state the result in arbitary characteristic p but use it only when p = 2.
From [16, Theorem 3.12] (taken from [23] when g is odd). ¢, factorizes
into absolutely irreducible quadratic factors over F,« (€ as above) as fol-
lows. Let { be a primitive nth root of unity (in ) and set

Bi=¢+¢  w=U-C =123, ..
Then, with f(X) = D,(X, a), over [,

(n=~1)12

& X, Y)= [] (X2=BXY+ Y2+ vyi), nodd, (2.3)
i=1

(n=2)/2

S X, Y)=(X+7Y) ][] (X2-B8XY+ Y +vy2), neven. (2.4
i=1

Although ¢, factorizes over F,¢ into irreducible quadratics it is easy to
see [3] that X"Y"D,(X + (a/X), Y + (a/Y)) splits completely into factors
over Fge linear in X (say). Note also that, from (1.1), D,.(X, a) =
D, (D,(X, a), a") and so D,(X, a) is indecomposable over [, if and only if n
is a prime (# p).

LEMMA 2.3, Suppose n is odd and p | n. Let z be an indeterminate.
Then D,(X) — z" is irreducible over F,(z). Indeed, if n | q — 1, then the
Galois group of D,(X) — z" over F,(z2) is the dihedral group of order 2n.

Proof. 1If D,(X) — z" is reducible as a polynomial in X, it is reducible
as a polynomial in z and so, by a well-known fact (independent of the
nature of D,), D,(X) = g4 X) for some d (>1) dividing n and polynomial
g, which is false since D, is square-free (when p | n).

Assume next n | g — 1 so that F, contains {, a primitive ath root of unity.
Let Y be a root of the polynomial and U be such that Y = U + (1/U). By
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(1.1), U" = V (say), where V + 1/V = z". The n roots of the polynomial
are {'U + (1/8'U),i=10,. . .,n— 1,and F (z, U) is a splitting field over
F4(z), which by the first part has degree n or 2n over F,(z). If the degree is
n,then V € F (z), i.e. there are co-prime polynomials V;, V, with (identi-
cally)

Viz) + Viz) _
Vi(z)Va(z) ’

which is obviously false.

Finally, generators of the cyclic groups Gal(F,(z, U), F,(z, V)) and
Gal(F,(z, U), F,(z, Y)) (or order n and 2, respectively) together generate
the dihedral group of order 2n. ®

A major advance in the classification of exceptional polynomials was
achieved in [11]. In this paper the possible arithmetic/geometric mono-
dromy groups which can be assumed by an indecomposable exceptional
polynomial are reduced to a small number of classes. If the degree n of fis
not divisble by the characteristic p of [, then fis a cyclic or Dickson
polynomial, with G being cyclic or dihedral. If n = p™, a power of p, then
G is an ‘‘affine group,’’ i.e., a semi-direct product G = V X *H, acting on
affine space V, where V is an [,-vector space of dimension m, H = Gy C
GL,,(p) acts irreducibly on V via invertible linear transformations, and V
acts by translation. In particular, G is a subgroup of the whole linear affine
group AGL,,(p). (Of course, H = Gy C H need not act irreducibly because
G need not be primitive.) Now, in fact, all the classical indecomposable
EPs (except for the cyclic and Dickson polynomials) have affine mono-
dromy groups. Conversely, |11, Corollary 11.2] shows, via ramification,
that if it is known that H is cyclic, then an indecomposable EP of prime
power degree must be classical. But, there could well be other such EPs
with prime power degree (without H being cyclic) and any examples of
these would be most interesting.

The main bulk of the effort of [11] was in treating the other general
possibility permitted by the Aschbacher-O’Nan-Scott theorem. This is
that the generalized Fitting subgroup of G (which for G primitive, is the
direct product of the minimal normal subgroups), or socle of G, is a direct
product of, say, r (=1) isomorphic non-abelian simple groups H, with n =
|H|r,orr=2and n = |H|""". In fact, the theorem implies much more (see
[12, Proposition 2.1}), but certainly we can see that n cannot be a prime
power. From this, mostly by the exceptionality condition and CSG, it is
deduced in [11] that actually G must be ‘‘almost simple,” i.e., r = | and
HC G C GC N = Aut H, the normalizer of H in S,. Further, for G
primitive, the polynomial condition implies that there is a *‘factorization™
G = GyG. (a set-theoretic product), where Gy is maximal in G and G. is
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transitive. Now, a paper of Liebeck et al. [17] (using CSG) had listed all
possible factorizations of almost simple groups where both factors are
maximal and neither factor contains the (unique) normal simple group.
This does not quite apply as G. need not be maximal, but with some
additional effort along the same kind of lines using CSG, it is shown in [11]
that there are only two possibilities for H, both involving PSLy(q), the
projective special linear group of 2 X 2 matrices over [, of determinant 1
and its automorphism group PI'Ly(g), the projective semi-linear group of
invertible semi-linear transformations of [Fg (modulo its centre), see [21].
Briefly, the conclusion is that, necessarily,

p=2or3, n = pf(p* — 1)/2, where k = 3 odd, (2.5)

and

H = PSL{p" C G C G C N = PILy,(p". (2.6)

