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l. Introduction 

For many non-compact spaces, e.g. the Euclidean plane, the fixed 
point property (f.p.p.) does not hold. However, there might be a sub­
stitute which in the compact case is equivalent to the fixed point property. 

Definition. Let X be a topological space, F a family of mappings 
of X into itself and Q a family of finite coverings of X. Then X is said 
to have the almost fixed point property (a.f.p.p.) with respect to F and Q 

if, for every f E F and every ex E Q, there exists a member U E ex such 
that U n f[U]#c/>; in other words, there is a point p EX such that 
p and f(p) belong to the same member U of ex. 

If X is a compact Hausdorff space, then X has the f.p.p. if and only 
if X has the a.f.p.p. with respect to continuous mappings and finite open 
coverings. (The "only if" part is clear; the "if" part is established by 
an easy argument.) 

It can be shown that the Euclidean space En has the a.f.p.p. with 
respect to continuous mappings and finite coverings by open sets with 
compact boundaries. This means that any continuous mapping of En 
into itself either has a fixed point or else there are points near infinity 
for which the images also are near infinity, e.g. a translation. 

Instead of turning to questions of a general nature, we prove three 
theorems for E2. In the first theorem we prove that E2 has the a.f.p.p. 
with respect to (arbitrary) continuous functions and finite coverings by 
convex open sets. In the second theorem we consider coverings by sets 
of a more general nature; in fact, we can take any finite covering by means 
of arcwise connected sets, but the mappings are restricted to orientation 
preserving isometrics. Even then, the proof needs careful reasoning and 
an example found by the third author will show - among other things 
in section 4 - that there is no corresponding theorem for orientation 
reversing isometries. These results will also be presented in the third 
author's thesis [5]. 

It should be observed that already HOPF [3] (see also WoLFF and 

1 ) The third author received a grant from the South African Council for 
Scientific and Industrial Research. 



607 

DENJOY [6]) obtained results like the following (stated in different 
terminology): A unicoherent topological space has the a.f.p.p. with 
respect to continuous mappings and coverings of order two by closed 
connected sets. 

2. Theorem l. The Euclidean plane E 2 has the a.I·P·P· with respect 
to continuous mappings and finite coverings by convex open sets. 

Remarks. l. It is easy to see that a corresponding theorem does 
not hold for infinite (convex open) coverings. 

2. It should be possible to generalize theorem l by replacing E 2 by En. 
We shall use the following lemma (with n = 2) in the proof of theorem l. 

Lemma l. (FoRT [2].) Let d be a positive number and let 
Bn = { x E En lllxll < d}. Let I : Bn --+ Bn be continuous. Then for each 
t:>O there exists a point xEBn such that Jlx-l(x)JI<e. 

Proof. Let t:>O be given. We may obviously assume that t:<d. Let 
On = { x E Bn lllxll <d-e}, and define a retraction r : Bn --+ On by 

~ (d-e)xfllxJJ, for x E Bn\On 
r(x) = 

X , for x EOn. 

Then rl I On --+ On is continuous and according to the Brouwer fixed 
point theorem for the n-cel], there exists a point c E On such that rf( c) =c. 
Since JJr(x)-xJJ<e for all x E Bn, we have Jlc-f(c)ll=llrf(c)-l(c)Jl<e. 

Definition. A strip is the closure of a connected open set in E 2, 

whose boundary consists of two (different) parallel straight lines. Let P 
be a strip bounded by the lines L1 and Lz, and let La be a (closed) segment 
perpendicular to Lt and Lz which connects a point of Lt with a point 
of L 2• Then the closure of a component of P\La is called a half-strip. The 
segment La is called the base of the half-strips, and the lines [rays] 
bounding a strip [half-strip] are called the sides of the strip [half-strip]. 

It is easy to verify that a convex subset K of EZ with interior points 
has the following properties: 

(i) If Ko (the interior of K) contains a line, then it contains a strip. 

(ii) If K 0 contains a ray, then it contains a half-strip. 

