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Abstract

We consider a semilinear wave equation, defined on a two-dimensional bounded
domainΩ, with a nonlinear dissipation. Our main result is that the flow generated by
the model is attracted by a finite dimensional global attractor. In addition, this attractor has
additional regularity properties that depend on regularity properties of nonlinear functions
in the equation. To our knowledge this is a first result of this type in the context of higher
dimensional wave equations. 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

We consider the following semilinear wave equation defined on a bounded,
sufficiently smooth domainΩ ⊂ R

2

wtt + g(wt )−∆w + f (w) = 0, in Ω × (0,∞),

w|∂Ω×(0,∞) = 0, (1)
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with the initial conditionsw(0)=w0, wt(0)=w1, in Ω .
The following standing assumptions are imposed on the nonlinear functions

f,g:

Assumption 1. g is strictly increasing,g(0)= 0 and there exist positive constants
m,M,N,p,q such that

g′(s) � m> 0 for |s| � 1,

|g′(s)|<M
[
sq−1 + 1

]
for all s, 1� q <∞; (2)

f ∈ C1(R), lim|s|→∞
f (s)

s
>−λ1,

|f ′(s)| � N
[
1+ |s|p−1] for s ∈R, 1 � p <∞, (3)

whereλ1 denotes the first eigenvalue of∆ with zero Dirichlet data.

Since Eq. (1) is a locally Lipschitz perturbation of a monotone second-order
equation defined inH ≡H 1

0 (Ω)×L2(Ω), the existence of unique local (in time)
solutions follows from standard nonlinear semigroup theory [1,2]. The ultimate
dissipativity condition imposed onf guarantees an existence ofa priori bounds
in finite energy spaceH. Thus local solutions become global and we are in a
position to define a continuous semiflowT (t) onH by the formula

T (t)(w0,w1)= (w(t),wt (t)), t � 0,

(w0,w1) ∈ H ≡H 1
0 (Ω)×L2(Ω),

wherew(t) satisfies Eq. (1).
The main goal of this paper is to study long-time behaviour ofT (t) and, in

particular, questions related to the existence, regularity, and dimensionality of
global attractors (we use here the standard definition of global attractor as in
[3–5]).

If the nonlinear termf is dissipative (i.e.,f (s)s � 0), then the flowT (t) is
uniformly stable, andT (t) converges to 0 in the operator norm with the rates
which depend on the behaviour of a functiong(s) at the origin. In fact, these rates
can be calculated exactly (see [6]) by solving an appropriate nonlinear ODE. In
such a case, asymptotic behaviour of the flowT (t) is very simple and the attractor
collapses to a single equilibrium. If, instead, the nonlinear functionf is subject
to a more general condition as in (3), asymptotic behaviour of the flow is more
complex and is confined (as we shall see) to an appropriate global attractor. Our
main aim is to show that the asymptotic behaviour of the flow isfinite dimensional.
Here is our main result:

Theorem 1. With reference to the flowT (t) associated with(1), subject to As-
sumption1:
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(1) (Compactness). There exist a global, compact attractorA ∈ H whose size is
independent of the dissipation parameterm �m0 > 0 (see Theorem4).

(2) (Regularity). Under the additional growth conditions

g′(s)� m> 0 for |s| � 1, and

g(s)s � m|s|l for |s|> 1 with l > q − 1

the attractor A has the additional regularity: ∃R > 0, such thatA ∈
BH2(Ω)×H1(Ω)(0,R), whereBX(0,R) denotes a ball inX with a radiusR
(see part(1) in Theorem5).
If, in additionq = 1 and0<m � g′(s) � M < ∞, thenR does not depend
on the dissipation parameterm , but it may depend onM/m (see part(2) of
Theorem5).

(3) (Finite dimensionality). In addition to previous hypotheses, we assume that
|g′′(s)| � C, for s ∈ R. Then the Hausdorf dimension of the attractorA is
finite (see Theorem8).

Remark 1.1. The assumption that the domain is two-dimensional is critical only
for the proof of finite dimensionality of the attractor. Compactness and also regu-
larity of the attractor can be proved in then-dimensional case subject to suitable
growth conditions imposed ong,f—including the cases of critical Sobolev’s ex-
ponents for the functionf .

An interesting question is that ofC∞ regularity of attractors. The regularity
of attractors, besides being an important property in the theory of dynamical sys-
tems, is also a very fundamental issue in the context of numerical approximations
and construction of inertial manifolds. This type of additional regularity is typical
for dynamics with an inherent smoothing effect, e.g., parabolic like systems. In
the hyperbolic case, theC∞ regularity of attractors is known [7] for equations
with linear dissipationonly. In fact, the linearity of dissipation is used critically
in the proofs [7]. In what follows we shall show that if the parameter representing
dissipation is sufficiently large, theC∞ regularity of attractors is also enjoyed by
hyperbolic flows with nonlinear dissipation. In order to state our result we intro-
duce parameterlg ≡ sups∈R[|g′′(s)| + |g′(s)− g′(0)|].

Theorem 2 (C∞ regularity).In addition to assumptions in part(2) of Theorem1,
we assume thatf,g ∈ C∞(R) and the following condition holds: lg/m� 1. Then
the flow on the attractor is infinitely many times differentiable. More precisely,
A ∈ BHn(Ω)×Hn−1(Ω)(0,Rm), n � 3, whereRm may depend on the parameter of
dissipationm. (See Theorem7.)

Note that the additional assumption imposed by Theorem 2 is always satisfied
if we replaceg(s) by g(s) + Cs for a sufficiently large value ofC. The above
observation leads to the following corollary.
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Corollary 1.2. There exists a constantC0 > 0 such that the original dynamics
with the dampingg(s) + Cs, whereg(s) satisfies the assumptions of Theorem1
andC � C0 generatesC∞ flow on the attractor.

The above corollary leads to the following control-theoretic interpretation: one
may control the smoothness of attractors by adding a linear velocity feedback to
the original nonlinear system.

Proofs of these two theorems follow from six theorems: 3, 4, 5, 6, 7, and 8
presented in the main body of the paper.

We would like to say a few words about the literature related to this problem.
There is a large literature devoted to the stability and existence of global attractors
for semilinear wave equations [3,5,7–12]. The majority of the results in the
literature deal with the case oflinear dissipationg(s). In such case, the existence
of compact attractors is known—see [3,5,8] and references therein. A more
delicate problem, in the hyperbolic case, is that of finite dimensionality and
regularity of attractors. While these properties are typical of parabolic-like flows
with an inherent smoothing mechanism [13], in the hyperbolic flows regularity
and finite dimensionality are much less expected (see [14]). This is due to
the lack of smoothing effect propagated by the original dynamics and related
spectral distribution where infinitely many eigenvalues of the linearization lie
on a vertical line in the complex plane [14]. The very first results establishing
finite dimensionality for a wave equation withlinear dissipationare in [7,15],
and later in [14]. Linearity of the dissipation is used critically in all the arguments
pertaining to regularity and finite dimensionality of the attractor.

If the dissipation is nonlinear, the situation becomes, as noted in the literature
[3,10,16,35,36], much more subtle. In order to recognize the difficulty, it suffices
to realize that in hyperbolic problems dissipation, to be effective (i.e., to change
the essential spectrum of linearization), cannot be relatively compact [17,18].
Thus, the dissipative term in the equation belongs to the main part of the operator.
If this term is, in addition, nonlinear, it becomes very sensitive with respect to any
perturbation type of argument (used typically in the study of attractors and their
properties).