The action is on the cosets of the appropriate maximal subgroup of index
n (i.e., for G, on the cosets of Gy). If p is odd then PI’ Lz(p")/PSLz(p")
= Gal(F,»/F,), a cyclic group of order 24, so we must have [F C Fou. If

=2 we conclude similarly that iF C Fpe. Infact, a careful readmg of the
proof of [11, Theorem 14.1] and the reformulatlon of that result as [10,
Theorem 2.4] indicate that necessarily # = G and N = G in (2.6). (See
also Theorem 3.12 below.)

This theory directed Miiller [20] to search for EPs among all polynomi-
als of degree 28 over [; (the case p = 2, & = 3 of (2.5)). He used GAP with
some group theory and exceptionality (for fields F;, ¢ = 7) to find the
examples f3 4, d = 1, 3, 9. This opened up the way for the discovery of the
full class of polynomials f; ; by the authors [5] and we go on to discuss
their properties in the next section.

3. THE POLYNOMIALS f; 4
From now on we suppose p = 2 and consider the polynomials f; ,
defined by (1.3) for all £ = 2 (and not just odd & = 3 as in [5]).
We recall (1.3). For any d | 2% + 1, let ¢d = 2¥ + 1 and set
Sia(X) = X{Su(X), 3.1
where

XS X) = TX) = X*" + X** 4 - - -+ X2+ X,
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a linearized polynomial. Then also

THX")

ﬁnd(X) = XZL

(3.2

Thus, bearing in mind Lemma 2.1(i), we see that the f; 4 involve cyclic,
linearized and Dickson polynomials and, for given &, the set {f; 4: d | 2* +
1}, is somewhat analogous to the set of sub-linearized polynomials L,
associated with a fixed linearized polynomial L. In fact, it was this last
feature which was instrumental in the postulation of the f; ; as candidates
for EPs (from Miiller’s single set of examples).

The major effort of [5] was the explicit factorization of ¢, (which will be
abbreviated to ¢;) over . We had quickly checked, for a few odd values
of k, that the f; permuted a number of fields (and so seemed certain to be
exceptional) but it seemed hopeless to establish exceptionality in this
fashion directly and therefore factorization of ¢, was sought as the means
of proving exceptionality. This was difficult to accomplish as, unlike the
classical EPs, the nature of the factorization would not be simple and the
available clues were very limited—the data from Miiller’s examples, the
general shape of the polynomials and their connections with the classical
families (as outlined earlier in this section), and some rough ideas of the
likely factorization pattern of ¢, from the nature of the group PI'L,(2%).
Our understanding of the general situation was therefore greatly aided by
means of interactive sessions—involving theory and experiment—with
the package GALOIS, developed specifically for finite field computation
by Matthews from an original version of Lidl and Matthews ([15], cf. the
comment on [1, p. 56]). In particular, ¢, was factorized, its shape ana-
lyzed, and that of ¢s synthesized by an algorithm involving subgroups of
the additive group of roots of the linearized polynomial 7s. (It should be
said that factorization of ¢, by pure computation would be a challenge and
that of ¢s probably infeasible.) Motivated by the success of this algorithm
for ¢s, we reformulated the result it produced as a conjectural explicit
factorization of ¢, valid for all K = 2. To justify the formula theoretically
was not easy. We achieved it through a number of lemmas (stated below).
In fact, the form of the factorization that we give (Theorem 3.6) repre-
sents an advance on that of [5, Theorem 3.1], in that from it we
can identify the monodromy groups of f; , for all k, d, without assuming
CSG.

In the following lemmas, the role of the field F.: is seen to be vital. We
write

X) = X" + X, v(X) = X¥*1,
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so that, on F,x, if ¥ = x* denotes the conjugate of x € Fx over F, then
T(x) = x + X, v(x) = x¥ are the trace and norm functions, respectively,
from Fy to Fox. We refer to [5] for proofs.

