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Abstract

We consider a semilinear wave equation, defined on a two-dimensional bounded
domain £2, with a nonlinear dissipation. Our main result is that the flow generated by
the model is attracted by a finite dimensional global attractor. In addition, this attractor has
additional regularity properties that depend on regularity properties of nonlinear functions
in the equation. To our knowledge this is a first result of this type in the context of higher
dimensional wave equations.2002 Elsevier Science (USA). All rights reserved.

Keywords:Semilinear wave equation; Nonlinear dissipation; Global attractors; Finite dimensional
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1. Introduction

We consider the following semilinear wave equation defined on a bounded,
sufficiently smooth domai? ¢ R?2

wir + g(wy) — Aw + f(w) =0, in £ x(0,00),
W32 x(0,00) = 0, (1)
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with the initial conditionsw(0) = wo, w;(0) = w1, in £2.
The following standing assumptions are imposed on the nonlinear functions
18

Assumption 1. g is strictly increasingg(0) = 0 and there exist positive constants
m, M, N, p,q such that

g)>m=>0 for|s|>1,

g’ ()] < M[sq_1 + l] forall s, 1< g < o0; (2)
fectm, im L9 2

[s|>00 8
|f/(s)|<N[1+|s|p_1] forse R, 1< p < oo, 3

wherel1 denotes the first eigenvalue afwith zero Dirichlet data.

Since Eq. (1) is a locally Lipschitz perturbation of a monotone second-order
equation defined ift{ = Hol(.(z) x L2(£2), the existence of unique local (in time)
solutions follows from standard nonlinear semigroup theory [1,2]. The ultimate
dissipativity condition imposed oi guarantees an existenceafriori bounds
in finite energy spacé&t. Thus local solutions become global and we are in a
position to define a continuous semifléwiz) on H by the formula

T(1)(wo, w1) = (w(r), w; (1)), >0,
(wo, w1) € M = H($2) x La(£2),

wherew(t) satisfies Eq. (1).

The main goal of this paper is to study long-time behaviouf ¢f) and, in
particular, questions related to the existence, regularity, and dimensionality of
global attractors (we use here the standard definition of global attractor as in
[3-5]).

If the nonlinear termy is dissipative (i.e. f(s)s > 0), then the flowT (¢) is
uniformly stable, andl'(r) converges to O in the operator norm with the rates
which depend on the behaviour of a functig@) at the origin. In fact, these rates
can be calculated exactly (see [6]) by solving an appropriate nonlinear ODE. In
such a case, asymptotic behaviour of the flbg) is very simple and the attractor
collapses to a single equilibrium. If, instead, the nonlinear funcfiaa subject
to a more general condition as in (3), asymptotic behaviour of the flow is more
complex and is confined (as we shall see) to an appropriate global attractor. Our
main aim is to show that the asymptotic behaviour of the fldimite dimensional
Here is our main result:

Theorem 1. With reference to the floW () associated with(1), subject to As-
sumptionl:
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(1) (CompactnegsThere exist a global, compact attractdr< H whose size is
independent of the dissipation paramete> mg > 0 (see Theorem).
(2) (Regularity. Under the additional growth conditions

g)>m>0 for|s|<1, and
g(s)52m|s|l for|s| > 1lwithl>¢g —1

the attractor A has the additional regularitydR > 0, such thatA e
Bp2oyxni(2)(0, R), where Bx (0, R) denotes a ball inX with a radiusR
(see part(1) in Theorenb).
If, in additiong =1 and0 < m < g'(s) < M < oo, thenR does not depend
on the dissipation parametet , but it may depend oi /m (see part(2) of
Theorenb).

(3) (Finite dimensionality. In addition to previous hypotheses, we assume that
lg”(s)| < C, for s € R. Then the Hausdorf dimension of the attractdris
finite (see Theorer8).

Remark 1.1. The assumption that the domain is two-dimensional is critical only
for the proof of finite dimensionality of the attractor. Compactness and also regu-
larity of the attractor can be proved in thedimensional case subject to suitable
growth conditions imposed oy f—including the cases of critical Sobolev’s ex-
ponents for the functiorf.

An interesting question is that @f* regularity of attractors. The regularity
of attractors, besides being an important property in the theory of dynamical sys-
tems, is also a very fundamental issue in the context of numerical approximations
and construction of inertial manifolds. This type of additional regularity is typical
for dynamics with an inherent smoothing effect, e.g., parabolic like systems. In
the hyperbolic case, th€>° regularity of attractors is known [7] for equations
with linear dissipationonly. In fact, the linearity of dissipation is used critically
in the proofs [7]. In what follows we shall show that if the parameter representing
dissipation is sufficiently large, th&> regularity of attractors is also enjoyed by
hyperbolic flows with nonlinear dissipation. In order to state our result we intro-
duce parameté, = sup.cxllg” ()| + g'(s) — g’ (O[]

Theorem 2 (C° regularity).In addition to assumptions in paf2) of Theorend,

we assume thaf, ¢ € C>°(R) and the following condition holdg, /m < 1. Then

the flow on the attractor is infinitely many times differentiable. More precisely,
A€ Bynayxnn-1(2)(0, Rm), n = 3, whereR,, may depend on the parameter of
dissipatiornv. (See Theorem.)

Note that the additional assumption imposed by Theorem 2 is always satisfied
if we replaceg(s) by g(s) + Cs for a sufficiently large value of’. The above
observation leads to the following corollary.
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Corollary 1.2. There exists a constarily > 0 such that the original dynamics
with the damping (s) + Cs, whereg(s) satisfies the assumptions of Theorem
andC > Co generate* flow on the attractor.

The above corollary leads to the following control-theoretic interpretation: one
may control the smoothness of attractors by adding a linear velocity feedback to
the original nonlinear system.

Proofs of these two theorems follow from six theorems: 3, 4, 5, 6, 7, and 8
presented in the main body of the paper.

We would like to say a few words about the literature related to this problem.
There is a large literature devoted to the stability and existence of global attractors
for semilinear wave equations [3,5,7-12]. The majority of the results in the
literature deal with the case bifiear dissipationg(s). In such case, the existence
of compact attractors is known—see [3,5,8] and references therein. A more
delicate problem, in the hyperbolic case, is that of finite dimensionality and
regularity of attractors. While these properties are typical of parabolic-like flows
with an inherent smoothing mechanism [13], in the hyperbolic flows regularity
and finite dimensionality are much less expected (see [14]). This is due to
the lack of smoothing effect propagated by the original dynamics and related
spectral distribution where infinitely many eigenvalues of the linearization lie
on a vertical line in the complex plane [14]. The very first results establishing
finite dimensionality for a wave equation witmear dissipationare in [7,15],
and later in [14]. Linearity of the dissipation is used critically in all the arguments
pertaining to regularity and finite dimensionality of the attractor.

If the dissipation is nonlinear, the situation becomes, as noted in the literature
[3,10,16,35,36], much more subtle. In order to recognize the difficulty, it suffices
to realize that in hyperbolic problems dissipation, to be effective (i.e., to change
the essential spectrum of linearization), cannot be relatively compact [17,18].
Thus, the dissipative term in the equation belongs to the main part of the operator.
If this term is, in addition, nonlinear, it becomes very sensitive with respect to any
perturbation type of argument (used typically in the study of attractors and their
properties).

In the case of nonlinear dissipation, the results available in the literature [3,
8,19-21] provide an existence gfobal attractorsunder hypothesis & m <
g'(s) <M, s € R. If there is no upper bound on the derivativeggfbut there is
a structural hypothesis relating the growth gfwith respect to the growth of
f, the existence of a compact global attractor is proved in [11,22]. However,
there are virtually no results in the literature dealing witgularity and finite
dimensionalityof attractors in the context of higher (than one) dimensional wave
equation withnonlineardissipation (some restricted regularity of attractors for
semilinear wave equations with nonlinear boundary damping is proved in [38]).
The reason for this is simple: since the flownist differentiablewith respect to
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finite energy topology, the standard methods for estimating the dimension of the
attractor are not applicable [3,23,24].