In the case of nonlinear dissipation, the results available in the literature [3,
8,19–21] provide an existence ofglobal attractorsunder hypothesis 0< m �
g′(s) � M, s ∈ R. If there is no upper bound on the derivative ofg, but there is
a structural hypothesis relating the growth ofg with respect to the growth of
f , the existence of a compact global attractor is proved in [11,22]. However,
there are virtually no results in the literature dealing withregularity and finite
dimensionalityof attractors in the context of higher (than one) dimensional wave
equation withnonlineardissipation (some restricted regularity of attractors for
semilinear wave equations with nonlinear boundary damping is proved in [38]).
The reason for this is simple: since the flow isnot differentiablewith respect to
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finite energy topology, the standard methods for estimating the dimension of the
attractor are not applicable [3,23,24].

For this reason alone the problem offinite dimensionalityand regularity of
attractors for wave equations with nonlinear dissipation has been an open prob-
lem in the literature. The only result existing (to the best of our knowledge) is
for a one-dimensional wave equation [16], where strong Sobolev’s embeddings
H 1(Ω)⊂ C(Ω) available in the 1-D case are critically used. Needless to say the
above argument does not apply to higher dimensions. Thus, what we consider as
the main contributions of this paper, which concentrates onnonlinear dissipation,
are (i) finite dimensionality of the attractor in the two-dimensional case (Theo-
rem 8), and (ii) regularity of attractors subject to various regularity assumptions
imposed on nonlinear termsf,g (Theorems 5, 6, 7). Our arguments rely critically
on the “sharp regularity” of multipliers in Besov’s spaces [25].

Let us conclude with a few remarks, pointing out some open problems and
future directions worth pursuing. Note that while the size of the attractor, when
measured in finite energy spaceH, does not depend on the dissipation parameter
m > 0, its regularity measured in higher Sobolev’s norms does. More precisely,
the size of the attractor when measured inH 3(Ω) × H 2(Ω) (or higher norms)
depends onm and it may increase when the dissipationm becomes larger. On the
other hand, large values of the damping parameterm are responsible for “fast”
decay rates to the attractor (see Lemma 3.2). This raises an interesting question
on how to “optimize” the damping parameter in order to achieve “good” attrac-
tiveness properties of the attractor along with reasonable regularity.

The related issue is that of finite dimensionality versus damping. Optimization
of the damping parameterm, in order to obtain the lowest estimate for the
dimension of attractor, is interesting and important for applications problems. It
is clear that “more damping” does not mean stronger decay properties. In fact,
a large value ofm leads to the so-called “overdamping”—a phenomenon well
known among engineers. We hope that the results of this paper, including specific
estimates relating the damping parameter to the properties of the attractor may be
a first step toward this type of quantitative analysis.

Notation. In what follows we shall use the following notation:
(u, v)Ω ≡ ∫

Ω u(x)v(x) dx, |u|Ω ≡ |u|L2(Ω).
Hs(Ω) are the usual Sobolev’s spaces [26]. We recall thatH−s(Ω) =

(H s
0(Ω))′, s > 0.
|u|s,Ω ≡ |u|Hs(Ω).
A ≡ −∆, D(A) = H 2(Ω) × H 1

0 (Ω), andAr, 0 � r � 1, denote fractional
powers ofA.

ConstantsCi, ci are generic constants, different in different occurrences.
C(s) denotes a function that is bounded for bounded values of the argument.



I. Lasiecka, A.A. Ruzmaikina / J. Math. Anal. Appl. 270 (2002) 16–50 21

The remainder of the paper is devoted to the proofs of Theorems 1 and 2. This
will be accomplished by proving supporting results in Theorems 3–8.

2. Existence of an absorbing set

At the outset we mention that the main results established in Sections 2 and 3,
which deal with absorption and compactness property, can be proved in a more
direct (simpler) way than is done in the paper. However, our more extensive treat-
ment provides more information about the flow (such as dependence on the para-
meter of dissipation and rates of convergence)—which is not strictly necessary in
order to conclude the existence of a global attractor. These additional properties
will be critically used for the proof of the remaining statements in Theorems 1
and 2.

Theorem 3. Under Assumption1

(i) There exists an absorbing setB in H, for the problem(1)–(3), i.e., for all
R0 > 0 and initial data(w0,w1) ∈ H with the property|(w0,w1)|H � R0,
and there exists at0 = t (R0) such that

(w(t),wt (t)) ∈ B for t � t0. (4)

(ii) Moreover, the size of the absorbing set does not depend onm,M as long as
m>m0 > 0. This is to say thatB ∈ BH(0,R), whereR doesnot depend on
m,M,R0. However, the timet0 may depend onm,M,R0.

Remark 2.1. The second part of the theorem, which provides control of the size
of the absorbing set with respect to the dissipation parameterm, will be critically
used in the study of regularity of the attractor.

Proof. Define the following linear and nonlinear energies for the problem:

Ew(t) = 1

2
(wt (t),wt (t))Ω + 1

2
(∇w,∇w)Ω, (5)

Ew(t) ≡Ew(t)+ (F (w),1)Ω, where F(x)=
x∫

0

f (y) dy. (6)

Since regular initial data produce smooth solutions, we can freely perform dif-
ferential calculus on smooth solutions. Final inequalities applicable to finite
energy initial data are obtained by the usual density argument.
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By multiplying (1) bywt and integrating by parts, we obtain the dissipativity
relation

Ew(0)− Ew(t) =
t∫

0

(g(ws),ws)Ω ds. (7)

The following relations between the two energies follow from the assumptions
imposed on functionf and Sobolev’s embeddings

c0Ew(t)−C0 � Ew(t)� C(Ew(t)) (8)

for suitable positive constantsc,C0 and the functionC(s).
We introduce the Lyapunov function

V (t)≡ Ew(t)+ ε(w(t),wt (t))Ω . (9)

Since

−εc1Ew(t)� ε(w(t),wt (t))Ω � εC1Ew(t),

wherec1,C1 are universal constants, from definition ofV (t) and (8) we obtain

(c0 − εc1)Ew(t)−C0 � V (t)� C(Ew(t))+ εC1Ew(t), t ∈R, (10)

and takingε small we conclude that

cEw(t)−C0 � V (t) � C(Ew(t)), t ∈R, (11)

wherec,C0 are generic constants.
Differentiating (9) with respect tot and substituting (1) yields

Vt = (Ew)t + ε|wt |2Ω + ε(w,∆w − g(wt )− f (w))Ω.

After integrating by parts and substituting (7) we obtain

Vt = −(g(wt ),wt )Ω + ε|wt |2Ω − ε|∇w|2Ω
− ε(w,g(wt ))Ω − ε(w,f (w))Ω. (12)

We will define the setsΩA(t),ΩB(t) ⊂Ω , such thatΩA(t) = {x ∈Ω : |wt(t, x)|
< 1} andΩB(t) = {x ∈Ω : |wt(t, x)| � 1}. Since by (2),|wt | � g(wt)/m onΩB(t)

we obtain that

ε|wt(t)|2Ω � ε

m

(
g(wt (t)),wt (t)

)
Ω

+ ε

∫
ΩA(t)

|wt(t)|2dx. (13)

By (3), for all s large enough−f (s)s < λ1s
2. Therefore we can split the term

(w,f (w))Ω into the term corresponding to the smallw and the term correspond-
ing to largew and, using Poincare’s inequality and (2) we obtain the estimates
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−(w,f (w))Ω < λ1|w|2Ω +KΩ,f � |∇w|2Ω +KΩ,f , (14)∣∣(w,g(wt ))Ω
∣∣� ∣∣(w,g(wt ))ΩA(t)

∣∣+ ∣∣(w,g(wt ))ΩB(t)

∣∣, (15)∣∣(w,g(wt ))ΩA(t)

∣∣� δ

∫
Ω

w2(t) dx +CδM

∫
ΩA(t)

g(wt )wt dx. (16)

We estimate|(w,g(wt ))ΩB(t)
| using Hölder’s inequality, Sobolev’s embedding

H 1(Ω)⊂ Lr(Ω) for r � 1 and (2):

∣∣(w,g(wt ))ΩB(t)

