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A b s t r a c t - - T h e  sequence of Gaver functionals is useful in the numerical inversion of Laplace 
transforms. The convergence behavior of the sequence is logarithmic, therefore, an acceleration 
scheme is required. The accepted procedure utilizes Salzer summation, because in many cases the 
Gaver functionals have the asymptotic behavior f,~(t) - f~-l(t)  N An  -2  as n --* oo for fixed t. It 
seems that no other acceleration schemes have been investigated in this area. Surely, the popular 
nonlinear methods should be more effective. However, to our surprise, only one nonlinear method 
w a s  superior to Salzer summation, namely the Wynn rho algorithm. (~) 2004 Elsevier Ltd. All rights 
reserved. 

Keywords--Convergence acceleration, Sequence transformation, Laplace transform, Numerical 
transform inversion. 

1. I N T R O D U C T I O N  

The sequence of Gaver functionals is useful in the numerical  inversion of Laplace transforms. The 

convergence behavior of the sequence is logarithmic, therefore, an acceleration scheme is required. 

The so-called Gaver-Stehfest method utilizes Salzer summat ion  to accelerate convergence. The 

Salzer summat ion  is one of the so-called linear acceleration methods and can be considered as the 

optimal method within tha t  family, as explained in a recent review by Frolov and Kitaev [1]. The 

purpose of this paper is to examine the performance of some nonlinear  sequence transformations 

applied to the Gaver functionals, namely, 

• W y n n ' s  rho algorithm 

• Levin's  u- t ransformat ion 

• Lubkin 's  i terated w-transformation 

• Brezinski 's the ta  algorithm 

0898-1221/04/$ - see front matter Q 2004 Elsevier Ltd. All rights reserved. Typeset by .A~S-TEX 
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In Section 2, we introduce the Gaver functionals and discuss their convergence behavior. In Sec- 
tion 3, we present the convergence acceleration methods. The results of the numerical examples 
are given in Section 4. 

2 .  T H E  G A V E R  F U N C T I O N A L S  

The problem of numerical inversion of the Laplace transform is to obtain approximations 
for f(t) when numerical values of the transform function 

fO °~ 
](s) = e-S'f(t) dt (I) 

can be computed. There are many methods available to solve this problem. A comprehensive 
list of references is available on the web, see [2]. 

One of the most powerful and proven methods involves using the so-called Gaver functionals 
(see [3]), which are given by 

f k ( t ) = ( - - 1 ) k T k ( 2 : ) A k f ( k r ) = k ~ ' ( 2 : )  
k 

j=O 

where T = ln(2)/t and A is the forward difference operator, i.e., 

A/(n~-) = f ( (n  + 1)T) -- ?(nr). 

Stehfest [4] suggested a reliable inversion algorithm based on (2). For a recent performance 
analysis of the algorithm the reader is referred to [5]. 

Under certain conditions the sequence of Gaver functionals converges logarithmically, that is 

lira f ( t )  - fk+ i ( t )  = 1. (3) 
k--,~ f ( t )  - A ( t )  

In fact, Gaver [3] showed that if f(t) is representable by a Taylor series for all t > 0, f~(t) has 
the convergence behavior 

c~(t) c:(t) 
fk( t )  ,,~ f ( t )  + 7 + ~ + " "  as k -~ ~ ,  (4) 

for fixed t. 
To illustrate the asymptotic form (4), we consider some examples selected from Table 1. We 

compute the quantity k(f(t) - fk(t)) for various values of k at fixed t. Table 2 displays these 
calculations and shows that condition (3) is satisfied for the examples. 

Note that F10 and F l l  in Table 1 are not bona fide transform pairs. That  is, the forward 
transform (1) of f ( t )  - 1/t does not exist. However, there is a sense in which the inverses of 
F10 and F l l  are valid see [6, p. 62]. It is reasonable to expect that a good numerical inversion 
method should be able to handle these so-called pseudotransforms. 