For this reason alone the problem fofite dimensionalityand regularity of
attractors for wave equations with nonlinear dissipation has been an open prob-
lem in the literature. The only result existing (to the best of our knowledge) is
for a one-dimensional wave equation [16], where strong Sobolev's embeddings
HY(22) c €(£2) available in the 1-D case are critically used. Needless to say the
above argument does not apply to higher dimensions. Thus, what we consider as
the main contributions of this paper, which concentratesaniinear dissipation
are (i) finite dimensionality of the attractor in the two-dimensional case (Theo-
rem 8), and (ii) regularity of attractors subject to various regularity assumptions
imposed on nonlinear terms g (Theorems 5, 6, 7). Our arguments rely critically
on the “sharp regularity” of multipliers in Besov’s spaces [25].

Let us conclude with a few remarks, pointing out some open problems and
future directions worth pursuing. Note that while the size of the attractor, when
measured in finite energy spakg does not depend on the dissipation parameter
m > 0, its regularity measured in higher Sobolev’s norms does. More precisely,
the size of the attractor when measured4A(£2) x H2($2) (or higher norms)
depends om and it may increase when the dissipatieibecomes larger. On the
other hand, large values of the damping parametere responsible for “fast”
decay rates to the attractor (see Lemma 3.2). This raises an interesting question
on how to “optimize” the damping parameter in order to achieve “good” attrac-
tiveness properties of the attractor along with reasonable regularity.

The related issue is that of finite dimensionality versus damping. Optimization
of the damping parameten, in order to obtain the lowest estimate for the
dimension of attractor, is interesting and important for applications problems. It
is clear that “more damping” does not mean stronger decay properties. In fact,
a large value ofn leads to the so-called “overdamping”—a phenomenon well
known among engineers. We hope that the results of this paper, including specific
estimates relating the damping parameter to the properties of the attractor may be
a first step toward this type of quantitative analysis.

Notation. In what follows we shall use the following notation:

(u,v) = [ou)v(x)dx, lulg = |ulr,@).

H*(£2) are the usual Sobolev's spaces [26]. We recall that®(2) =
(H5(£2))', s > 0.

luls, 2 = ulgs(2)-

A=-A, D(A) = H(£2) x H}(2), andA”, 0< r < 1, denote fractional
powers ofA.

ConstantsC;, ¢; are generic constants, different in different occurrences.
C(s) denotes a function that is bounded for bounded values of the argument.
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The remainder of the paper is devoted to the proofs of Theorems 1 and 2. This
will be accomplished by proving supporting results in Theorems 3-8.

2. Existence of an absorbing set

At the outset we mention that the main results established in Sections 2 and 3,
which deal with absorption and compactness property, can be proved in a more
direct (simpler) way than is done in the paper. However, our more extensive treat-
ment provides more information about the flow (such as dependence on the para-
meter of dissipation and rates of convergence)—uwhich is not strictly necessary in
order to conclude the existence of a global attractor. These additional properties
will be critically used for the proof of the remaining statements in Theorems 1
and 2.

Theorem 3. Under Assumptiot

(i) There exists an absorbing sBtin H, for the problem(1)—(3), i.e., for all
Ro > 0 and initial data (wo, w1) € H with the property(wo, w1)|x < Ro,
and there exists & = ¢ (Rg) such that

(w@), w; (1)) e B fort > 1. (4)

(i) Moreover, the size of the absorbing set does not depemd, 3 as long as
m > mg > 0. This is to say thaB8 € By (0, R), whereR doesnotdepend on
m, M, Ryg. However, the time may depend om, M, Ro.

Remark 2.1. The second part of the theorem, which provides control of the size

of the absorbing set with respect to the dissipation parametetill be critically
used in the study of regularity of the attractor.

Proof. Define the following linear and nonlinear energies for the problem:
1 1
Ew () =5 (wi(0), wi ()@ + 5 (Vw, Vu)g, )
Eu0)= Eu(0) + (F(u). Da. where F) = [ 7()dy. ©®)
0

Since regular initial data produce smooth solutions, we can freely perform dif-
ferential calculus on smooth solutions. Final inequalities applicable to finite
energy initial data are obtained by the usual density argument.
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By multiplying (1) by w; and integrating by parts, we obtain the dissipativity
relation

t
Ew(0) = Ey(n) = /(g(ws), ws) e ds. (7)
0

The following relations between the two energies follow from the assumptions
imposed on functiory and Sobolev's embeddings

CcOEw(t) = Co < Ey(t) < C(Ew(D)) (8)

for suitable positive constants Co and the functiorC (s).
We introduce the Lyapunov function

V(1) =Ew(@) +e(w@), wi()e. )
Since

—ec1Ey (1) < e(w(®), w; (1) 2 < eC1Ey(1),
wherecy, C1 are universal constants, from definitionfr) and (8) we obtain

(co—ec)Ew(@) —Co< V() LC(Ey() +eC1E,(2), teR, (10)
and takings small we conclude that

CEy(t)—Co< V() KC(Ey(t), teR, (11)

wherec, Cg are generic constants.
Differentiating (9) with respect to and substituting (1) yields

Vi = ()i +elwi|f +e(w, Aw — g(wy) — f(w))g.
After integrating by parts and substituting (7) we obtain
Vi =—(g(wp), w)e +elw % — | Vwl?
—e(w, g(w))e —e(w, f(w))e. (12)
We will define the setS2 4, 25y C §2, such that2 ) = {x € £2: |w,(z, x)|
<1} and$2p) = {x € 2: |w, (¢, x)| > 1}. Since by (2)|w;| < g(w,)/m on2p()
we obtain that
(wr (1) wi (), + / i (1) dx. (13)

24

2 &
glw ) < —
It |_Q\m

By (3), for all s large enough- 1 (s)s < A1s2. Therefore we can split the term
(w, f(w))g into the term corresponding to the smalland the term correspond-
ing to largew and, using Poincare’s inequality and (2) we obtain the estimates
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—(w, fw)e <Mmlwls + Ko 5 <|Vwh +Ke f. (14)
|(w, g(w))e| < |(w, gwi)) 2, |+ | (w. (W) 2y, (15)
|0, g2 | <8 / w2ty dx + CsM / 2w, dx. (16)

2 24a1)

We estimatef(w, g(wr)) ey, | using Holder's inequality, Sobolev’'s embedding
HY(2)c L, (2)forr >1and (2):

1/r 1/r
|<w,g(wt)>.ow|<< / |w|f> ( / |g(wt>|r)

17 10) 2B
1/r
<C|w|m( / |g(wt>g(wt)|fl>
2B(1)
1/r
<C|w|m( / |g<wt>|M’1|w,|<’1>‘I) S € ))
2B@r)

In (17) we choose =1+ 1/¢g. Then using 1r < 1 andg(w,)w; > C > 0 on
(1), we obtain

1/r
|(w(), g(wt(t)))98(1)| < CMl/(“l)lw(t)Il,.Q( / g(wz(t))wz(t)>

2B@r)

<CM1/<4+1>E3,/20)< / g(wz(t))wz(t)>. (18)

2B(1)

By (8), Ew(t) < (1/co)(Ew(0) + Co) < (1/co)C(E(0)). Therefore,

|w(@), g(wi () g, | < CMYTDC(E(O) / g(w»w,). (19)
21
Thus, from (16) and (19) we derive fog= 0

(w, g(w))e < 8lwlf o + CsM / g(w)wy
24a1)

+ MYV (E,(0) / g(wrwy
2B

<8lwlg o + (CsM + MY @DC(E,(0))(g(w)), wy) .
(20)
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Substituting the estimates (13), (14), and (20) into (12), we obtain$o0

V, < —(1 — L M — eM1/<q+1>c<Ew<0>>)<w,, gw))e
m

—e|Vwl%, +eslwlf o +e / lwi?+eKg f. (21)
241

Using Poincare’s inequality, we find a small const&stich that
&
—&|Vw|§ +edlwlf o < —§|Vw|?2.
Now we choose a smadl=¢(m, M, E,,(0)) such that

1
1- & _eCsM — e MY D C(E,(0)) > = (22)
m

Adding and subtracting the term[‘ |w;|?dx to the right side of (21) yields

we| 21
fort >0

m I
Vi < - / lw|2dx — ¢ / |wt|2dx—§|Vw|_%2+ng,f

2() 240
€
g_EEw(Z)"r‘SK.Q,f, (23)

whereK g r is a generic constant differentin various occurrences, and we assume
thatm > mg > 0, so that < mg. Rescaling the constants we infer that

Vi) < —eEy(t) +eKo g, 120, (24)

where, we recalls = ¢(m, mo, M, E,,(0)).