∣∣� ( ∫
ΩB(t)

|w|r̄
)1/r̄( ∫

ΩB(t)

|g(wt)|r
)1/r

� C|w|1,Ω
( ∫
ΩB(t)

|g(wt)g(wt )|r−1

)1/r

� C|w|1,Ω
( ∫
ΩB(t)

|g(wt)|Mr−1|wt |(r−1)q

)1/r

. (17)

In (17) we chooser = 1 + 1/q . Then using 1/r < 1 andg(wt )wt > C > 0 on
ΩB(t), we obtain

∣∣(w(t), g(wt (t))
)
ΩB(t)

∣∣�CM1/(q+1)|w(t)|1,Ω
( ∫
ΩB(t)

g(wt (t))wt (t)

)1/r

�CM1/(q+1)E1/2
w (t)

( ∫
ΩB(t)

g(wt (t))wt (t)

)
. (18)

By (8),Ew(t) � (1/c0)(Ew(0)+C0)� (1/c0)C(Ew(0)). Therefore,∣∣(w(t), g
(
wt(t))

)
ΩB(t)

∣∣� CM1/(q+1)C(Ew(0))

( ∫
ΩB(t)

g(wt )wt

)
. (19)

Thus, from (16) and (19) we derive fort � 0

(w,g(wt ))Ω � δ|w|20,Ω +CδM

∫
ΩA(t)

g(wt )wt

+M1/(q+1)C(Ew(0))
∫

ΩB(t)

g(wt )wt

� δ|w|20,Ω + (
CδM +M1/(q+1)C(Ew(0))

)
(g(wt ),wt )Ω.

(20)
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Substituting the estimates (13), (14), and (20) into (12), we obtain fort � 0

Vt � −
(

1− ε

m
− εCδM − εM1/(q+1)C(Ew(0))

)
(wt , g(wt ))Ω

− ε|∇w|2Ω + εδ|w|20,Ω + ε

∫
ΩA(t)

|wt |2 + εKΩ,f . (21)

Using Poincare’s inequality, we find a small constantδ such that

−ε|∇w|2Ω + εδ|w|20,Ω � −ε

2
|∇w|2Ω.

Now we choose a smallε = ε(m,M,Ew(0)) such that

1− ε

m
− εCδM − εM1/(q+1)C(Ew(0))� 1

2
. (22)

Adding and subtracting the termε
∫
|wt |�1 |wt |2dx to the right side of (21) yields

for t � 0

Vt(t)� −m

2

∫
ΩB(t)

|wt |2dx − ε

∫
ΩA(t)

|wt |2dx − ε

2
|∇w|2Ω + εKΩ,f

� −ε

2
Ew(t)+ εKΩ,f , (23)

whereKΩ,f is a generic constant different in various occurrences, and we assume
thatm� m0 > 0, so thatε �m0. Rescaling the constants we infer that

Vt(t) � −εEw(t)+ εKΩ,f , t � 0, (24)

where, we recall,ε = ε(m,m0,M,Ew(0)).
From (24), we will derive a bound (independent of the initial conditions and

independent of parametersm, M) on Ew(t) for all t > t0, wheret0 is suitably
chosen and may depend on the initial energy and alsom, M.

Suppose initially thatEw(t0) � 2KΩ,f , for somet0 > 0. Then, by (7) and (8)
we have thatEw(t) � C(KΩ,f ), t � t0.

If, instead,Ew(t) < 2KΩ,f , ∀t � 0, than (24) implies that

Vt(t)+ εKΩ,f � 0, t � 0. (25)

Hence

V (t)+ εKΩ,f t � V (0), t � 0. (26)

Letting t → ∞ leads to a contradiction, in view of lower bound onV (11) and
finiteness ofV (0). Thus, we must have

Ew(t) � C(KΩ,f ), t � t0.

Theorem is proved. ✷
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3. Compactness property

Theorem 4. Under Assumption1 there exists a global and compact attractor
in H.

Proof. The proof of Theorem 4 is based on a decomposition of the flowT (t)

into two parts: uniformly stable and compact. This is to say thatT (t)(w0,w1) =
S(t)(w0,w1)+K(t)(w0,w1), whereS(t) is a uniformly stable semigroup onH
and the operatorK(t) :H→ H is compact for allt > 0. Once this is accomplished
the assertion of Theorem 4 follows from Theorem 3.6 in [3]. To this end we apply
the decompositionw = z+ u, where

ztt −∆z+ g(zt )= f (w), (27)

z(0)= 0, zt (0)= 0, z|∂Ω = 0 (28)

and

utt −∆u+ g(ut + zt )− g(zt )= 0, (29)

u(0)=w0, ut (0)=w1, u|∂Ω = 0. (30)

For a given solution(w(t),wt (t)) = T (t)(w0,w1), Eq. (27) is a standard mono-
tone problem with a forcing termf (w) ∈ L1(0, T ;L2(Ω)). Thus, the monotone
operator theory [1] yields a unique solvability of (27) withz ∈ C([0, T ];
H 1(Ω)) ∩ C1([0, T ];L2(Ω)). Having obtained solutionz, we solve Eq. (29),
which is, again, a maximal monotone problem driven by the initial conditions
(w0,w1) ∈ H. Thus the monotone operator theory provides us with a unique
solution(u,ut ) ∈ C([0,∞);H). In what follows we need more information on
solutionsz andu. This is given in the two lemmas stated below.

Lemma 3.1. With reference to Eq.(27)the mapK(T ) : (w0,w1)→ (z(T ), zT (T ))

is compact onH for eachT > 0.

The second lemma deals with decay rates for the semigroupS(t) defined by

S(t)(w0,w1)≡ (u(t), ut (t)), (31)

whereu(t) satisfies (29). In order to state this result we need to introduce some
notation:

ga(s) ≡ g(a + s)− g(a) for s, a ∈ R,

ĝ(s) ≡ inf
a∈R sga(s).

Sinceĝ(s) is monotone increasing and zero at the origin, by the construction
in [6] (see (1.3) in [6]), there exist a functionh(s) that is continuous, concave, and
monotone increasing (see [38]),h(0)= 0 and such that

s2 + ĝ2(s)� h(sĝ(s)) for |s| � 1.
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By using functionh defined above we can construct, as in [6], an ODE equation
describing decay rates forS(t).

To accomplish this we defineh∗(s) ≡ h(s) + s2q/(1+2q) + s2/(q+1), p(x) ≡
[I + h∗]−1(Kx), whereK is a suitable positive constant.

With q ≡ I − [I + p]−1 we defineS(t, r) as a (unique) solution to the ODE

St (t, r)+ q(S(t, r))= 0, S(0, r)=E(0), E(0)� r. (32)

We note that due to monotonicity ofh, q is strictly monotone increasing and
S(t, r)→ 0, t → ∞, as desired.

Now we are ready to state our second lemma, which provides uniform decay
rates for solutions to (29) originating in the absorbing setB.

Lemma 3.2. With reference to Eq.(29)we have∀ε > 0, ∃Cε > 0

Eu(t) � S(t,Ew(0)), (33)

whereS(t, r) → 0 for t → ∞ and r � R0 � C(B) and it is given above in(32)
with the constantK depending on the size of the absorbing setB.

If, in addition, the functiong satisfies for someε > 0

g(s)s � m|s|q−1+ε, |s| � 1, (34)

then one can takeh∗(s) = h(s). In such case,(33) provides decay rates for
solutionu, which, in turn, depend on the growth of nonlinearity at the origin
which is characterized by functionh. Thus, in particular, ifg(s)s � ms2, s ∈ R,
the decay rates obtained from(33)are exponential.

Lemma 3.1 and Lemma 3.2 together with Theorem 3.6 in [3] yield the assertion
stated in the theorem. Thus it remains to prove both lemmas.