The Gaver functionals (2) can also be obtained by a recursive algorithm, ms follows: 

G(o ~) = nT](n~'), 
Tt 

~k--I ' 

.fk(t) = a (k), k 

n~_ l ,  

k > 1, n > k, (5) 

see [3, p. 450]. 
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Table 1. The test set of t ransforms and their inverses. 

ID 

1 
F01 

l + s  2 

1 
F02 

vq+ vT-~ 1 
1 

F03 

1 
F04 

,/7(1 + v~) 

Fo5 e~p (-2v~) 

exp ( - ~ )  cos 
F06 .,Z 

F07 e x p ( - 1 / s )  

F08 - in(s) 
$ 

F09 e s K1 (s) 
S 

i (ln(s))2 F10* 

F l l *  s ~ ln(s) 

](s) f(t) 

sin t 

l _ e - t  

2~v~ 

:c~Sc ( : )  

e - l l t  

cos (1/2t) 

v~7 
sin 2V~ 

v ~ + 2 )  

In(t) + ~, 

t 

6 
t 4 

* Pseudotransforms 

Table 2. Estimate of Cl ($) in (4) for t = 3. 

k FOl F03 F06 F08 F10 

4 0.653 0.0287 0.0610 -0.541 0.188 

8 1.55 0.0267 0.0589 -0.551 0.185 

16 2.49 0.0256 0.0580 -0.557 0.184 

32 3.14 0.0251 0.0577 -0.559 0.183 

64 3.50 0.0249 0.0575 -0.560 0.183 

128 3.68 0.0248 0.0575 -0.561 0.183 

256 3.78 0.0247 0.0574 -0.561 0.183 

3. S E Q U E N C E  T R A N S F O R M A T I O N S  

To examine the acceleration of convergence for the Gaver functionals, we consider five se- 
quence transformations. A study of the literature on methods, which accelerate logarithmically 
convergent sequences (see [7-15]) indicates that the five methods chosen are considered the best 
available for sequences that exhibit the asymptotic behavior given by (4). 

The book by Wimp [7] provides a nice introduction to all the methods considered herein. 
The early comparison studies of Smith and Ford [8-10] were favorably disposed to Levin's 
u-transformation and Brezinski's theta algorithm. On the other hand, Weniger [11-13] found 
Lubkin's iterated w-transformation to be effective. Van Tuyl [14] and Osada [15] determined that 
Wynn's rho algorithm also works effectively. 

Note, there seems to be no universal "best" method for logarithmically convergent sequences, 
see  [16,17]. 
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3.1.  Salzer  S u m m a t i o n  and the  N e v i l l e  Table  

Salzer summation is a linear method. The approximant for f( t)  is given by 
M 

f ( t ,M)  = E wksk(t), 
k=l 

where the weights are 

(6) 

( l ~ k + M k M  ( M )  w~ = , - ,  ~.w , (7) 

see [7, pp. 35-38]. Approximant (6) is known as the Gaver-Stehfest method [4] for numerical 
inversion of Laplace transform. The acceleration method itself may be viewed as a special ease 
of the Richardson extrapolation process, see [4]. As such, it has been widely known prior to 1955 
when Salzer presented his weights (7). It was previously given by a recursive scheme, known as 
the Neville table and also referred to as the Neville-Aitken extrapolation process. An equivalent 

n > 0 ,  
(s) 

k_>l ,  

n > 0 ,  

(9) 
k > l ,  

recursive scheme is given by 

T(o ~) = f~(t), 

Tk (~) (1 + k ) ~ r ( ~ + l ) ( k )  q'('0 "tk--1 -- ~ k - - l '  

see [7, p. 75]. Then, the approximant f(t ,  M) = T(~ ). 