LEMMA 3.1. Forany x, y (¥ 0) € Fou, we have
vix + y) = vix) + v(yX1 + 7(x/y).
LEMMA 3.2. Suppose x € Fyu. Then

0 if Ti(v(x)) =0,

(x) =
Jutx) {1/f if Tiw(x) = 1.

Thus, on Fyx, f; is not a PP but has the following curious property.

LEMMA 3.3, Suppose x, y € Fau. Then
fx)=fy)>x=y or filx)=fily)=0.
Hence
di(x, y) = 0= filx) = fily) = 0.

For the last part of Lemma 3.3, note that fi(x) (= 1) # Oforall x € Fq.
LEMMA 3.4, Let Uy(X) = T(X) + 1. Then TA(XYU(X) = 7(X).

LEMMA 3.5. The polynomial T.(v(X)) has n = n, = 2" 12% — 1) dis-
tinct roots, all in Fox. Specifically, 0 is a root of multiplicity 2* + 1 and the
remaining n; — 1 roots each have multiplicity 1.

Let S, be the set of roots of S;(X) (all of which are in Fx, by Lemma 3.4)
and set D, (X) = D, (X, 1).

THEOREM 3.6. For any k = 2, over Fax,

oX, V) = [] E.x. V), (3.3)

a€ Sy

where, with K = 28 + 1,

X + Y)
— YK
EX,Y)=X DK< X + 1 3.4)
X + Y)
— VK
Y DK( o7 + 1. 3.5)
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Proof. It suffices to prove (3.3), with E, given by (3.4). Note that, by
Lemma 2.1(ii) and the fact that [1,c5, o> = | (since Sy C Fx), this follows
from the factorization (shown in [5, Theorem 3.1])

aES

o(X, Y) =[] 04X, 1), (3.6)

where
0.X,Y) = (X + YU}aX/(X + Y)) + o
We sketch the proof of (3.6) by showing the equivalent identity
AX) + X + 1) = Y]] 83X, 1), (3.7)
where
OXX, Y) = YKUNaX/Y) + & (3.8)

Both sides of (3.8) have degree n, in Y and n; — 1 in X. From (3.2), note
that fi(X) = T.(w(X))/X¥. From Lemmas 3.2 and 3.3, the zeros of the left
side of (3.8) at points (x, y) € [Fgu occur when v(x) = v(x + y) = 0. By
elementary degree and polynomial considerations using Lemma 3.5 it
suffices to show that for any such pair (x, y) (with y # 0), there exists
a € S, with ®*(x, y) = 0. Choose « by

al = v(y) + viy)rixly),
and it follows, by means of Lemma 3.1, that
Ti(aix¥y?y = v(y)r(x?/y?),

and hence, by Lemma 3.4, that v(y)Ui(a?x*/y?) = «?, whence
OXx,y)=0. =

The next result follows quickly from (3.5) by using Lemma 2.3 (which
was the purpose of the latter).

LEMMA 3.7. Foreacha € Sy, the factor E,(X, Y) in (3.3) is absolutely
irreducible over F2x(Y) and its Galois group over F»u(Y) is dihedral of
order 2(2F + 1). Moreover the constant coefficients of E,(X, Y) generate
Fi(a) over Fs.
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Proof. The first sentence follows from Lemma 2.3 since K = 2% + 1
divides 2% — 1. (In fact, E,(X, Y) has the same Galois group over F,(Y) as
we shall later see.) The last part is easier to deduce from (3.8) since

ONX, Y)= (Y + aXY¥ '+ - )+’ =
LEMMA 3.8. For k = 2, fi is indecomposable over Fs.

Proof. (Taken from [5, Theorem 4.2]). Suppose there is a non-trivial
decomposition f; = g(h) over F,. Then d = deg h is a divisor of n, (with
d # 1, n;). Since h(X) + A(Y) is a factor of fi(X) + fi(Y), by the
absolute irreducibility of the E, (Lemma 3.7), ¢, is a product of J of them,
where 1 = J = 2¢!' — 1. Hence d = JK + 1 (=1 (mod K)) divides n; =
212 — 1) = 1 (mod K). It follows that n; = Id;, where I = 1 mod K)
(I > 1) and so n; = (K + 1)?, which is false. =

LEMMA 3.9.  For the polynomial f; (k > 2), Gy, the one point stabilizer
of the geometric monodromy group is dihedral of order 2(2¢ + 1).