Proof of Lemma 3.1. The proof of the lemma is based on analysis of the
following string of maps

(w0,w1) ⇒ w(·)⇒ f (w(·)) ⇒ (z(T ), zt (T )), (35)

acting between the spacesH ⇒ C([0, T ];H 1
0 (Ω)) ∩ C1([0, T ];L2(Ω)) ⇒

C([0, T ];L2(Ω))⇒ H.
Our goal is to show that the superposition of these maps is compactH →H.
First, by well-posedness of the original flowT (t) the map(w0,w1) → w(·)

is bounded and continuous:H → C([0, T ];H 1
0 (Ω)) ∩ C1([0, T ];L2(Ω)). On

the other hand, by using compactness criterion due to Aubin and Simon [27] to-
gether with Sobolev’s embeddings we infer that the injectionC([0, T ];H 1

0 (Ω))∩
C1([0, T ];L2(Ω)) ⊂ C([0, T ];H 1−ε

0 (Ω)) is compact∀ε > 0. Hence the injec-
tion C([0, T ];H 1

0 (Ω)) ∩ C1([0, T ];L2(Ω)) ⊂ C([0, T ];L2/ε(Ω)) is also com-
pact∀ε > 0.

Applying the above result withε = 1/p implies compactness of the map
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w → f (w), (36)

C
[
(0, T ),H 1

0 (Ω)
]∩C1[(0, T ),L2(Ω)] → C[(0, T ),L2(Ω)]. (37)

To see this it suffices to show that the mapw → f (w) acting between the
spacesL2p(Ω)→L2(Ω) is bounded and continuous.

However, this follows from differentiability off together with the growth
condition and Sobolev’s embeddings. Indeed, growth condition imposed onf ′
yields the boundedness

|f (w)|2L2(Ω) � C

∫
Ω

[|w|2p + 1
]
dx � C

[|w|2p
L2p(Ω)

+ 1
]
.

By applying the integral form of the Mean Value Theorem [28] we infer continuity

|f (wn)− f (w)|2L2(Ω)

�C

∫
Ω

|wn −w|2[|w|2p−2 + 1
]
dx

�C|wn −w|2L2p
|w|(p−1)/2

L2p
→ 0 aswn → w in L2p(Ω).

Thus the map given in (36) is compact.
In order to assert compactness of the superposition of maps in (35) it suffices to

show that the mapf → (z(T ), zt (T )) acting on the spacesL2((0, T ),L2(Ω))→
H is bounded and continuous. Here, we recallz satisfies

ztt −∆z+ g(zt )= f, (38)

z(0)= 0, zt (0)= 0, z|∂Ω = 0. (39)

However, this follows from the fact that Eq. (38) is a maximal monotone prob-
lem driven by a forcing termf . Thus, standard maximal monotone operator the-
ory yields the desired result [1,29]. The proof of Lemma 3.1 is thus complete.✷
Proof of Lemma 3.2. This proof follows the method used in [6], which leads
to explicit decay rates obtained for the solutions. Although this information is
not necessary at the level of asserting compactness of the attractor (uniform
convergence of solutions to 0 would suffice), more precise information on decay
rates will be needed later in the process of proving finite dimensionality of the
attractor.

To proceed with the proof, our first step is, as usual, energy identity:

Eu(t)+
t∫

t0

∫
Ω

(g(ut + zt )− g(zt ))ut dx ds =Eu(t0). (40)

In what follows we introduce the notationQ ≡ Ω × (0, T ), Σ ≡ ∂Ω × (0, T )
with some (fixed)T > 0. Multiplying (29) byu and integrating by parts yields
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T∫
0

Eu(t) dt �C[Eu(0)+Eu(T )] +C

∫
Q

|ut |2dQ

+
∫
Q

(g(ut + zt )− g(zt ))u dQ. (41)

Combining the above inequality with (40) yields

sup
t∈[0,T ]

Eu(t)+
T∫

0

Eu(t) dt

� C

∫
Q

(g(ut + zt )− g(zt ))ut dQ+C

∫
Q

|ut |2dQ

+
∫
Q

(g(ut + zt )− g(zt ))u dQ. (42)

Our task now is to estimate the last two terms in (42). To accomplish this
we shall use the following properties of functionga , obtained directly from the
corresponding properties ofg(s) (see [38]),

sga(s)� m|s|2, |s| � 1, and h(sga(s)) � |s|2, |s| � 1, (43)

where, we recall,h is concave, increasing, and zero at the origin.
Using the functionh along with the properties in (43) we estimate the second

term on the RHS of (42)∫
Q

|ut |2dQ�
∫

Q; |ut |�1

|ut |2dQ+
∫

Q; |ut |�1

|ut |2dQ

� 1

m

∫
Q

(g(ut + zt )− g(zt ))ut dQ

+
∫
Q

h(g(ut + zt )− g(zt )ut ) dQ. (44)

Using Jensen’s inequality (associated with concavity ofh) and introducing the
notationF ≡ ∫

Q
(g(ut + zt )− g(zt ))ut dQ, we obtain from (44)∫

Q

|ut |2dQ � C[I + h]F . (45)

As for the third term on the RHS of (42) we claim the following inequality:
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Proposition 3.3.∫
Q

(g(ut + zt )− g(zt ))u dQ

� 1/2 sup
t∈[0,T ]

Eu(t)+C(T ,B)
[
F2q/(2q+1) +F2/(q+1)]. (46)

Under the additional assumption(34)we obtain a stronger estimate∫
Q

(g(ut + zt )− g(zt ))u dQ� 1/2 sup
t∈[0,T ]

Eu(t)+C(T ,B)F . (47)

Proof of Proposition 3.3. The proof is based on splitting the regionQ into three
subsets (see [37]):Q =Q1 +Q2 +Q3, where

Q1 ≡ {
(t, x) ∈Q: |ut (t, x)| � 1

}
, (48)

Q2 ≡ {
(t, x) ∈Q: |ut (t, x)| � 1, |zt (t, x)| � R, |wt(t, x)| � R − 1

}
,

(49)

Q3 ≡ {
(t, x) ∈Q: |ut (t, x)| � 1, |zt (t, x)| � R, |wt(t, x)| � R + 1

}
,

(50)

where the constantR will be determined later. In order to estimate to the integral
term in Proposition 3.3 it suffices to estimate the contribution on each subsetQi .
We begin with standard Holder’s inequality where 1/r + 1/r̄ = 1, r > 1∫

Qi

(g(ut + zt )− g(zt ))u dQ

�Cε

( ∫
Qi

[g(ut + zt )− g(zt )]r dQ
)2/r

+ ε|u|2Lr̄ (Qi)
. (51)

By Sobolev’s embeddings|u|2Lr̄(Qi)
� CT 2/r̄ |u|2

C([0,T ],H1(Ω)|, so by rescaling
suitablyε we obtain∫

Qi

(g(ut + zt )− g(zt ))u dQ

�CT

( ∫
Qi

[g(ut + zt )− g(zt )]r dQ
)2/r

+ 1

2
sup

t∈[0,T ]
Eu(t). (52)

In the arguments below we shall use different values of a constantr > 1 for
different regionsQi . Note that due to the absorbing property we obtain

|W(t)|H + |U(t)|H + |Z(t)|H �C(B).
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Hence the followinga priori regularity holds:

∞∫
0

∫
Q

g(wt )wt(t) dt �C(B) and

(m+1)T∫
mT

∫
Q

g(zt )zt (t) dt � C(B)T ,

m= 0,1, . . . . (53)

We are ready to estimate contribution of integration over each setQi( ∫
Q1

[g(ut + zt )− g(zt )]r dQ
)2/r

�
( ∫
Q1

√[g(ut + zt )− g(zt )][g(ut + zt )− g(zt )]r−1/2dQ

)2/r

� C

( ∫
Q1

[g(ut + zt )− g(zt )]ut dQ
)1/r

×
( ∫
Q1

[|g(wt )| + |g(zt )|
]2r−1

dQ

)1/r

� CF1/r

( ∫
Q1

[|g(wt )||wt |2q(r−1) + |g(zt )||zt |2q(r−1)]dQ)1/r

� CF1/r

( ∫
Q1

[|g(wt )wt | + |g(zt )zt | +C
]
dQ

)1/r

� C(B)TF2q/(2q+1), (54)

where after setting 2q(r − 1) = 1 we have applied growth conditions ong and a
priori bound in (53). For the second setQ2 we have (note thatr in this case is
different than that selected for theQ1 region)( ∫