3.2. W y n n ' s  R h o  Algo r i t hm 

The Wynn rho algorithm is given by 

pt~  = 0, p~o ~) = S~(t), 
k p(k~) _ ,,(~+1) 

-- t ' k - 2  -4- 
p(n+l) _ P~) l '  k - 1  

see [7, p. 168]. The approximant f(t ,  2m) = .(o) Y2rn • 

3.3. Levin 's  u -Trans format ion  

Levin's u-transformation is given by 
M 

E WkA(t) 
f ( t ,M)  = k=l (10) 

M 

E W ~  
k = l  

where the weights are 

W k  -= ( - - 1 ) k k  M - 2  f k ( t )  -- f k - l ( t ) '  

see [8, p. 227] and also [7, p. 193]. Also, there is a recursive scheme for the Levin u-transformation, 
see [10,11,18]. Note that the Levin u-transformation has the same structure as the Salzer sum- 
mation. Indeed, if in (11) we let fk(t) -- fk- l ( t )  = 1/k 2 then (10) is equivalent to (6) and (7). 

3.4. Lubk in ' s  I t e r a t e d  W-Trans fo rma t ion  

The Lubkin iterated w-transformation is given by 

w0 (n) = fn(t), n > 0, 

( ~ w ~ )  ( ~ w :  +1) ( z ~ w ~  +1) k > 0, (12) 
+1 ( ~ w ;  +2) (~2w~) - (z~w~) (A2w;+I) ' 

where A is the forward difference operator acting on the superscript n; see [7, p. 152; 14, p. 231]. 
This method is also called the Brezinski iterated theta algorithm, see [13, p. 342]. Then, the 
approximant f(t ,  3m) = W(m °). 
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3.5.  B r e z i n s k i ' s  T h e t a  A l g o r i t h m  

The  Brezinski t h e t a  a lgor i thm is given by 

= 0, 0o 

,~(,~) _ gn+l)  I 

v 2 k + l  - -  ~ 2 k - 1  -~ A/:}(n ) ' 
~ v 2 k  

D(n-l-2) A D ( n + I )  D ( n + I ) A D ( n )  
0(n)  v2k ~ 2 k + l  - -  ~2k " ~ " 2 k + l  

2k+e = A20(~) , 
2k+l 

n > _ 0 ,  

k k 0 ,  

k > 0  

(13) 

see [7, p. 171]. The  approx imant  f(t, 2m) = 0(°)2,=. Note t ha t  0 (~) = W (n+l) ,  which is why the  

Lubkin  scheme (12) is also called the  i t e ra ted  t h e t a  algori thm, see [7, p. 171]. 

4 .  R E S U L T S  

We use mult iprecis ion comput ing  provided by Mathematica. Table 3 shows the  accuracy (num- 

ber  of significant digits)  in the  result  of the  approximant  f(t, M) at  t = 0.3 wi th  M = 24. To 

create the  table,  we used 50 decimal  digits  of precision. 

Table 3. Number of significant digits obtained in acceleration of convergence for each 
method at t = 0.3, M = 24, and precision = 50. 

Salzer 

F01 22 23 

F02 23 25 

F03 24 25 

F04 23 23 

F05 11 12 

F06 5 6 

F07 23 24 

F08 23 24 

F09 23 25 

F10 22 24 

F l l  7 24 

Wynn Rho Levin U Lubkin W Brezinski Theta 

20 

21 

20 

21 

9 

1 

11 

20 

20 

20 

6 

13 

14 

11 

15 

4 

1 

9 

18 

11 

15 

8 

14 

14 

11 

15 

4 

1 

7 

18 

13 

15 

8 

Repea t ing  the  exercise for t = 3, 30, and 300, Tables 4-6 were crea ted  in a similar  manner .  