From (24), we will derive a bound (independent of the initial conditions and
independent of parametews, M) on E, (¢) for all r > 75, wherezg is suitably
chosen and may depend on the initial energy andalst/ .

Suppose initially thaf,, (o) < 2K, r, for somerg > 0. Then, by (7) and (8)
we have thai, (1) < C(Kg, 7). t 2 to.

If, instead,E,(t) < 2K, Vt 2> 0, than (24) implies that

Vit)+eKo r <0, t>0. (25)
Hence
V(t)+eKgo it <V(O0), t=0. (26)

Letting r — oo leads to a contradiction, in view of lower bound &n(11) and
finiteness ofV (0). Thus, we must have

Ey() < C(Kg,f), t=>1to.

Theorem is proved. O
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3. Compactness property

Theorem 4. Under Assumptiori there exists a global and compact attractor
inH.

Proof. The proof of Theorem 4 is based on a decomposition of the figwy

into two parts: uniformly stable and compact. This is to say h@j(wo, w1) =
S(t)(wo, wy) + K (¢)(wo, w1), whereS(z) is a uniformly stable semigroup ¢t

and the operatak (¢) : H — H is compact for alt > 0. Once this is accomplished
the assertion of Theorem 4 follows from Theorem 3.6 in [3]. To this end we apply
the decompositiow = z + u, where

2 — Az + g(z) = f(w), (27)

z2(00=0, %) =0, z[pe=0 (28)
and

uy — Au+g(us +z4) — g(z:) =0, (29)

u(0 =wo, u(0)=wi, ulye=0. (30)

For a given solutiorw(z), w, (¢)) = T (¢t)(wo, w1), EQ. (27) is a standard mono-
tone problem with a forcing ternf(w) € L1(0, T; L2(£2)). Thus, the monotone
operator theory [1] yields a unique solvability of (27) withe C([0, T];
H(£2)) N ([0, T1; L2(£2)). Having obtained solution, we solve Eq. (29),
which is, again, a maximal monotone problem driven by the initial conditions
(wo, w1) € H. Thus the monotone operator theory provides us with a unique
solution (u, u;) € C([0, 00); H). In what follows we need more information on
solutionsz andu. This is given in the two lemmas stated below.

Lemma 3.1. With reference to Eq27)the mapK (T') : (wo, w1) — (z(T), z7(T))
is compact orf{ for eachT > 0.

The second lemma deals with decay rates for the semigtf@uplefined by

S(@)(wo, w1) = (u(t), us (7)), (31)

whereu(z) satisfies (29). In order to state this result we need to introduce some
notation:

ga(s)=g(a+s)—g(a) fors,acRr,
g(s) = inf sg,(s).
aeR
Sinceg(s) is monotone increasing and zero at the origin, by the construction

in [6] (see (1.3) in [6]), there exist a functidris) that is continuous, concave, and
monotone increasing (see [38}),0) = 0 and such that

524 2(s) < h(sg(s)) forls| < 1.
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By using functiom: defined above we can construct, asin [6], an ODE equation
describing decay rates féi(z).

To accomplish this we definkg*(s) = h(s) + s2/1+20) 4 §2/@+D  p(x) =
[1 +h*]~1(Kx), whereK is a suitable positive constant.

With ¢ = I — [I + p]~1 we defineS(z, r) as a (unique) solution to the ODE

Sf(tar)+q(8(tvr))zoa S(O,r):E(O), E(O)gr (32)

We note that due to monotonicity @f, ¢ is strictly monotone increasing and
S(t,r)— 0, t - oo, as desired.

Now we are ready to state our second lemma, which provides uniform decay
rates for solutions to (29) originating in the absorbingSet

Lemma 3.2. With reference to Eq29)we haveve > 0, 3Cc >0
Ey(t) < S(t, Ey(0)), (33)

whereS(t,r) — 0 for t — oo andr < Rp < C(B) and it is given above i32)
with the constank depending on the size of the absorbingSet
If, in addition, the functiory satisfies for some > 0

g(s)s =mls|T7e 51> 1, (34)

then one can také&™(s) = h(s). In such case(33) provides decay rates for
solution«, which, in turn, depend on the growth of nonlinearity at the origin
which is characterized by function Thus, in particular, ifg(s)s > ms?2, s € R,
the decay rates obtained fro(83) are exponential.

Lemma 3.1 and Lemma 3.2 together with Theorem 3.6 in [3] yield the assertion
stated in the theorem. Thus it remains to prove both lemmas.

Proof of Lemma 3.1. The proof of the lemma is based on analysis of the
following string of maps

(wo, w1) = w(-) = f(w()) = (2(T), z:(T)), (35)

acting between the spacds = C([0, T1; H}($2)) N C1([0, T]; L2(2)) =
C([0,T]; L2($2)) = H.

Our goal is to show that the superposition of these maps is corfipastH.

First, by well-posedness of the original flaliz) the map(wg, w1) — w(-)
is bounded and continuoust — C([0, T1; H}(£2)) N C1([0, T]; L2(£2)). On
the other hand, by using compactness criterion due to Aubin and Simon [27] to-
gether with Sobolev’'s embeddings we infer that the injecfigf0, T']; Hol(Q)) N
CL([0, T1; L2(£2)) c C([0, T1: Hol‘é(fz)) is compactve > 0. Hence the injec-
tion C ([0, T'1; H3(£2)) N CL([0, T1; L2(£2)) C C([0, T1; Lo/e(£2)) is also com-
pactVe > 0.

Applying the above result with = 1/p implies compactness of the map
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w— f(w), (36)
C[(0, T, H} ()] N CH(0, T), L2(2)1 — CL(0, T), L2(82)]. (37)

To see this it suffices to show that the map— f(w) acting between the
spaced.o, (£2) — L2($2) is bounded and continuous.

However, this follows from differentiability off together with the growth
condition and Sobolev's embeddings. Indeed, growth condition imposefl on
yields the boundedness

2
)l ,0) < C/[|w|2p +1]dx <Cllwl) (@) +1]-
Q2
By applying the integral form of the Mean Value Theorem [28] we infer continuity

|fwn) = FW)IZ )

< c/ lwn — w|?[|w]?P~2 + 1] dx
2
—-1)/2 .

< Clw, — w|%2p|w|(Lpzp )2 0 asw, — win Lz, (£2).

Thus the map given in (36) is compact.
In order to assert compactness of the superposition of maps in (35) it suffices to

show that the may’ — (z(T), z:(T')) acting on the spacds((0, T), L2(£2)) —
‘H is bounded and continuous. Here, we re¢ahtisfies

2 — Az +gz) = f, (38)
2(00=0, z(0)=0, z[se=0. (39)

However, this follows from the fact that Eq. (38) is a maximal monotone prob-
lem driven by a forcing terny. Thus, standard maximal monotone operator the-
ory yields the desired result [1,29]. The proof of Lemma 3.1 is thus complete.