Q2

[g(ut + zt )− g(zt )]r dQ
)2/r

� C

( ∫
Q2

[|g(wt )|r + |g(zt )|r
]
dQ

)2/r
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�C

( ∫
Q2

[|g(wt)||wt |(r−1)q + |g(zt )|zt |(r−1)q]dQ)2/r

�C

( ∫
Q2

[|g(wt)||wt |1−δ + |g(zt )||zt |1−δ
]
dQ

)2/r

�CR−2δ/r

( ∫
Q2

[|g(wt )||wt | + |g(zt )||zt |
]
dQ

)2/r

�C(B, T )R−2δq/(q+1−δ), (55)

where we have selected(r − 1)q = 1 − δ, 0 � δ < 1 and applied again growth
conditions imposed ong anda priori regularity in (53).

For the last regionQ3 we apply the Mean Value Theorem and the growth
condition imposed ong′,( ∫

Q3

[g(ut + zt )− g(zt )]r dQ
)2/r

�
( ∫
Q3

[g(ut + zt )− g(zt )]r/2

( 1∫
0

g′(sut + zt ) dsut

)r/2

dQ

)2/r

�C

( ∫
Q3

[|g(ut + zt )− g(zt )|r/2|ut |r/2]

× [|wt |r(q−1)/2 + |zt |r(q−1)/2 + 1
]
dQ

)2/r

�CR(q−1)

( ∫
Q3

[
(g(ut + zt )− g(zt ))ut

]r/2
dQ

)2/r

�CR(q−1)F , (56)

where in the last step we have takenr = 2.
Now we select (large)R so that

Rq−1F =R−2δq/(q+1−δ).

This leads toR = F1/t , where t = (1 + q)(1− q − δ)/(1+ q − δ) < 0. The
above choice leads to

Rq−1F =R−2δq/(q+1−δ) =F−2δq/(1+q)(1−q−δ).
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Collecting (54)–(56) with the above choice of parameters and takingδ close
to 1 we obtain( ∫

Q

[g(ut + zt )− g(zt )]r dQ
)2/r

� C(B, T )
[
F2q/(2q+1) +F2/(1+q)

]
. (57)

Combining (57) with (52) leads to the first statement in Proposition 3.3.
As for the second statement, the argument is much simpler. Indeed, if the

additional growth condition (34) is satisfied, we use the integral version of the
Mean Value Theorem, which givesg(ut + zt ) − g(zt ) = ∫ 1

0 g′(sut + zt ) dsut .
Hence∫

Q

(g(ut + zt )− g(zt ))u dQ

=
∫
Q

√√√√√ 1∫
0

g′(sut + zt ) ds ut

√√√√√ 1∫
0

g′(sut + zt ) ds udQ

� Cε

∫
Q

1∫
0

g′(sut + zt ) ds u
2
t dQ+ ε

∫
Q

1∫
0

g′(sut + zt ) ds u
2dQ

� CεF + ε

( ∫
Q

[
1+ |wt |q−1 + |zt |q−1]r dQ)1/r

|u|2Lr̄(Q)

� CεF + εC

( ∫
Q

[
1+ g(wt )wt (t)+ g(zt )zt (t)

]r
dQ

)1/r

|u|2Lr̄(Q)

� CεF + εC(B)T |u|2
C([0,T ],H1−δ(Ω))

. (58)

Rescalingε gives the second statement in the proposition.✷
Applying the inequality in Proposition 3.3 along with (45) to (42) gives

Eu(T ) � C(B, T )[I + h∗]F . (59)

By evoking once more (40) we obtain

Eu(T ) � CT,B[I + h∗]F �CB,T [I + h∗](Eu(0)−Eu(T )), (60)

[I + h∗]−1C−1
T ,BEu(T )+Eu(T )� Eu(0). (61)
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Definingp ≡ [I + h∗]−1C−1
T ,B we obtain

Eu(T )+ p(Eu(T ))� Eu(0).

Reiterating the same argument on an arbitrary interval[mT, (m + 1)T ] yields
(note thatp(s) is independent ofm)

Eu((m+ 1)T )+ p
(
Eu((m+ 1)T )

)
� Eu(mT ) ⇒

Eu(mT )� [I + p]−mEu(0).

Now, the conclusion in the lemma follows from comparison with Lemma 3.1
in [6]. ✷

Lemma 3.1 and Lemma 3.2 imply the statement in Theorem 4.✷

4. Regularity of the attractor

In order to prove that the attractor is finite dimensional, the following ad-
ditional regularity of the attractor plays a critical role.

Theorem 5.

(1) In addition to Assumption1 we assume thatg′(s) � m > 0, for s ∈ R, and
g(s)s � m|s|l , l > q − 1, for |s| � 1. Then there exists a constantR > 0
(possibly depending onm,M) such thatA ∈ BH2×H1(0,R).

(2) If 0<m0 � m � g′(s) � M for all s ∈ R, then R does not depend onm, but
it may depend onM/m.

Proof of Theorem 5. Proof of part(1). We setW = (w,wt ), where(w(t),wt (t))

denotes the original trajectory. SinceA = T (t)A for all t > 0, for any point in the
attractorW0 ∈ A, there is a trajectoryW(t) passing trough this point and such
thatW(t) ∈ A for t → −∞. Therefore, such trajectory is bounded inH for all
t ∈ R and we can assume thatW(t0)=W0 for somet0 > 0.

We define the difference quotient

DhW(t) ≡ W(t + h)−W(t)

h
for h > 0.

ThenDhw(t) satisfies

(Dhw)tt −∆Dhw + f1(w(t), h)Dhw + g1(wt (t), h)(Dhw)t = 0

in Ω × (t0,∞),

Dhw = 0 on∂Ω × (t0,∞) for t0 ∈ R, (62)
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where by the Mean Value Theoremf1(w(t), h) ≡ ∫ 1
0 f ′(sw(t + h) + (1 − s)×

w(t)) ds andg1(wt , h)≡ ∫ 1
0 g′(swt (t + h)+ (1− s)wt (t)) ds.

Let Th(t, s) be an evolution onH generated by the equation

utt −∆u+ g1(wt (t), h)ut = 0 in Ω × (t0,∞),

u= 0 in ∂Ω × (t0,∞),

(u(t0), ut (t0))=U(t0) ∈ H for somet0 ∈ R,

and we setTh(t, t0)U(t0)= U(t)= (u(t), ut (t)).
Note that the above equation is linear but time dependent throughg1(wt (t), h).

We shall prove that the evolutionTh(t, s) is exponentially stable with parameters
that do not depend on initial conditionU(0), the original trajectoryW , and the
parameterh.

Lemma 4.1. Under the assumptions stated in Theorem5, there exist constants
C > 0, ω > 0 depending on the size of the attractorA but independent ofh,W
and such that

|Th(t, s)|L(H) � Ce−ω(t−s).

Proof of Lemma 4.1. The proof of the lemma parallels the arguments given in
Lemma 3.2. We will not repeat all the details, but we will provide the main steps
with particular emphasis on points where the arguments of Lemma 3.2 need to be
modified.

We begin, as always, with energy identity

Eu(t)+
t∫

t0

∫
Ω

g1(wt , h)u
2
t dx ds =Eu(t0), (63)

and we denoteF ≡ ∫ T

0

∫
Ω g1(wt , h)u

2
t dx dt.