Proof of theorem l. Let I : EZ--+ EZ be a continuous mapping 
and lX= {Ui}~=l a finite covering of EZ by convex open sets. We may 
assume that EZ does not belong to lX. Since lX is a finite covering and 
EZ is unbounded, there exist pairs of different members of lX which have 
an unbounded intersection. Such an intersection satisfies either (i) or 
(ii) above, and we choose, if possible, a strip in each unbounded inter­
section; otherwise, we choose a half-strip. Divide each strip into two 
half-strips, such that the intersection of the ensuing half-strips is their 
common base. Let P1, Pz, ... , Pk be the collection of half-strips. We 
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may choose them such that Pt n Pi (i#j) is bounded, and we shaH 
suppose that this was done. Further, we choose an open disk B1 such 
that the following conditions are fulfilled: 

(i) If Ut n Ui is bounded, then Ut n Ui C B1. 

(ii) PtnPiCBl (i#j; i,j=1,2, ... ,k). 

(iii) B1 contains the bases of the half-strips as well as the points of 
intersection of the prolongations of the sides of the half-strips. 

Let B2 be an open disk, concentric with B1 and such that ii1 C B2. 
We shall now construct a homeomorphism g; : E2-+ B 2, such that 
{g;[Ut]}f_1 can be extended to an open covering of ii2. 

We shall assume that the collection of half-strips is cyclically ordered 
by the positive orientation of the boundary of B2, and that this ordering 
is given by P1. P 2, ••• , Pk "modulo k". We also assign an order to the 
sides of each P~, (i = 1, 2, ... , k): if we traverse the boundary of B2 in 
positive direction, then we pass from the "first side" of Pt to its "second 
side". 

Let St denote the closure of that component of E 2\(Bl u P1 u ... u Pk) 
which lies between the second side of P., and the first side of Pt+l 
(i = 1, 2, ... , k). Pt and St are thus constructed so that there exists a 
member Uj(i) E 0.: with the property that 

(i = 1, 2, ... , k). 

We are now ready to define the homeomorphism g; : E 2 -+ B2. It will 
be done in such a way that Pt\Bl is contracted onto Pin (B2\B1), and 
St onto S., n (B2\B1) (i = 1, 2, ... , k), while ii1 is mapped identically 
onto itself. 

z E Pt\Bl (i _ 1, 2, ... , k): Let Li(z) be the line through z parallel to 
the sides of Pt, and let ri(Z)=dist (z, Lt(z) n bd(B1)), where bd(B1) denotes 
the boundary of B1• Define lt(z) to be the point which divides the segment 
Lt(z) n (B2\B1) in the ratio rt(z) : 1 +rt(z). It is easy to verify that It 
is a continuous one-to-one mapping of Pt\Bl onto Pt n (B2\B1), and 
that its inverse is continuous. 

z E si (i = 1, 2, ... , k): Let ai be the point in which the prolongation 
of the second side of Pt intersects the prolongation of the first side of 
Pi+b and let atz be the closed segment connecting ai and z. Let 
Bt(z)=dist (z, aiz n bd(B1)), and define gt(z) to be the point which divides 
the segment atz n (B2\B1) in the ratio Bt(z) : 1 +si(z). Then gi is a con­
tinuous one-to-one mapping of St onto Sin (B2\B1), and its inverse is 
continuous. (If Pt and Pt+l are parallel, then we define gi in the same 
way as It was defined.) 

z E ii1: Let h : ii1 -+ ii1 be the identity mapping. 
Any two of the functions It, gi and h coincide on the intersection of 

their (closed) domains of definition and hence g;, defined by 



~ lt(z) 

<p(z) = ( ~.,(z) 
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(z E P.,\Bl; i = 1, 2, ... , k), 
(zESt; i=1,2, ... ,k), 
(z E B1), 

is a continuous mapping of E 2 onto B2• Similarly, <p-1 is well-defined 
and continuous; hence <p is a homeomorphism. 

For each U., E IX, let U.,' =<p[Ui] and let <p(1X) = {U/}~~ 1 • For each U1<t> 

satisfying (iv), let vj(i) = U/ (i) u ((P., us., u PHI) n bd(B2)). It is easily 
seen that the Vi(i), together with the remaining U.,', form an open covering 
of B2 • Denote this covering by {3 = {Wt}f'~ 1 • 

Let f' = IPIIP-1. Then f' : B2 ~ B2 is continuous and according to lemma 
1, for each positive integer n, there exists a point Yn E B2 such that 
llYn- f'(Yn)ll< lfn. Let r be the Lebesgue number of B2 with respect 
to {3, and choose n such that 1/n<r. According to the lemma of Lebesgue, 
there exists a set wlc E {3 such that Yn, f'(Yn) E wlc. But Yn, f'(Yn) E B2, 
so that Yn and f'(Yn) lie in the same member of <p(1X). Hence, if Xn is that 
point of E 2 for which <p(xn) = Yn, then Xn and l(xn) lie in the same member 
of IX. 