Proof of Lemma 3.2. This proof follows the method used in [6], which leads
to explicit decay rates obtained for the solutions. Although this information is
not necessary at the level of asserting compactness of the attractor (uniform
convergence of solutions to 0 would suffice), more precise information on decay
rates will be needed later in the process of proving finite dimensionality of the
attractor.

To proceed with the proof, our first step is, as usual, energy identity:

t
Ey (1) +//(g(ut +21) — 8(@))ur dx ds = Ey(10). (40)
o 2

In what follows we introduce the notatio = 2 x (0,7), ¥ =092 x (0,T)
with some (fixed)" > 0. Multiplying (29) byu and integrating by parts yields
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T

/Eum dt < CLEL(0) + Eu(T)] + c/ uy2dQ
0 0

+ / (g(ur +21) — gz)udQ. (41)
0

Combining the above inequality with (40) yields

T
sup Eu(t)+/Eu(t)dt
te[0,T] o

SC/(g(uﬂrzt)—g(Zz))ude+C/|uz|2dQ
0 0

+/(g(uz +2) —g@))udQ. (42)
0

Our task now is to estimate the last two terms in (42). To accomplish this
we shall use the following properties of functigp, obtained directly from the
corresponding properties gfs) (see [38]),

sga(s) =mls|?, |s| =1, and h(sga(s) >Is% |s| <1, (43)

where, we recallk is concave, increasing, and zero at the origin.
Using the functior: along with the properties in (43) we estimate the second
term on the RHS of (42)

/quIZdQ< / 0 2dQ + / s 2dQ
0 0; lus <1 0; lu| 21

1
< . /(g(ut +2z1) — g(z)u: dQ
0

+ / h(g (s + 21) — gzur) d Q. (44)
0

Using Jensen'’s inequality (associated with concavitiy)aind introducing the
notationF = fQ (g(us + z;) — g(z1))u; d Q, we obtain from (44)

/|ut|2dQ<C[1+h]]-'. (45)
0

As for the third term on the RHS of (42) we claim the following inequality:
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Proposition 3.3.

/(g(uz +2) — 8(z))udQ
0

<1/2 sup E, (1) + C(T, B)[F?/@atD 4 F2/@+h], (46)
te[0,T]

Under the additional assumptid4) we obtain a stronger estimate

/ (s +20) — gIudQ < 1/2 sup Ey(1) + C(T, B)F. (47)
t€[0,T]
0

Proof of Proposition 3.3. The proof is based on splitting the regighinto three
subsets (see [37]R2 = Q1 + Q2 + Q3, where
O1={(t,x) € Q: |u/(t,x) > 1}, (48)
Q2 = {(tv-x) € Q' |ut(t5 -x)l < 17 |Zt(t5 -x)l 2 Rv th(t5 -x)l 2 R - 1}7
(49)
03={(t.x) € Q: |u,(t,x)| <1, |z, x)| <R, |w;(t, x)| < R+1},
(50)

where the constarR will be determined later. In order to estimate to the integral
term in Proposition 3.3 it suffices to estimate the contribution on each sghset
We begin with standard Holder's inequality where - 1/Fr =1, r > 1

/ (g(ur +20) — gGudQ
Qi

2/r
<ce< / [g(ut+zt>—g(z,>]’dQ> +elul?_ o, (51)
Qi
, ; 2 2/71,,12 :
By Sobolev’s embedd|ngﬁ4|L;(Qi) < CT r|u|c([0’T]7Hl(Q)‘, so by rescaling

suitablye we obtain

/ (g(ur +20) — gGudQ
Qi

2/r

1

<CT</[g(u,+z,)—g(zt)]’dQ) +5 sup E,(1). (52)
o t€[0,T]

In the arguments below we shall use different values of a constant for
different regiong?;. Note that due to the absorbing property we obtain

(WD)l + UMD H +1Z(1) | < CB).
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Hence the following priori regularity holds:

o) (m+1)T
/ / gw)w (1) di <C(B) and / / gz (1) di < C(BT.
0 0 mT Q
m=0,1,.... (53)

We are ready to estimate contribution of integration over eaclpset

2/r
( / o Gus +20) — g(Zz)]’dQ)

01

2/r
< ( / Vgl +20) — g@llg(u, +z0) — g(a)]’—l/de)

01
1/r
< C( /[g(ut +z:) — g(Zt)]MtdQ>
01
1/r
x ( / [lg(wo)l + |g<zt>|]2”dQ)

01

1/r
S ( / [lgCwn) 1w 2D 4+ g(z)llz 20D Q)
01

1/r
< Cfl/’( /[Ig(wt)wzl +lg(z)zl +C]dQ>
01
< C(B)T}—zq/(qurl)’ (54)

where after setting@r — 1) = 1 we have applied growth conditions grand a
priori bound in (53). For the second s@b we have (note that in this case is
different than that selected for th@; region)

2/r
( /[g(uz +21) — g@)] dQ)

02

2/r
< C( /[|g(w,)|’ +1g@)l"] dQ)

02
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2/r
< c( / [lgwo)llw, D9 + |g<z,>|zt|<r—1>q]dQ)
02

2/r
< c( /[|g<w,)||wt|1—‘S +1g@)llz ] dQ)
02

2/r
<CR™2I ( /[|g(w,>||w,| + |g<z,)||zt|]dQ>
02

< C(B, T)R™%4/(@+1=9) (55)
where we have selectegd — 1)g =1 -6, 0< 8 < 1 and applied again growth
conditions imposed op anda priori regularity in (53).

For the last regionQ3 we apply the Mean Value Theorem and the growth

condition imposed og’,

2/r
( /[g(uz +21) — 8@ dQ)

03
1 r/2 2/r
< (/[g(ut+2t)_g(2t)]r/2</g/(sut-i-zt)dsu,) dQ)
03 0
< C( / [lg@u: +20) — g Jus /7]
Q3

2/r
x [|wt|r(q*1)/2+ |Zt|r(q*1)/2+ l]dQ)

2/r
< CR@—l)( / [(eCur +20) — gz)ue]” de>
03
<CRYVF, (56)
where in the last step we have takes 2.
Now we select (largeR so that
RI71F — p=284/(q+1-5)
This leads toR = FY/, wheret = (1 + ¢)(1—¢g —8)/(1+¢ —8) < 0. The
above choice leads to
RI71F — p=254/(q+1-8) _ F—28q/(1+q)(1-q—9)
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Collecting (54)—(56) with the above choice of parameters and takicigse
to 1 we obtain

2/r
( / Lo +2) — g(Zz)]’dQ>
0

< C(B, T)[j:Zq/(Zqul) + ‘7:2/(1+q)]' (57)

Combining (57) with (52) leads to the first statement in Proposition 3.3.

As for the second statement, the argument is much simpler. Indeed, if the
additional growth condition (34) is satisfied, we use the integral version of the
Mean Value Theorem, which givegu, + z;) — g(z;) = folg’(su, + z¢)dsuy.
Hence

/ (g(ur +20) — g udQ
0

1 1

:/ /g/(sut+zt)dsut /g/(sut—i—z,)dsudQ
o 0 0

1 1
sa//g/(sut+zt>dsu?dQ+e//g’<sut+z,>dsu2dQ
00 00

1/r
<CeF + 6( /[1+ w97 + |Zt|q_l]rdQ> |u|%;(Q)
Q

1/r
< Ce]:—i-eC( /[1+g(wt)wt(f)+g(Zt)Zt(t)]rdQ> iz 0)
0

< c€f+ec(B>T|u|g([ (58)

0,71, H¥%(£2))"
Rescaling: gives the second statement in the propositiomn.
Applying the inequality in Proposition 3.3 along with (45) to (42) gives
E(T)<C(B, DI +h*]F. (59)
By evoking once more (40) we obtain

E(T) < Cr gl +h*1F < Cp 7l + h*1(Eu(0) — Ef(T)), (60)
[+ h*17 C B Eu(T) + Eu(T) < E,(0). (61)
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Definingp =[I + h*]—lcg,lB we obtain
E(T) + p(E.(T)) < Ey(0).