As we shall see, the critical property responsible for exponential decays is the
fact thatm � g1(wt , h), where the constantm is independent of the solutionwt

and on the parameterh.
As in (42) we obtain

sup
t∈[0,T ]

Eu(t)+
T∫

0

Eu(t) dt

� C

∫
Q

g1(wt , h)u
2
t dQ+C

∫
Q

|ut |2dQ+
∫
Q

g1(wt , h)utu dQ. (64)
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Sinceg′ � m, the inequality in (64) implies that

sup
t∈[0,T ]

Eu(t)+
T∫

0

Eu(t) dt � C

[
F +

∫
Q

g1(wt , h)utu dQ

]
. (65)

Thus we need to estimate the last term in (65). This is done as

(g1(wt , h)ut , u)Ω � ε
(
g1(wt , h),u

2)
Ω

+Cε

(
g1(wt , h),u

2
t

)
Ω
. (66)

By using growth conditions ong′ and Sobolev’s embeddings we obtain

(
g1(wt , h),u

2)
Ω

�C

∫
Ω

(
1+ |wt |q−1)u2dx

�C

[ ∫
Ω

(
1+ |wt |r(q−1))dx]1/r

|u|21,Ω,

wherer−1 + r̄−1 = 1, r > 1. By selecting suitabler, so thatr(q − 1)= l > q − 1

(
g1(wt , h),u

2)
Ω

� Cq,m,M

[
1+

∫
Ω

g(wt )wt dx

]1/r

|u(t)|21,Ω, (67)

and by Jensen’s inequality and Sobolev’s embedding

T∫
0

(
g1(wt , h),u

2)
Ω
dt

�CT,q,m,M

[
1+

T∫
0

∫
Ω

g(wt )wt dx dt

]1/r

sup
t∈[0,T ]

Eu(t). (68)

Using the dissipativity relation for the original problem together with the fact
that initial data forW originate inA we infer that

∫ T

0

∫
Ω g(wt )wt dx dt � C(A),

which combined with (68) gives

T∫
0

(
g1(wt , h),u

2)
Ω
dt � CT,A,q,m,M sup

t∈[0,T ]
Eu(t). (69)

Combining (66) and (69) yields



36 I. Lasiecka, A.A. Ruzmaikina / J. Math. Anal. Appl. 270 (2002) 16–50

T∫
0

(g1(wt , h)ut , u)Ω dt

� εC(T ,A, q) sup
t∈[0,T ]

Eu(t)+Cε

T∫
0

(
g1(wt , h),u

2
t

)
Ω
dt (70)

and rescalingε

T∫
0

(g1(wt , h)ut , u)Ω dt � 1/2 sup
t∈[0,T ]

Eu(t)+CA,T ,q,m,MF . (71)

The above estimate when inserted into (65) gives

sup
t∈[0,T ]

Eu(t)+
T∫

0

Eu(t) dt � CA,T ,m,M,qF . (72)

The same arguments as those given in the proof of Lemma 3.2 imply the final
conclusion with functionp(s), which is linear. This, in turn, yields

|Th(t, s)U |H � Ce−ω(t−s) for someω > 0 andt � s, (73)

and the constantsC andω do not depend onwt andh. However,C andω do
depend onm andM,q and the size ofA, i.e.,C(A). ✷

In what follows we shall need the following result which provides the
regularity of the functionf1(w(t), h).

Lemma 4.2. Under Assumption1 imposed onf for anyδ > 0, there exist positive
constantsC(δ,A), independent oft ∈ R,h ∈ [0,1] such that∣∣f1(w(t), h)Dhw(t)

∣∣
0,Ω � δ|Dhw(t)|1,Ω +C(δ,A). (74)

Proof. By applying the assumption imposed on functionf followed by Hölder’s
inequality we obtain∣∣f1(w(t), h)Dhw(t)

∣∣2
L2(Ω)

� C

∫
Ω

(
1+ |w(t + h)| + |w(t)|)2(p−1)|Dhw(t)|2

� C

[ ∫
Ω

(
1+ |w(t + h)| + |w(t)|)2q̄(p−1)

]1/q̄[ ∫
Ω

|Dhw(t)|2q
]1/q

,

(75)
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where 1/q̄ + 1/q = 1. Hence∣∣f1(w(t), h)Dhw(t)
∣∣
L2(Ω)

�C
(|w(t)|L2q̄(p−1)(Ω)

)|Dhw(t)|L2q (Ω)

�C
(|w(t)|H1(Ω)

)|Dhw(t)|Hδ(Ω) (76)

for some smallδ > 0, where we have used Sobolev’s embeddingsHδ(Ω) ⊆
L2q(Ω), δ = 1− 1/q.

By using the moment inequality

|Dhw(t)|Hδ(Ω) � |Dhw(t)|δ
H1(Ω)

|Dhw(t)|1−δ
L2(Ω)

followed by Young’s inequality we obtain

|Dhw(t)|Hδ(Ω) � δ|Dhw(t)|H1(Ω) +C(δ)|Dhw(t)|L2(Ω).

Inserting the above inequality into (76) gives∣∣f1(w(t), h)Dhw(t)
∣∣
L2(Ω)

�C(|w|H1(Ω))
[
δ|Dhw(t)|H1(Ω) +C(δ)|Dhw(t)|L2(Ω)

]
�C(|w|H1(Ω))

[
δ|Dhw(t)|H1(Ω) +C(δ)|wt(t)|L2(Ω)

]
, (77)

which gives the desired inequality in Lemma 4.2 after noting that|w(t)|1,Ω � C,
∀t ∈ R. ✷

To proceed with the proof of Theorem 5 we use a variation of the parameters
formula applied to Eq. (62). Indeed, the solution of (62) coincides with a solution
to the following integral equation (a variation of the constant formula)

DhW(t) = Th(t, t0)DhW(t0)

+
t∫

t0

Th(t, s)

(
0

f1(w(s), h)Dhw(s)

)
ds. (78)

For each fixedh, the functionDhW(t0) is bounded inH, uniformly for all
t0 ∈ R. Using (73) we can pass to the limitt0 → −∞ (with a fixedh) and obtain
the formula

DhW(t) =
t∫

−∞
Th(t, s)

(
0

f1(w(s), h)Dhw(s)

)
ds. (79)

By applying Lemma 4.1 and Lemma 4.2 to formula (79) we obtain

‖DhW(t)‖H �
t∫

−∞
e−ω(t−s)

(
δ‖DhW(s)‖H +Cm,M(δ,A)

)
ds

� δ sup
−∞<s<t

‖DhW(s)‖H +C(δ,A). (80)
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Takingδ < 1 we obtain the bound

‖DhW(t)‖H � Cm,M(A) for t ∈ R andh ∈ [0,1].
From here, the standard convergence argument gives‖Wt(t)‖H � Cm,M(A) for
all t ∈ R, which, in turn, implies that

‖wtt (t)‖L2(Ω) + ‖wt(t)‖H1(Ω) � Cm,M(A) for all t ∈ R.

In order to obtainH 2 regularity ofw(t) we go back to the original equation writ-
ten as

∆w(t) =wtt (t)− f (w(t))− g(wt (t)), in Ω,

w(t) = 0 on∂Ω.

Since |g(wt )(t)|0,Ω) � C(|wt(t)|1,Ω) and |f (w(t))|0,Ω � C(|wt(t)|1,Ω), the
term on the RHS of the elliptic equation is inL2(Ω) uniformly in t ∈ R, with
the constant depending only onC(A). Thus, by elliptic theory we infer that

‖w(t)‖H2(Ω) � Cm,M(A) for all t ∈ R. (81)

Since any point in the attractor can be identified with someW(t1), whereW(t)

is a full trajectory on the attractor to which the argument provided above applies,
the proof of the first part of the theorem is completed.

Proof of part (2). In order to establish independence ofR with respect tom
(for largem) we need to apply a different argument which requires the additional
assumption in part (2). Withu=Dhw (62) becomes

utt −∆u+ g1(wt , h)ut + f1(w,h)u = 0, u|∂Ω = 0.