Proof. Let L be the splitting field of Dg(Z) + (1/YX) over FAY) (Where
fi(Y) = z). Then Gal(L/F«(Y)) is dihedral of order 2K by Lemma 2.3. For
any a € S, aroot Z* of Dg(Z) + (1/YX) over Fu(Y) is linked to one X* of
Dx((X + V)/aX) + 1/YXby X* = Y(aZ* + 1); hence L is also the splitting
field of the latter. Since this is true for every a € Sy, L is also the splitting
field of f,(X) + z over Fx(z) and so of ¢(X, ¥) over Fo(Y). =

LEMMA 3.10. Ifk = 3, then l.Fz(SA) = [sz.

Proof. 1If k is odd, then, for any 8 € Fx, Ti(a) = 0 for exactly one
member of {3, B + 1} (since Tx(B + 1) = T,(B) + 1) and we may take 8 to
be a primitive root of Fx to yield a non-zero member « € S, for which
{Fz(a) = [FZL.

Suppose k (>2) is even and that every member of F» that is not in a
proper subfield has trace | (over F;). Then,

% _ 2 QKM < k-1
£k
£prime

and so, easily,
21 < K2 4 (f — 3)2K2,

which is impossible. =

We remark that Lemma 3.10 fails when k = 2 because S, = {l} and so
F2(S,) = F;. Infact by Lemma 3.10 and the last part of Lemma 3.7 we have
the following result.
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LEMMA 3.11. Given f; (k = 2), let F} be the constant field extension
associated with ¢ (as in Section 2). Then

F», ifk =2,
Fax, ifk=3.

F

o~

In group-theoretical terms, the fact that all the irreducible factors E, in
{3.3) have the same degree (2 + 1) in X is equivalent to the fact that the
(primitive) geometric monodromy group G is 3-transitive; i.e., all the non-
trivial ‘‘sub-degrees’ (sizes of orbits) are the same. (Incidentally, the
equality of (3.4) and (3.5) yields that all the orbits are *‘self-paired’” too.)
Indeed, by Lemmas 3.7 and 3.9, any two point stabilizer (_7yl y, Oof G has
order 2. Moreover, since G is primitive of non-prime power degree, it
cannot contain a regular elementary abelian normal subgroup [22, Theo-
rem 11.5]. A most convenient theorem of McDermott [19] reveals that the
above features precisely characterize PSL»(2%) in its representation of
degree n,. We are grateful to Saxl for drawing our attention to McDer-
mott’s work, specifically, a related paper [18] from which our result could
also be deduced.

THEOREM 3.12.  For any k = 2, the arithmetic monodromy group G of
fiis P£L3(2"') and its geometric monodromy group G is PSL,(2%). More-
over [Fz = [sz.

Proof. By the preceding remarks, G = PSL,(2). Hence, by the basic
theory of primitive groups, (2.6) holds; i.e., G C PTL,(2*) and so [, C Fax.
On the other hand, evidently F; C [, and so, provided k = 3, F, = Fyu,
which implies that G = PT'L,(2%), k = 3. Suppose therefore that kK = 2 and
Y, Y* are distinct roots in Q. Then, by (2.3),

X + 1
vsx, 1) = Ds (K57) + &

X+ Y* +
ZDS( YY>+D5( Yy)

= (Zi+ BLiZy+ Z3 + )
X(Zi+ B+ DZZy + Z3+ (B + 1),

where Z, = (X + Y)/Y, Z, = (Y* + Y)/Y, and B2+ B = 1so that FB) =
F;. Hence [, = [, in this case and it follows that G = PTLx4). =

It follows incidentally from Theorem 3.12 that the Galois group of f;
over Fx(Y) is dihedral of order 2(2* + 1) (¢f. Lemma 3.9 and the remark in
the proof of Lemma 3.7).
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We now deduce the corresponding result (to Theorem 3.12) for an
arbitrary polynmial f; 4, d | 28 + 1. We write ¢, for f}; .

LEMMA 3.13. (i) Foranyk=2,d|2F+ 1, ¢y splits into a product of

factors Wocs, P(X, Y), where each P, is defined and absolutely irreduc-
ible over Fx and has degree 28 + 1 in X and in Y.

(ii) The constant coefficients of P,(X, Y) generate Fy(a) over [F-.
(1) fiq is indecomposable over F,.
Proof. (i) This is essentially in [5]. We summarize it here.
Denote a primitive dth root of unity by { (€ F.x). Since
Sed( X4y = fUX), (3.9)

then
d-1
fed XD + fira¥) = [T LX) + LR}
d-1
= [Tt + Ay

d-1
= (x4 + v) ] ] Eax, L'Y),

aESy i~

and the polynomial P,(X, Y) can be defined by
d-1
Po(X4, v = [] EuX, 'Y, (3.10)
i=0

where deg P, = 2" + 1. Suppose P, has a non-trivial factorization P, =
010Q; over Fy. Then the absolutely irreducible polynomial E, (X, Y) di-
vides (X4, Y4), say, and so, since the latter is invariant under ¥ — (Y,
P (X4, Y4, divides it, a contradiction. Hence P, is absolutely irreducible
over Fx.