Reiterating the same argument on an arbitrary intefwdl, (im + 1)T] yields
(note thatp(s) is independent ofz)

Ey((m+DT)+ p(E.((m+1T)) < E,(mT) =
E,mT)<[I+ P]meu(O)-

Now, the conclusion in the lemma follows from comparison with Lemma 3.1
in[6]. O

Lemma 3.1 and Lemma 3.2 imply the statement in Theorent4.

4. Regularity of the attractor

In order to prove that the attractor is finite dimensional, the following ad-
ditional regularity of the attractor plays a critical role.

Theorem 5.

(1) In addition to Assumptiod we assume tha¢'(s) > m > 0, for s € R, and
g(s)s > mls|', I > g — 1, for |s| > 1. Then there exists a constaRt> 0
(possibly depending ain, M) such that4d € B2, 51(0, R).

(2) If0<mpo<m < g'(s) <M forall s € R, then R does not depend an but
it may depend oM /m.

Proof of Theorem 5. Proof of part(1). We setW = (w, w;), where(w (), w; (¢))
denotes the original trajectory. Singe= T (t).A for all ¢ > 0, for any pointin the
attractorWp € A, there is a trajectoryv (r) passing trough this point and such
that W(t) € A for r - —oo. Therefore, such trajectory is boundedtnfor all
t € R and we can assume tht(zg) = Wy for somerg > 0.
We define the difference quotient
W(t+h) — W(r)

DyW() = —————— forh>0

ThenD,w(t) satisfies

(Dpw)ir — ADpw + fr(w(t), h) Dpw + g1(w, (1), h)(Dpw); =0
in 2 x (19, 00),
Dpyw=00n92 x (fg,0) forieR, (62)
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where by the Mean Value Theorefa(w(z), h) = fol f/Gsw(t+h)+ (A —s)x

w(t))ds andgy(wy, h) = /01 g (swi(t +h)+ (L —s)w; (1) ds.
Let 7, (¢, s) be an evolution ofH generated by the equation

Uy — Au+ g1(w, (1), u; =0 In 2 x (19, 00),
u=0 ind2 x (tg, 00),

(u(tg), us(t0)) = U (tg) € H for somerg € R,

and we sefl;, (¢, o) U (1) = U (t) = (u(t), u; (¢)).

Note that the above equation is linear but time dependent throu@h(z), /).
We shall prove that the evolutidh, (¢, s) is exponentially stable with parameters
that do not depend on initial conditidii(0), the original trajectoryWw, and the
parameten.

Lemma 4.1. Under the assumptions stated in Theor@nthere exist constants
C > 0, o > 0 depending on the size of the attractdrbut independent of, W
and such that

ITh(t, $)| gy < Ce @0,

Proof of Lemma 4.1. The proof of the lemma parallels the arguments given in
Lemma 3.2. We will not repeat all the details, but we will provide the main steps
with particular emphasis on points where the arguments of Lemma 3.2 need to be
modified.

We begin, as always, with energy identity

t
Eu() + / / g1(wn, Wyl dx ds = Eq(to), (63)
o 2

and we denote = [ [, g1(w;, hyu?dxdt.

As we shall see, the critical property responsible for exponential decays is the
fact thatm < g1(w;, h), where the constanmt is independent of the solutian,
and on the parametér

As in (42) we obtain

T

sup Eu(t)+/Eu(t)dt
te[0,T] 5

<C/gl(wz,h)utdevLC/qulde+/g1(wz,h)uzudQ- (64)
Q Q Q
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Sinceg’ > m, the inequality in (64) implies that

T

sup Eu(t)—}-/Eu(t)dt<C|:.7:+/g1(wt,h)u,udQ:|. (65)
t€[0,T]
0 0]

Thus we need to estimate the last term in (65). This is done as

(g1(wr, Muy, w) g < e(ga(wy, h), u?) , + Ce(gr(wy, h), u?) . (66)

By using growth conditions op’ and Sobolev’'s embeddings we obtain

(g1(wr, h), u?) <C/(1+|w 19" Nu? dx

|

wherer—1+7~1=1, r > 1. By selecting suitable, so that-(g — 1) =1 > g — 1

1/r
(14w ") dx } ulf g,

b\

1/r
(g1(ws, 1), u2) , < Cymom [H / g(ww; dx] u®2 o, (67)

2

and by Jensen’s inequality and Sobolev’s embedding
T
/ (g1(wy, h), u?), dt
0

1/r
<Crg.mM [1+//g(wz)wzdxdt] sup E,(t). (68)

te[0,T]
Using the dissipativity relation for the original problem together with the fact

that initial data forW originate inA we infer thatf, [, g(w,)w, dx dt < C(A),
which combined with (68) gives

T
/ (g1(wr, 1), u? 0 dt <Cr Agmm SUP Ey(1). (69)
o te[0,T]

Combining (66) and (69) yields
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T
/(gl(wz, hus, u)odt
0

T
<eC(r Aq) sup B0+ Ce [ (satun o) ds (70)
t€[0,T]
0
and rescaling
T
/(gl(wz, Mue, u)edt <1/2 sup Ey(t) + Car1.gmmF- (71)
t€[0,T]
0
The above estimate when inserted into (65) gives
T
sup E, (1) + / Eu®)dt <CuzmpmgF. (72)
te[0,T]

0

The same arguments as those given in the proof of Lemma 3.2 imply the final
conclusion with functiorp(s), which is linear. This, in turn, yields

| T (¢, s)U|n < Ce @Y= for somew > 0 andr > s, (73)
and the constant§ andw do not depend om; andix. However,C andw do
depend omz andM, g and the size of4, i.e.,C(A). O

In what follows we shall need the following result which provides the
regularity of the functionfy (w (), h).

Lemma 4.2. Under Assumptioth imposed ory for anys > 0, there exist positive
constant (8, A), independentaf € R, h € [0, 1] such that
| faw(@), Dyw ()| o <8IDpw ()12 +C (8, A). (74)

Proof. By applying the assumption imposed on functipfollowed by Holder’s
inequality we obtain

| Aiw(). DD 2 o)

< c/(1+ lw(t + )| + w@®) )PP | Dyw )2
2
1/q

] 1/
<c[/(1+|w(z+h)|+|w(t)|)2‘1<P1>] [/thw(t)F‘f} ’
2 9]

(75)
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where ¥g + 1/q = 1. Hence

| Aw®). W Drw(®)] o) < CIWO Ly, 12) I Dhw (D) L5 2)
< C(|w(t)|H1(_Q))|th(t)|H5(Q) (76)
for some smalls > 0, where we have used Sobolev’s embeddifggs2) C
Loy (), §=1-1/q.
By using the moment inequality

| Drw )]y < IDhw )31, ) PR DI o)
followed by Young’s inequality we obtain

I Dpw ()| s 2y < SIDpw(0)| iy + CO) | Dhw (@)L (2)-

Inserting the above inequality into (76) gives

| fiw(@), Drw ()], o)
< (1wl [81Dnw O] y1g) + COIDRW D] Ly ]
< C(wl 1) [81Drw ()| 1oy + C ) wi ()| L)) (77)

which gives the desired inequality in Lemma 4.2 after noting thét)|1 o < C,
VieR. O

To proceed with the proof of Theorem 5 we use a variation of the parameters
formula applied to Eq. (62). Indeed, the solution of (62) coincides with a solution
to the following integral equation (a variation of the constant formula)

Dy W(t) = Ty(t, to) Dy W (20)

t
0
+/ Tt 5) (fl(w(s),h)th(s)> ds. (78)

fo
For each fixedh, the functionD, W (tp) is bounded inH, uniformly for all

to € R. Using (73) we can pass to the limit— —oo (with a fixedi) and obtain
the formula

t
0
DyW (1) = / Tu(t,s) (fl(w(s), h)th(S)> ds. (79)
—0o0
By applying Lemma 4.1 and Lemma 4.2 to formula (79) we obtain
t
IDW Ol < [ € GUDW Ol -+ Cor(6. ) ds

—00

<8 sup 1Dy W(s)lln + CE6, A). (80)

—oo<s<t
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Takings < 1 we obtain the bound
DLW ()|l < Cm.m(A) forteRandh €0, 1].