Let V (t)≡ Eu(t)+ ε(u(t), ut (t))Ω . Then

Vt = (Eu)t + ε|ut |2Ω + ε(u,∆u− g1(wt , h)ut − f1(w,h)u)Ω, (82)

(Eu)t = −(g1(wt , h)ut , ut )Ω − (f1(w,h)u,ut )Ω. (83)

Our task is to show that with suitably smallε

Vt + εV � εKf1,Ω,A,M/m. (84)

We will estimate each term in (82) separately. Using (76) we get∣∣(f1(w,h)u,ut )Ω
∣∣

� Cf (A)|u|Hδ |ut |0,Ω � Cf (A)[ε0|u|1,Ω +Cε0|u|0,Ω ]|ut |0,Ω
�

√
εε0√
ε

Cf (A)|u|1,Ω |ut |0,Ω +Cε0Cf (A)C(A)|ut |0,Ω

� ε

2
|∇u|20,Ω + ε2

0Cf (A)2

2ε
|ut |20,Ω + δ(Cε0Cf (A))+ 1

δ
|ut |20,Ω, (85)∣∣ε(g1(wt , h)ut , u)Ω

∣∣� ε

2
|g1(wt , h)ut |20,Ω + ε

2
|u|20,Ω. (86)
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From (82) and (83) we obtain

Vt + εV = −((g1(wt , h)− ε)ut , ut )Ω − (f1(w,h)u,ut )Ω − ε|∇u|2Ω
− ε(g1(wt , h)ut , u)Ω − ε(f1(w,h)u,u)Ω + ε

2
|ut |2Ω

+ ε

2
|∇u|2Ω + ε2(u,ut )Ω. (87)

Substituting the estimates (85) and (86) into (82), we derive

Vt + εV � −((g1(wt , h)− ε)ut , ut
)
Ω

+
(
ε2

0Cf (A)2

2ε
+ 1

δ

)
|ut |20,Ω

+ ε

2
|∇u|20,Ω + δ(Cε0Cf (A))− ε|∇u|2Ω + ε

2
|ut |2Ω

+ ε

2
|g1(wt , h)ut |20,Ω − ε(f1(w,h)u,u)Ω + ε

2
|u|20,Ω

+ ε

2
|∇u|2Ω + ε2

2
|ut |20,Ω + ε2

2
|u|20,Ω

� −
((

g1(wt , h)− ε

2
g1(wt , h)

2 − ε

− ε2

2
− ε2

0Cf (A)2

2ε
− 1

δ

)
ut , ut

)
Ω

+ ε|u|20,Ω − ε(f1(w,h)u,u)Ω + ε2

2
|u|20,Ω

+ δ(Cε0Cf (A)). (88)

Without loss of generality we may assume thatm is large. We takeε = 1/M,
ε0 = √

m/M/4Cf (A), δ = 4εM/m. Then

−
((

g1(wt , h)− ε

2
g1(wt , h)

2 − ε − ε2

2
− ε2

0Cf (A)2

2ε
− 1

δ

)
ut , ut

)
Ω

< 0.

Since|u|20,Ω � C(A), the remaining terms in (88) can be bounded by a constant

ε|u|20,Ω − ε(f1(w,h)u,u)Ω + ε2

2
|u|20,Ω + δ(Cε0Cf (A)C(A))2

< εKΩ,f,A,M/m.

Thus (84) is proved. Integrating (84) we obtain

V (t)� e−ε(t−t0)V (t0)+ ε

t∫
t0

e−ε(t−s)KΩ,f,A,M/m (89)

� e−ε(t−t0)V (t0)+ ε

ε

[
1− e−ε(t−t0)

]
KΩ,f,A,M/m

� e−ε(t−t0)V (t0)+KΩ,f,A,M/m. (90)
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Taking t0 → −∞ we obtain V (t) � KΩ,f,C(A),M/m; hence Eu(t) �
KΩ,f,C(A),M/m. The rest of the proof follows, as in part (1), by applying ellip-
tic theory to the static part of the equation.✷
Remark 4.3. In the case oflinear dissipationg(s), additional regularity of the
attractor was proved in [7]. In fact, in [7] it was shown that the attractor isCk ,
for anyk > 0 provided sufficient regularity is imposed on a nonlinear functionf .
In our case instead, due to the nonlinearity ofg the additional regularity of the
attractor is restricted to “one derivative,” and this is regardless of smoothness off

andg. The technical reason for this is due to the fact that the analysis of regularity
of the attractor involves linearizedevolutionoperators rather thansemigroups,
as in [7]. Due to the hyperbolicity of the problem, the time dependence of
the coefficients in the evolution isrough, regardless of the smoothness of the
nonlinear functiong. This prevents further propagation of smoothness into the
attractor, a fact that is the main obstacle in dealing with hyperbolic problems and
nonlinear dissipation. In order to obtain higher regularity of the attractor one needs
to impose further restrictions on the nonlinear functiong(s). In the theorem below
we shall show that by assuming that the parameter of dissipationm is suitably
large, one indeed obtains a higher regularity ofA.

Theorem 6. In addition to assumptions in part(2) of Theorem5 we assume that
f,g ∈ C2(R) and moreover(1/m)sups∈R[|g′′(s)| + |g′(s) − g′(0)|] � 1. Then
A ⊂ H 3(Ω) × H 2(Ω). More precisely,A ∈ BH3×H2(0,Rm), whereRm may
depend on the parameterm.

Remark 4.4. We note that the hypothesis of Theorem 5 is satisfied trivially when
functiong is linear. In this case this result was proved in [7]. Thus, our result in
Theorem 6 generalizes that of [7] to problems with nonlinear dissipation.

Proof. From the assumption imposed by Theorem 6 we infer thatM/m � C.
Thus part (2) in Theorem 5 implies that for allW(0) ∈ A we have that

|wtt(t)|0,Ω + |wt(t)|1,Ω � C(A) for all t ∈ R, (91)

and the constantC is independent ofm,M. Denoteu ≡ wtt , U ≡ (u,wt). Then
u ∈ C(R,L2(Ω)) satisfies

utt −∆u+ g′(wt )ut + g′′(wt )u
2 + f ′(w)u+ f ′′(w)w2

t = 0,

U(t0) ∈ L2(Ω)×H−1
0 (Ω). (92)

We find it convenient to rewrite the above equation in the form

utt −∆u+ g′(0)ut + γ u=R(t), (93)

where
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R(t)≡ g′′(wt )u
2 + f ′(w)wtt + f ′′(w)w2

t + γwtt + [g′(0)− g′(wt )]ut
∈ C

(
R;H−1(Ω)

)
,

where we have used regularity in (91). The positive constantγ will be selected
later.

LetB :D(B) ⊂H 1
0 (Ω)×L2(Ω)→ H 1

0 (Ω)×L2(Ω) denote the generator of
the damped wave equation in (93). This is to sayB(u, z)≡ [z,∆u−γ u+g′(0)z],
D(B) =H 2(Ω)∩H 1

0 (Ω)×H 1
0 (Ω).

The following stability property is well known∣∣eBt ∣∣L(H)
� Ce−ωγ,mt , (94)

where the constantωγ,m is positive. Moreover, an elementary spectral argument
shows that by selectingγ proportional tom2 we can achieveωm,γ (m) =m/2. This
is to say, that by calibrating static damping in the wave equation we can obtain
decay rates for the semigroup which are of the same magnitude as that of the
dynamic damping measured by the constantm.