The  results  show remarkable  consistency in the  sense t ha t  the  relat ive performance of any two 

methods  remain  basical ly  the  same, regardless which t ransform we look at.  Though tes t ing a 

l imited set of t ransforms and t ime points  always leaves some possibi l i ty  for erroneous generaliza- 

tion, the  results  lead us to conclude, t ha t  for accelerat ing the  convergence of Gaver  functionals 

two methods  per form significantly be t t e r  t han  the  others: the  Salzer summat ion  and W y n n ' s  rho 

algori thm. In fact, we have more extensive computa t iona l  experience to  suppor t  this  s ta tement .  

We have tes ted  these algori thms on the  set of 105 t ransforms defined as Test  Set A in [5]. The  

results  of the  extensive tes t ing effort are similar  to  those given herewith  in Tables 3-6. The  

t ransforms in Table 1 can be considered as a good representa t ive  sample  of the  larger set of 105 

tes t  pairs.  
These  two a lgor i thms also have the  p roper ty  t ha t  wi th  increasing M the  number  of correct 

decimals is increasing approx imate ly  linearly. To i l lus t ra te  this  point ,  we show results  for t = 300 

with doubled  M (and precision) in Table 7. We note,  however, t ha t  the  Levin u algori thm, 

though always somewhat  less effective than  the  Salzer summat ion ,  also exhibi ts  l inear increase 

of accuracy  wi th  the  increase of M.  

Note  t ha t  in all the  considered algori thms the  overwhelming par t  of the  computa t iona l  effort 

is re la ted  to  the  mult iprecis ion evaluat ion of the  Gaver  functionals.  The  slight difference in the  
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Table 4. Number of significant digits obtained in acceleration of convergence for each 
method at t = 3, M =- 24, and precision = 50. 

Salzer 

F01 11 15 

F02 21 24 

F03 17 24 

F04 22 24 

F05 12 14 

F06 11 15 

F07 20 22 

F08 23 25 

F09 21 24 

F10 23 25 

F l l  7 24 

Wynn Rho Levin U Lubkin W Brezinski Theta 

0 

4 

12 

19 

11 

10 

7 

21 

18 

21 

6 

0 

5 

6 

13 

6 

10 

7 

19 

14 

17 

8 

0 

5 

7 

15 

5 

10 

2 

18 

13 

16 

8 

Table 5. Number of significant digits obtained in acceleration of convergence for each 
method at t -- 30, M -- 24, and precision -- 50. 

Salzer Wynn Rho Levin U Lubkin W Brezinski Theta 

F01 0 0 

F02 12 14 

F03 13 13 

F04 20 22 

F05 14 18 

F06 15 19 

F07 14 16 

F08 23 25 

F09 21 22 

F10 23 25 

F l l  7 24 

Table6. 

0 

10 

11 

19 

13 

14 

9 

21 

19 

21 

6 

0 

8 

8 

14 

10 

11 

5 

19 

16 

14 

8 

0 

8 

8 

10 

8 

14 

2 

19 

15 

14 

8 

Number of significant digits obtained in acceleration of convergence for each 
method at t = 300, M ---- 24, and precision = 50. 

Salzer Wynn 

F01 0 0 

F02 13 16 

F03 16 19 

F04 21 22 

F05 17 20 

F06 20 22 

F07 1 0 

F08 24 25 

F09 22 23 

F10 23 25 

F l l  7 24 

Rho Levin 

0 

12 

15 

19 

15 

18 

0 

21 

20 

22 

7 

U Lubkin W 

0 

10 

13 

16 

12 

16 

0 

19 

15 

16 

8 

Brezinski Theta 

0 

10 

14 

17 

8 

16 

0 

19 

15 

15 

8 

ac tua l  n u m b e r  of  a r i t h m e t i c  o p e r a t i o n s  du r ing  t h e  s equence  acce le ra t ion  p roces s  is negligible.  

There fo re ,  t h e  overal l  e f fec t iveness  of an  invers ion  m e t h o d  b a s e d  on  t h e  Gave r  func t iona l s  wou ld  

be  p r i m a r i l y  d e t e r m i n e d  by  t h e  neces sa ry  n u m b e r  of  t e r m s  ( M )  a n d  by  t h e  r equ i r ed  prec i s ion  

t h a t  is r e l a t ed  to  M .  