(i) By (3.10) and (3.5),

P, (0, Y) = (Dx(l/a)Y* + D).
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But, by Lemma 2.1(ii), Dg(l/a) = U}{a)/aX = 1/a? (since Ti(a) = 0), and
SO :

P, 0, Y)=1+ (/DY + - - -

(iii) This is proved exactly as in Lemma 3.8. ®

We now generalize Theorem 3.12.

THEOREM 3.14. Forany k =2,d | 28 + 1, the monodromy groups of
Jra are given by G = PI'Ly(2%), G = PSLy(2%), and F, = Fx.

Proof. Let g(X) be the polynomial (3.9) and M be the splitting field of
2(X) + z over Fyu(z). Then M is also the splitting field of f,(X) + U over
Fou(U), where U4 = z and Foa(U)/Fu(z) is a normal (cyclic) extension of
degree d (since F,» contains all dth roots of unity). Now let M, be the
splitting field of f; 4(X) + z over Fy:(z). Then M, is also a normal exten-
sion of F,u(z) contained in M. By Galois theory and Theorem 3.12,

PSL2%) = Gal(fi{X) + z, FrdU))
= Gal(fru(X) + z, Fa(U) N My),
which is a normal subgroup of Gal(f; +,(X) + z, F2(2)) = G. Hence the
Fitting subgroup of the primitive group G is PSLy(2*) and so (2.6) holds.
But, by an argument similar to that given above,
PI'L,(2%) = Gal(fi(X) + z, F2(U))
= Gal(fi(X) + z, F(U) N M) C G,

where M, is the splitting field of fi ,(X) + z over Fxz).
Hence, in fact, G = PI'L,(2Y). =

THEOREM 3.15.  For all odd k = 3 and all divisors d of 2* + 1, fiuis a
PP on Fy. if and only if (k, e) = 1.

Proof. By the factorizations we can take € = £ in Lemma 2.2.

Conversely, let ¢ be a prime divisor of k and « (# 0) € F;. be such that
Tia)=0.fcd=2%+ 1,then(c,2*— 1) =land so(c,2¢ — 1) = 1. Hence
a = B¢ for some B (# 0) € F,., which implies that f; 4(8) = T#a)/8* = 0
(by (3.2)). So fi. 4 is not a PP of F» and this suffices to prove the result. ®

We conclude this section with some comments on f;, which, by Lemma
3.11, is slightly anomalous, as F; = [, yet F, = F4.
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We have fo(X) = X% + X, f5(X) = 1 so that f3(X) + «ais square-free for
all « in F,. Further, [21], G = PTLy(4) = S5, G = PSLy(4) = As, the
symmetric and alternating groups of degree 5. Using this association (or
by direct consideration of the action of G and G on Gy and Gy) we can
calculate the number of elements in G and G* (where G is the disjoint
union G and G*, with G* defined in Section 2) as in the following table.

Cycle pattern No. elements
(1, 5 G 24
(3% 20
(12,29 15
(1% 1
(6) G* 20
(24 10
(12, 4) 30

The Galois group of f-(X) + z over Fy (z), e even, is G and so does not
contain a 6-cycle. So f2,(X) + a (a € F;, e even) cannot be irreducible.
Indeed, by [2, Theorem 1], as ¢ — o, the proportion of a € F,. for which
£(X) + « has the indicated factor patterns approaches 2, §, 1, &, respec-
tively, and the number of distinct values attained by the polynomial f; in
[, tends to %.

When ¢ is odd, f3(X) + z has Galois group G over [ (z), the relevant
part (as far as the factor patterns of f5(X) + a, a € F,, are concerned)
being G*. Hence, for large e, the proportion of « in ;. for which f3(X) + a
is irreducible, or has factor patterns (2%) or (12, 4), is 4, 4, &, respectively.
In particular, for arbitrary odd e (not necessarily large), every value in F».
attained by f>(X) is attained at precisely two points and so the number of
distinct values of f; in Fy. is exactly 2¢71.

For & = 3, as Saxl pointed out to us, no member of PI'Ly(2%) (in its
representation of degree n;) can be ny-cycle; thus f; 4(X) + « is reducible
over Fy(a) for every a € F,. More detailed work on cycle patterns, etc.,
should yield further interesting facts about factorization.
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