From here, the standard convergence argument ¢iWe&) || < Cn.m(A) for
all t € R, which, in turn, implies that

lwee (O Ly2) + Nlwe (t)”[—ll(_Q) Cu.m(A) forallreR.

In order to obtainH 2 regularity ofw(r) we go back to the original equation writ-
ten as

Aw(t) =wy () — f(w®) — g(w(2)), in 2,
w()=0 onads2.
Since [g(w) (M o.2) < Cw:()]1,2) and [f(w®)) oo < C(lw:(?)]|1,2), the

term on the RHS of the elliptic equation is ftp(£2) uniformly in ¢ € R, with
the constant depending only @i 4). Thus, by elliptic theory we infer that

lw)ll p2(2) < Cm, u(A) forallr eR. (81)

Since any point in the attractor can be identified with sdife;), whereW (¢)
is a full trajectory on the attractor to which the argument provided above applies,
the proof of the first part of the theorem is completed.

Proof of part(2). In order to establish independencepinith respect tan
(for largem) we need to apply a different argument which requires the additional
assumption in part (2). With = D, w (62) becomes

_Au+g1(wlﬂh)ul+f1(wﬂh)l't:0ﬂ M|3.Q:O
LetV() = E, (1) + (), u; (). Then

Vi = (B + elus|% + e(u, Au— ga(wy, hu, — fr(w, hHu)g, (82)

(Ew): = —(g1(we, Wus, ur) o — (a(w, Mu, ur)e. (83)
Our task is to show that with suitably small

Vi+eV<eKpy o AM/m- (84)

We will estimate each term in (82) separately. Using (76) we get

|(frw, hu, up)e|
SCr(Alulgslurlo,e < Cr(Aleolulr,e + Ceolulo,2]lulo,2

€f°cf<A>|u|m|u,|og+ceocf<A>C<A>|u,|og
3Cr(A)?
<§|W|S,g+;—| g o +8(CegCr(A) + < |u,|3,9, (85)

|e(g1(ws, Wus, u)e| < Elgl(wz, mulf o + Elulo,g. (86)
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From (82) and (83) we obtain
Vi+eV =—((ga(wy. h) — &ugup) e — (fr(w, b, u) g — e|Vulg
— e(gawr Wy, W —e(fuw. hu,we + Sl
—I—%IVuIé—i—ez(u,ut)g. (87)
Substituting the estimates (85) and (86) into (82), we derive

£5Cs (A)? 41 |2
2¢ s )

& &
+ §|vu|§,9 +8(CeoCr(A) — &|Vul + 5|u,|§2

Vi eV < —((g1(wr, h) — &)us,us) o + (

& &
+ 5 lgn(we, Wl g —e(fi(w, iy, we + S lulf o

€
< —< g1(wy, h) — Egl(wz, h)? —¢

e2  e3Cr(A)2 1) )
2

B b el 3 LAY
2 &2 2
+eluly o —e(fr(w, Wu,u)e + E|M|o,g
+8(CoyCr(A)). (88)

Without loss of generality we may assume thats large. We take = 1/M,
g0=+m/M/4Cs(A), 8 =4sM/m. Then

e 2 g2Cr(A2 1
—<(81(wt,h) - Egl(wz’ h? —e—— — St R —>uz, ut) <0.
Q

Sincelu|? , < C(A), the remaining terms in (88) can be bounded by a constant
0,2

g2

eluld o — e(fulw, b, u)g + —1ulg o +8(CeoCr(AIC(A)

< EK_Q’f’A’M/m.
Thus (84) is proved. Integrating (84) we obtain

t
V() <e 0V (1g) + ¢ / e UKo ¢ A Mm (89)
o

< efs(tfto) V(10) + f[]_ — eig(titO)]KQ,f,A,M/m
I

<e OV (10) + Ko p A M/m- (90)
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Taking 70 — —oo we obtain V(t) < Kg rca),m/m: hence E,(t) <
Ko, r.ca),m/m- The rest of the proof follows, as in part (1), by applying ellip-
tic theory to the static part of the equation

Remark 4.3. In the case ofinear dissipationg(s), additional regularity of the
attractor was proved in [7]. In fact, in [7] it was shown that the attractaftis

for anyk > 0 provided sufficient regularity is imposed on a nonlinear funcfion

In our case instead, due to the nonlinearitygathe additional regularity of the
attractor is restricted to “one derivative,” and this is regardless of smoothngss of
andg. The technical reason for this is due to the fact that the analysis of regularity
of the attractor involves linearizeelolutionoperators rather thasemigroups

as in [7]. Due to the hyperbolicity of the problem, the time dependence of
the coefficients in the evolution i®ugh, regardless of the smoothness of the
nonlinear functiong. This prevents further propagation of smoothness into the
attractor, a fact that is the main obstacle in dealing with hyperbolic problems and
nonlinear dissipation. In order to obtain higher regularity of the attractor one needs
to impose further restrictions on the nonlinear funcig@s). In the theorem below

we shall show that by assuming that the parameter of dissipati@suitably
large, one indeed obtains a higher regularity4of

Theorem 6. In addition to assumptions in pafR) of Theorenb we assume that
f. & € C2(R) and moreoverl/m)supgllg”(s)| + |g'(s) — g'(0)]] < 1. Then
A C H3(2) x H?(£2). More precisely,A € Bys, ;2(0, Ry), Where R,, may
depend on the parameter.

Remark 4.4. We note that the hypothesis of Theorem 5 is satisfied trivially when
functiong is linear. In this case this result was proved in [7]. Thus, our result in
Theorem 6 generalizes that of [7] to problems with nonlinear dissipation.

Proof. From the assumption imposed by Theorem 6 we infer Mdin < C.
Thus part (2) in Theorem 5 implies that for 8 (0) € A we have that
lwee (Do, +wi(D1,2 <C(A) forallz eR, (91)

and the constard is independent of:, M. Denoteu = wy;, U = (u, wy). Then
u €C(R, L2(£2)) satisfies

i — Au+ g (wuy + ¢ (wHu? + f'(wyu + f"(wywf =0,

Ulto) € La(82) x Hy H(£2). (92)
We find it convenient to rewrite the above equation in the form

Uy — Au+ g (Ou; + yu = R(1), (93)

where
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R(t) = " (w)u? + f'wywy + " w)w? + ywye + [g'(0) — g’ (we)u
e C(R; H (),

where we have used regularity in (91). The positive constawill be selected
later.

Let B: D(B) C H}(£2) x L2(2) — H}(£2) x L2(£2) denote the generator of
the damped wave equationin (93). This is to 84y, z) = [z, Au —yu +g'(0)z],
D(B) = H?(2) N H}(2) x H}(£2).