In  t h e  following,  we c o n c e n t r a t e  on ly  on  t h e  two  o u t s t a n d i n g  pe r fo rmer s .  T h e  Salzer  sum-  

m a t i o n  needs  a p p r o x i m a t e l y  2 M  prec is ion  whi le  t h e  W y n n  rho  a l g o r i t h m  n e e d s  2 .1M.  N o t e  
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Table 7. Number of significant digits obtained in acceleration of convergence for each 
method at t -- 300, M = 48, and precision = 50. 

Salzer Wynn Rho Levin U Lubkin W Brezinski The ta  

F01 0 

F02 24 

F03 28 

F04 40 

F05 35 

F06 38 

F07 16 

F08 46 

F09 42 

F10 45 

F l l  32 

0 0 

29 23 

32 27 

44 38 

42 34 

43 37 

22 0 

49 44 

44 41 

48 44 

44 30 

0 0 

13 13 

20 21 

20 20 

17 14 

23 19 

0 0 

20 22 

17 16 

20 23 

12 17 

Table 8. Inversion 

t 

3O 

6O 

90 

150 

3O0 

600 

9OO 

1500 

3000 

of F01 at various t values using M = 80 + t. 

M Salzer W y n n R h o  

110 22 40 

140 13 28 

170 9 23 

230 6 19 

380 3 19 

680 1 18 

980 i 22 

1580 2 29 

3080 0 50 

635 

that  these rules were obtained by detailed numerical experimentation. Since the small deviation 
in the required precision is not significant, the final outcome of the performance comparison is 
determined by the number of terms necessary to reach a certain accuracy goal. The difference 
in performance of the Salzer summation and the Wynn rho algorithm is illustrated here by a 
somewhat artificial but very informative numerical experiment involving the most demanding 
transform, F01: for increasing t values we increase the M value linearly and compare the conver- 
gence behavior. In particular, we use M = 80 + t terms, while the precision of the calculations is 
increased accordingly. The results are shown in Table 8. 

The sine function is of course notoriously difficult to obtain from its transform. Nevertheless, 
the Wynn rho algorithm shows remarkable consistency even in this case, indicating that  to achieve 
a fixed accuracy of the inverse, the necessary M increases maximum linearly with t. Based on 
our experience, the Wynn rho algorithm outperforms the Salzer summation for accelerating the 
convergence of the Gaver functionals. So far we could not find any substantial counter example 
to this statement. 

5. C O N C L U S I O N S  

The results lead us to believe that  for the convergence acceleration of the Gaver functionals the 
Wynn rho algorithm is the most effective among the acceleration schemes considered in this work. 
The reliable performance of the Wynn rho algorithm is predicted by a theorem by Osada 1119] 
that  ensures the convergence if condition (4) is satisfied. In our numerical investigation the 
Lubkin iterated transformation and the Brezinski theta algorithm performed worse than we had 
anticipated based on the views regarding their "across the board" properties. For example, see 
Section 5.2 of [19]. A reasonable explanation to our finding might have been that  the number of 
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ari thmetic operations during the acceleration process is somewhat less in the Salzer and W y n n  rho 

algorithms than  in the other three. However, the accuracy indicated for a given M in Tables 2-6 

is already "final" in the sense, tha t  any further increase of the precision leaves the number  of 

significant digits intact.  In other words, the difference in performance has a deeper cause than  

the appearance and propagation of numerical error due to round-off and computer  arithmetic. 

Some of the results indicate tha t  there may exist a nice error est imate for the W y n n  rho 

algorithm, namely, 

Unfortunately,  we are unable to determine a precise set of conditions when the error estimate is 

valid. This is an open question which we are pursuing. 
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