3. If the mappings are restricted to translations, we can require less 
of the covering sets to obtain a theorem similar to theorem 1: "convex 
open" may then be replaced by "arcwise connected". 

We shall need the following two lemmas. 
n 

Lemma 2. Let X1, X2, ... , Xn be sets, let X= U X., and let 
i~l 

I : X ~ X be a mapping. Then there exists a set X., and a positive 
number k (1 ,;;;;;i, k<,n) such that X., n 17c[Xi]*cf>· 

Proof. For each x EX, at least two of then+ 1 elementsx,l(x), ... ,ln(x) 
belong to one and the same set X.,; say lr(x), l8 (x) EX., (O<,r<s<,n). 
Then ls(x) Ex., n ls-r[Xi]. 

Lemma 3. Let A be an arcwise connected subset of E2, and let 
I : E 2 ~ E2 be a translation, such that there exists a positive integer k 
with An lk[A]*cf>· Then An I[A]*cf> too. 

Proof. Let I be given by l(x) = x +a, for all x E E2, where a E E2 is 
a fixed vector. We may suppose that the positive X-axis has the same 
direction as a. Let k be the smallest positive integer such that A nlk[A] * cf>. 
Suppose k> 1. We are going to derive a contradiction. There exists a 
point bE A such that b+ka E A also, and we can find an arc J, contained 
in A, wruch connects b and b+ka. Let 

P = {(x, y) EJ I (u, v) EJ '*Y>V}, and 

Q = {(x, y) EJ I (u, v) EJ '*Y<V}. 

Since J is compact, P * c/> and Q =1= cf>. (P and Q contain respectively the 
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"upper extreme" and "lower extreme" points of J.) Since J n f[J]=cp, 
J is not a segment, and since it is compact, we can find a point p E P 
and a point q E Q, such that, if J1 is the part of J which connects p and q 
(including p and q), then J1 n P={p}, J1 n Q={q}, and p=/=q. 

Let L1 and L2 be straight lines parallel to the X-axis, passing through 
p and q respectively, and let S be the strip determined by these lines. 
J1 separates S into two disjoint sets, each of which is simply connected 
and both open and closed in S. The same holds for the images· of J 1 under 
the interates of f. 

Since J1 n f[J]=cp and f[J] is connected, any two points of f[J], in 
particular b +a and q +a, lie in the same part of S with respect to the 
separation by J 1· Since f is a translation, b + ka and q + ka lie in the same 
part of S with respect to the separation by fk-1[J1]· Since q+ (k- 2)a 
and q + ka lie in different parts of S with respect to this separation, 
b+ka and q+(k-2)a lie in different parts. Also, q and q+(k-2)a lie in 
the same part of S with respect to this separation, and hence q and b + ka 
lie in different parts. But q and b + ka are connected by J, and J C S, 
so that J n fk-1[J1]=1=cp, implying that An fk-1[A]=I=cp, in contradiction 
with the choice of k. 

Definition. Let X be a topological space. Two continuous mappings 
f, g : X_,.. X are said to be topologically equivalent if there exists a 
homeomorphism h of X onto itself such that f=h-1gh. If X is a 
metric space, then a mapping f : X_,.. X is called a topological iso­
metry if it is topologically equivalent to a distance preserving mapping 
of X into itself. 

In the case of the plane we have the fo1lowing criterion for a mapping 
to be a topological translation (SPERNER [ 4]): A mapping f : E2 _,.. E2 
is topologically equivalent to a translation if and only iff is an orientation 
preserving homeomorphism such that, for each set G C E2, which is the 
closure of a bounded domain and whose boundary is a Jordan curve, 
there exists a positive integer N such that G n fn[G]=cp for all integers n 

with lni:;;;.N. 
We now state and prove 

Theorem 2. The Euclidean plane has the a.f.p.p. with respect to 
orientation preserving topological isometries and finite coverings by arcwise 
connected sets. 

Proof. It is a well-known result that an orientation preserving 
isometry of the Euclidean plane is topologically equivalent either to a 
rotation or to a translation. In the first case there is a fixed point, and 
in the second case theorem 2 immediately follows from lemmas 2 and 3. 