The following stability property is well known

|e%] ppgy < Ce™rt, (94)

where the constans, ,, is positive. Moreover, an elementary spectral argument
shows that by selecting proportional ton? we can achieve,, , u) =m/2. This
is to say, that by calibrating static damping in the wave equation we can obtain
decay rates for the semigroup which are of the same magnitude as that of the
dynamic damping measured by the constant

Sincee? is a semigroup# is time independent), the invariance of fractional
powers of operatoB with respect to the dynamies’ implies that

Bt —wy it
[ |2y < G0, (95)

whereH1 = L2(£2) x H~1(£2). With the above notation we can write the solution
to (93) via a variation of parameters formula, first on the sgdgce

1
U(t) = B9 U (10) +/e3(’_” |:R(()s)i| ds. (96)

fo

Letting 10 — —oo and exploiting the exponential stability in (95) together with
a priori regularity of R(¢) stated above yields the formula

t
_ [ Ba-sr| O
U@ = / e?V |:R(s):| ds, (97)

—00

which gives a representation of solutions on the attractor with respect to weaker
topology inH1. Our main task is to show that the above formula defines, subject
to the assumptions stated, elements with higher regularity, i.&{, ifo see this

we shall estimaté{ norms of expressions in (97). By appealing to (94) we obtain
thea priori estimate

t

|Umm<c/eWwwWWmnmmms

—00

N

c

SUp|R(s)[o,2- (98)

@m,y(m) s
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We shall next estimate the terR(z).

Proposition 4.5.
|f wywilo.g + | £/ @w?|g o + v Iwilo.e
<CA) +Cy(A) =Cn(A),
|(8"(0) — &' (o) lur | o <lglurlo, e,
” 2 1" 1/2 1/2 "
¢ (wu?|g o < 18" 1L luly Glwily g <CAG" ILxluly, 0. (99)
Proof. The first two estimates follow directly from properties of functigng

and the improved regularity stated in part (2) of Theorem 5 (see also (91)). For
the last estimate

¢ (wiu?|y o < Clg"lelul ) < Cle"lLlulf o
< Clg" L= lulrelulo.e <CA)E" |Lxlul1elwilo.e
<CA)IE" L= ul1,e, (100)
where we have used Gagliardo—Nirenberg inequality, the moment inequality [30],
and (91). O

Applying the result of Proposition 4.5 and denotipg= |g” |1~ +sup |g'(s) —
g’ (0)|, we obtain
IR(M)]0.2 < C(A[lu@®)]1.e + lu:(D)]o.2] + Cn(A).
Combining the above inequality with (98) yields

U (@)1 <C(A) Iy SEF{WU)M,Q + ui (Dlo.2] + Cim (A)

Om,y (m)

<CA

lg SUP|U (1) |71 + Cin (A). (101)
Om,y(m) 1

Sincel, /m < 1 andw,,,, ony = m/2, we obtain that, /w,, , m) < 1. Therefore
taking the supremum overin (101) we obtain

sud [u(d)1.e + lur (o, ] < Cn(A). (102)
teR

Now, going back to the elliptic problempw = w;; — g(w;) — f(w), in £,
w|ye = 0, and using the improved regularity of; andw, from Theorem 5, we
obtain thatAw € C(R; H&(Q)). From elliptic theory it follows thatw c C(R;
H3(2)). Thus|w(t)|3.e < Cn(A), as desired. O

Now we will show that under conditions of Theorem 6 wijthg € C*°(R), we
obtain theC* regularity of the attractor.
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Theorem 7. In addition to assumptions in Theoreghwe assume thay, g
C"(R). Then A c H"(2) x H" 1(£2) for all n > 1. More precisely,A
Byny gn-1(0, Ry,), whereR,, may depend on the dissipation parameter

Proof. The statement of the theorem follows via the boot-strap argument. We
shall show that one obtaing; (¢)|3 ¢ + |[w(f)|4.2 < Cu, t € R. The above regu-
larity will be “boot strapped” to a higher level.

After third differentiation (in distributional sense) of Eq. (1), we obtain an
equation which allows for the same proof as in Theorem 6. Denatiagw,;;,
u=wsy, V= (v, v)we obtain

t

_ B(i—s) 0
Vo= / ¢ (R(s) + g0 —g/(wz(S))]vz(S)) ds, (103)

—00

whereR(s) = £ (w)w+ 3" (w)wsu(s) + £ (w)v—g" (wy)u(s)3 —3g" (wy)uv
+ YmWis-
After takingH norms of both sides and using (73) we obtain

t
IV(O)IH < / efw’”'y(’fs)[lR(S)lo,sz + Iglvi(s)|o.2] ds. (104)
—00
Using regularity properties of Theorem 6, the following estimates are straightfor-
ward,Vt € R,
IRDo.0 <|[f" w)wd + 31" (wywsu + g" (w)u®+ f'(w)v
+&" (wouv + ymv] 0|y o
< Cpoa- (105)
After substituting the estimates (105) into (104) we derive

l
(1— —g>IV(t)|H <Cpn A, teR,
m
and thus we obtain that

[weee (11,2 + Wit o,2 < Cipoa,  tER. (106)

The above implies, by using the structure of the wave equationhat(r)|1 o <
Cm, hence by elliptic regularityw, (¢)|3 2 < Cy,. Interpolating the above regu-
larity with (106) yields|w;,(¢)]2.2 < Cn,. Applying A to both sides of the wave
equation and reading off the regularity of the nonlinear terms gités (1) |0, <
Cm, w=Aw =0 0nds2. By elliptic regularity applied to this biharmonic prob-
lem we conclude thdw(7)|4.2 < Ci, t € R, as desired.

This argument can be reiterated to yield a higher order regularity.



44 I. Lasiecka, A.A. Ruzmaikina / J. Math. Anal. Appl. 270 (2002) 16-50

5. Finitedimensionality of the attractor

Theorem 8. Under the assumptions of the first part of Theofgrand, moreover,
g’ ()| + |g” (s)| < M, the attractorA has a finite Hausdorff dimension.

The proof of the theorem relies on application of the theorem due to Lady-
zhenskaya, which we recall below.

Theorem 9 ([31, Theorem 1.1])Let M be a compact set of a Hilbert spaée
and assume that on it there is the defined transformatiodd — V(M) C H
such thatM C V(M). Moreover, assume that for some- 0 and for any points
v andv of the setM one has

V() =V@)|u <lv—10lu,
[0nV (V) = QnV()|H <8lv—0ln, d<1, (107)

whereQ,, is the projection onto a subspace of codimensgiofhen the set M has
a zeroo measure for > ag (se€31] for the definition ofxr measurgand for any
nln[2¢%2/(1 - §%)]
o >00=
0 In[2/(1+ 62)]

its Hausdorff dimension does not exceed(the constantc is an absolute
constan.

’

Proof of Theorem 8. We shall apply Theorem Q with = A, V(v) =T (o) W,
whereT (1o) W denotes the nonlinear flow at the timeassociated with the orig-

inal equation corresponding to the initial datihe A. In view of the already-
established compactness of the attraciothe result of Theorem 8 will follow
from Theorem 9 as soon as we demonstrate validity of the following estimates
holding for any two point$Vv and W in the attractor4

[T ()W — T(t0)W|,, <I|W —W|,,. (108)
O[T (W — Tt W]|,, <8|W —W|,, (109)

for somen > 0,7 >0, 0< § < 1, andl < 0. Q, is an orthogonal projection
of H on a suitably selected subspace of codimension

To accomplish this, we denot&(r) = T(1)W, W() = T(t)W and use the
decomposition

TOW-TOW=U()+ Z@), (110)
whereu(t) andz(t) satisfy

Uy — Au+ gy +w;) —g() =0 inQ,
:uzo onx, (111)
@(0), u;(0)) = W(0) — W(0) in
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and
2 — Az +g(wy) —g(wy —z4) = f(w) — f(w) inQ,
z2(00=2z,(0 =0 in$, (112)
z=0 onX.