Corollary. The Euclidean plane has the a.f.p.p. with respect to 
orientation preserving topological isometries and finite coverings by 
connected open sets. 
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For, a connected open subset of a Euclidean space is arcwise connected. 
An example orally communicated by Professor R. D. Anderson shows 

that theorem 2 cannot be extended to higher dimensions : There is a 
covering cx of E3 by four non-empty connected open sets and a topological 
translation I: E 3 -+ E 3 such that U n I[U]=tfo for all U E cx. 

4. We recall the following 

Definition. A connected topological space X is unicoherent if, 
whenever X=A u B, A=i=tfo, B=i=tfo, with both A and B closed and con­
nected in X, it follows that A n B is connected. 

A connected topological space trivially has the a.f.p.p. with respect 
to arbitrary mappings and coverings consisting of two connected open 
sets. A unicoherent topological space has the a.f.p.p. with respect to 
continuous mappings and coverings consisting of three connected open 
sets. Before showing this, we prove the following 

Lemma 4. Let X be a unicoherent topological space and cx={U, V, W} 
a covering of X by three non-empty connected open sets. Then, if 
U n V n W = tfo, cx has two disjoint members. 

Proof. Suppose, on the contrary, that U n V =l=tfo, U n W =l=tfo and 
V n W =1= tfo. Then 

X = U u ( V u W) (connected summands}, 

U n (V u W) = (U n V) u (U n W) (connected summands}, and 

( U n V) n ( U n W) = U n V n W = tfo, 

contradicting the unicoherence of X. 

Theorem 3. A unicoherent topological space X has the a.f.p.p. 
with respect to continuous mappings and coverings consisting of three 
connected open sets. 

Proof. Let I :X-+ X be a continuous mapping and cx= {U, V, W} 
a covering of X by three connected open sets. We may suppose that the 
empty set does not belong to cx, and that U n V n W = tfo. Let U and V 
be the disjoint members of cx given by lemma 4. Then U n W =!= tfo, 
V n W =l=tfo, since X is connected. Suppose that W n I[W] =tfo. Since 
I[W] is connected and U n V =tfo, either I[W] C U or I[W] C V. In 
either case the theorem is proved, e.g., if I[W]CU then I[U n W]C I[W]C U 
and hence U n I[U]=!=tfo. 

Corollary. En has the a.f.p.p. with respect to continuous mappings 
and coverings consisting of three connected open sets. 

For, En is unicoherent (BoRSUK [1]). 
The question arises whether a unicoherent topological space has the 

a.f.p.p. with respect to continuous mappings and coverings consisting 
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of four (or more) connected open sets. Further, can "orientation pre­
serving" be omitted from the hypotheses of theorem 2? 

Both these questions are answered negatively by the following example, 
in which we have a covering of E 2 by four connected open sets U ~, U 2, U 3, U 4 

and a transflection I (i.e., a reflection fo1lowed by a translation in the 
direction of the axis of reflection) such that Ui II I[Ut] =if> (i = 1, 2, 3, 4). 

Let 
V={(x,y)EE210<x<1, -1<y<1}, 

r(x, y) = (x, y) + (2, 0), for all (x, y) E E2, 
s(x, y) = (x, y) + (-!, 0), for all (x, y) E E2, 

W = {(x, y) EE21 y< -1}, 
00 

V1 = U rn[V], U1 = V1 u W, 
n=-oo 

U2 = s[Ul], Ua = s[U2], 
u4 = {(x, y) E E 2 I y > 0}. 

The transflection I is defined as follows: 

u(x, y) = (x, -y), 

t(x, y) = (x, y) + (1, 0), 

I= tu. 

for all (x, y) E E2, 
for all (x, y) E E2, 

It is easy to verify that Ut II I[Ui]=if> (i= 1, 2, 3, 4). Note that I 
reverses the orientation, and that each of the intersections Ui II U1 (i =f. j) 
has countably infinitely many components. 

Problems. 1. Does the Euclidean plane have the a.f.p.p. with 
respect to orientation preserving homeomorphisms onto and finite 
coverings by connected open sets? 

2. Does the Euclidean plane have the a.f.p.p. with respect to con­
tinuous mappings and finite coverings by connected open sets such 
that the intersection of each pair of members of the covering has only 
a finite number of components? 
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