Verification of condition (108) is straightforward. It follows from the monotonic-
ity of the dissipation and local Lipschitz property gftogether with the priori
bound of solutions. The crux of the proof is to establish the validity of (109). To
this task we devote the rest of the paper.

Sinceg(u; + w;) — g(Ww,) is monotone, we can appeal to Lemma 3.2 in Sec-
tion 2 in order to conclude that/ (r)| < S@) — 0, t — oo for all W(0) € A.
We recall thatS(¢) is given by (32) and the convergence is uniform for all
W(0) € A. This, in particular, implies thate > 0 there existg > 0 such that

U (10) 13 < €| W(0) — W(0)|,. (113)

Thus, in order to show that Lipschitz condition (109) holds, it suffices to prove
this condition forZ(¢). The main estimate responsible for this is the following:
Lipschitz regularity for the the variable In what follows we will use the notation
A= —Awith D(A) = H?(£2) N H}(£2).

Lemmab.1. Forall 0 < r < 1/2 we have

o 1ZiDl < Cr(A), 1< T, R
[ |Z(t)|D(A1/2+’)XD(A’) < CTlW(O) - W(O)lH, 1t S T.

Proof of theLemma 5.1. This proof is based on the following propositions.

Proposition 5.2.

o |f(w(®) — f@)|e < CAIW(O) — WOy,
o |(d/dDf(w(t)) — fF@E)]Ix < C(A).

Proof of Proposition 5.2. This proof follows from the growth condition assumed
on f along with critical use of additional regularity of the attractor established in
Theorem 5, i.e.W(t) € H2(2) x HY(2). O

Returning to the proof of Lemma 5.1, in order to prove the first statement
we consider the new variabfe= z;. It is straightforward to verify that function
z satisfies the following equation, where time derivatives are understood in the
distributional sense:

n— AT+ g (w — 2%

d .
= [g'(wr — z) — g (w)lwy + 2w = f)] inQ,



46 I. Lasiecka, A.A. Ruzmaikina / J. Math. Anal. Appl. 270 (2002) 16-50

20=0, zZ(O) = f(w() - f(0) ins,
z=0 onX. (114)

By virtue of the additional regularity stated in Theorem 5 and the assumption
g'(s) < M, we infer that

|[g/(wt —21) — g/(wt)]wtt|0’g < Mlwirloe < Cu(A)

and combining the above with the second statement in Proposition 5.2 yields via
the standard energy estimate the inequality in the first part of Lemma 5.1.
The second part is much more involved and requires the following estimate:

Proposition 5.3. Under the assumptions imposed on functiowe obtain with
anyr <1/2

|lg(wi (D) = g(wi (1) = 21D, o < CT(Dz (D20, t<T,
Proof of Proposition 5.3. We shall first prove the inequality

g +v) — gW)la,2 < C[1+|ulre + Ivl1ellvle.2,

O<a<1. (115)

We begin by quoting from [25, Section 2.3.1] the following result on multipliers in
Besov potential spacelsf,(sz). For! = integer orp = 2 H},(Q) spaces coincide
with classical Sobolev’s spac@lsi,([z) [25,30,32]. By the theorem in [25] with

Ip <n, y € H),(2) N Loo(£2)
we have

y € M(H,(82)),

where M (H) are spaces of multipliers [25]. In addition, we have control of the
norms, i.e.,

|)’U|Hll,(.(2) < C[|V|Loo(9) + |V|H4/[(9)]|U|Hll,(g)-
Applying the above result with=«a < 1, p =2, n =2 (so thatlp < n holds
true), we obtain
lyvlug @) < Clolg @17 L@ + ¥ He, @] (116)
From [30, p. 206, formula (15)] we have
Hy(2)CHY,(2), a<Ll

n/o

Hence

|y e

nja

() < C|V|Hi}(g) (117)
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and
lyvlag 2) < C|U|Hg(9)[|V|LOO(Q) + |V|H21(9)]~ (118)

Since Besov potential spaces coincide with Sobolev’s spaces wher2 by
combining (118) and (117) we obtain

lyvle.e < Clola2[l¥ Lo + ¥ ILe]. (119)

We apply next the multiplier’'s inequality (119) with the following choice of the
multiplier y:

1
y(x) = / g (s@+v)x) + @A —s)ux))ds.
0
Then by the integral form of the Mean Value Theorem [28]
gu+v) —gu)=yv
and by (119)
g +v) — gWla,2 < Clola.2[l¥ L) + 17 1Le]- (120)
By using growth conditions imposed @handg” we easily obtain

1V Lw2) S M,

l¥lne < Cllulue + lvlLe +1].
Therefore,

Ve + ¥lne <C[1+lulie + [vlne], (121)
which combined with (120) yields (115).

To complete the proof of Proposition 5.3 it suffices to apply the inequality in
(115) with o« = 2r, to replacev with z;(z) and to replace: with w,(¢) — z;(2).
This gives

g (W) (1) = g(wi (1) — 2:(1))] 5,
<Clz®lzre[lwi®lre + |z (0)1e +1]. (122)

Applying the result of Theorem 5 and the estimate in the first part of the
Lemma 5.1 we obtain

lwe(D)]1,2 +12:(D)]1.2 < Cr(A),
which combined with (122) yields Proposition 5.33

To continue with the proof of the second part of Lemma 5.1, we take an inner
product of equation for with an elementt? z,. The energy estimate gives
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\A’z,(t)\(zl o \A””’z(x)]é o (123)

t

+ /(Ar(g(w,) —g(wr — 2¢)), Ath)_Q

0
+ (A" (f(w) — f()), A"z;) , dt =0. (124)
SinceD(A") = HZ" for r < 1/4[33], we obtain
ATz )2, + |AYZ 0] (125)
t
<C f lg(we) — g(w; — 20) |5, o + | f(w) — F(D)5, ¢ dt. (126)
0

Applying the result of Proposition 5.3 and Proposition 5.2 witk 1/4 we
obtain

ATz )2 , + | A0 (127)
t
< Cr(A) / [, + CCAN fw) — F@E o] dr (128)
0
t
< CT(A)/|Arz,|§,_th +Cr(H|WO) - WO)2, (129)
0

where in the last inequality we again used the fact [33]that’) c HZ (2), r <
1/4.

Gronwall’'s inequality applied to (127) completes the proof of the second
inequality in the lemma. O

Proper Proof of Theorem 8. To complete the proof of (109) (and hence of the
theorem) we proceed now as in (e.g., see [34]). We denof;taycoprojection of
L2(£2) ontoV,, = spari¢1, .. ., ¢,), Wwhereg; are the eigenvectors corresponding
to the eigenvalues, of A. SinceA is a positive, self-adjoint operator dip(£2),
the following relations are well known [30]:

|9 AT |y = SUP [ QnAT X[} o) S ChT, (130)
IX|Ly2)=1
1
D(A%) = HZ (£2), foro < 7 (131)

Denoting 0, (x, y) = (Q,x, @,y), and using the commutativity of fractional
powersA® with coprojectionsQ,,, we obtain the following inequality valid for
allt > 0anda < 1/4:
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|0 (z(0), 24 (1) 5,
<C1QuzME o + 120z (D1F o
<C1QAT 2 [ 2AYZ 20 o + QA 23 o]

<ClouA™ %o IAYZ 2[5 o + A7z ] . (132)
Hence

’Qn(z(t)a 2t (t))‘H < C‘ QnA_r ’E(LZ(Q)) |Z(t)|D(A1/2+r)><D(Ar)
<Crmm(AD|WO) —WO)|,A,", t<T, (133)

where we have used the result of Lemma 5.1.
The estimate in (109) follows now from (113) and (133). Indeed, it suffices to
takerg large enough in (113), then select a sufficiently large (133). O
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