SinceeBt is a semigroup (B is time independent), the invariance of fractional
powers of operatorB with respect to the dynamicseBt implies that∣∣eBt ∣∣L(H1)

� Ce−ωγ,mt , (95)

whereH1 ≡ L2(Ω)×H−1(Ω). With the above notation we can write the solution
to (93) via a variation of parameters formula, first on the spaceH1,

U(t)= eB(t−t0)U(t0)+
t∫

t0

eB(t−s)

[
0

R(s)

]
ds. (96)

Letting t0 → −∞ and exploiting the exponential stability in (95) together with
a priori regularity ofR(t) stated above yields the formula

U(t)=
t∫

−∞
eB(t−s)

[
0

R(s)

]
ds, (97)

which gives a representation of solutions on the attractor with respect to weaker
topology inH1. Our main task is to show that the above formula defines, subject
to the assumptions stated, elements with higher regularity, i.e., inH. To see this
we shall estimateH norms of expressions in (97). By appealing to (94) we obtain
thea priori estimate

|U(t)|H �C

t∫
−∞

e−ωm,γ (m)(t−s)|R(s)|L2(Ω) ds

�C
1

ωm,γ (m)

sup
s

|R(s)|0,Ω. (98)
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We shall next estimate the termR(t).

Proposition 4.5.

|f ′(w)wtt |0,Ω + ∣∣f ′′(w)w2
t

∣∣
0,Ω + γ |wtt |0,Ω

� C(A) + Cγ (A)= Cm(A),∣∣[g′(0)− g′(wt )]ut
∣∣
0,Ω � lg|ut |0,Ω,∣∣g′′(wt )u

2
∣∣
0,Ω � |g′′|L∞|u|1/2

1,Ω |wtt |1/2
1,Ω � C(A)|g′′|L∞|u|1,Ω. (99)

Proof. The first two estimates follow directly from properties of functionf , g
and the improved regularity stated in part (2) of Theorem 5 (see also (91)). For
the last estimate∣∣g′′(wt )u

2
∣∣
0,Ω �C|g′′|L∞|u|2L4(Ω) � C|g′′|L∞|u|21/2,Ω

�C|g′′|L∞|u|1,Ω |u|0,Ω � C(A)|g′′|L∞|u|1,Ω |wtt |0,Ω
� C(A)|g′′|L∞|u|1,Ω, (100)

where we have used Gagliardo–Nirenberg inequality, the moment inequality [30],
and (91). ✷

Applying the result of Proposition 4.5 and denotinglg ≡ |g′′|L∞ +sups |g′(s)−
g′(0)|, we obtain

|R(t)|0,Ω �C(A)lg
[|u(t)|1,Ω + |ut (t)|0,Ω

]+Cm(A).

Combining the above inequality with (98) yields

|U(t)|H � C(A)
1

ωm,γ (m)

lg sup
t

[|u(t)|1,Ω + |ut (t)|0,Ω
]+Cm(A)

� C(A)
1

ωm,γ (m)

lg sup
t

|U(t)|H +Cm(A). (101)

Sincelg/m � 1 andωm,γ (m) � m/2, we obtain thatlg/ωm,γ (m) � 1. Therefore
taking the supremum overt in (101) we obtain

sup
t∈R
[|u(t)|1,Ω + |ut (t)|0,Ω

]
� Cm(A). (102)

Now, going back to the elliptic problem,∆w = wtt − g(wt ) − f (w), in Ω ,
w|∂Ω = 0, and using the improved regularity ofwtt andwt from Theorem 5, we
obtain that∆w ∈ C(R;H 1

0 (Ω)). From elliptic theory it follows thatw ⊂ C(R;
H 3(Ω)). Thus|w(t)|3,Ω � Cm(A), as desired. ✷

Now we will show that under conditions of Theorem 6 withf,g ∈C∞(R), we
obtain theC∞ regularity of the attractor.
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Theorem 7. In addition to assumptions in Theorem6 we assume thatf,g ∈
Cn(R). ThenA ⊂ Hn(Ω) × Hn−1(Ω) for all n > 1. More precisely,A ∈
BHn×Hn−1(0,Rm), whereRm may depend on the dissipation parameterm.

Proof. The statement of the theorem follows via the boot-strap argument. We
shall show that one obtains|wt(t)|3,Ω + |w(t)|4,Ω � Cm, t ∈ R. The above regu-
larity will be “boot strapped” to a higher level.

After third differentiation (in distributional sense) of Eq. (1), we obtain an
equation which allows for the same proof as in Theorem 6. Denotingv ≡ wttt ,
u =wtt , V = (v, vt ) we obtain

V (t) =
t∫

−∞
eB(t−s)

(
0

R(s)+ [g′(0)− g′(wt (s))]vt (s)
)
ds, (103)

whereR(s) ≡ f ′′′(w)w3
s +3f ′′(w)wsu(s)+f ′(w)v−g′′′(ws)u(s)

3−3g′′(wt )uv

+ γmwttt .
After takingH norms of both sides and using (73) we obtain

|V (t)|H �
t∫

−∞
e−ωm,γ (t−s)

[|R(s)|0,Ω + lg |vt (s)|0,Ω
]
ds. (104)

Using regularity properties of Theorem 6, the following estimates are straightfor-
ward,∀t ∈R,

|R(t)|0,Ω �
∣∣[f ′′′(w)w3

s + 3f ′′(w)wsu+ g′′′(ws)u
3 + f ′(w)v

+ g′′(wt )uv + γmv
]
(t)
∣∣
0,Ω

� Cm,A. (105)

After substituting the estimates (105) into (104) we derive(
1− lg

m

)
|V (t)|H � Cm,A, t ∈R,

and thus we obtain that

|wttt(t)|1,Ω + |wttt t(t)|0,Ω � Cm,A, t ∈ R. (106)

The above implies, by using the structure of the wave equation, that|∆wt(t)|1,Ω �
Cm, hence by elliptic regularity|wt(t)|3,Ω � Cm. Interpolating the above regu-
larity with (106) yields|wtt(t)|2,Ω � Cm. Applying∆ to both sides of the wave
equation and reading off the regularity of the nonlinear terms gives|∆2w(t)|0,Ω �
Cm, w = ∆w = 0 on∂Ω . By elliptic regularity applied to this biharmonic prob-
lem we conclude that|w(t)|4,Ω � Cm, t ∈R, as desired.

This argument can be reiterated to yield a higher order regularity.✷
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5. Finite dimensionality of the attractor

Theorem 8. Under the assumptions of the first part of Theorem5, and, moreover,
|g′(s)| + |g′′(s)| � M, the attractorA has a finite Hausdorff dimension.

The proof of the theorem relies on application of the theorem due to Lady-
zhenskaya, which we recall below.

Theorem 9 ([31, Theorem 1.1]).Let M be a compact set of a Hilbert spaceH
and assume that on it there is the defined transformationV :M → V (M) ⊂ H

such thatM ⊆ V (M). Moreover, assume that for somen > 0 and for any points
v and ṽ of the setM one has

|V (v)− V (ṽ)|H � l|v − ṽ|H ,

|QnV (v)−QnV (ṽ)|H � δ|v − ṽ|H , δ < 1, (107)

whereQn is the projection onto a subspace of codimensionn. Then the set M has
a zeroα measure forα > α0 (see[31] for the definition ofα measure) and for any

α > α0 ≡ n ln[2c2l2/(1− δ2)]
ln[2/(1+ δ2)] ,

its Hausdorff dimension does not exceedα (the constantc is an absolute
constant).

Proof of Theorem 8. We shall apply Theorem 9 withM ≡ A, V (v) ≡ T (t0)W ,
whereT (t0)W denotes the nonlinear flow at the timet0 associated with the orig-
inal equation corresponding to the initial datumW ∈ A. In view of the already-
established compactness of the attractorA, the result of Theorem 8 will follow
from Theorem 9 as soon as we demonstrate validity of the following estimates
holding for any two pointsW andŴ in the attractorA∣∣T (t0)W − T (t0)Ŵ

∣∣
H � l

∣∣W − Ŵ
∣∣
H, (108)∣∣Qn

[
T (t0)W − T (t0)Ŵ

]∣∣
H � δ

∣∣W − Ŵ
∣∣
H (109)

for somen > 0, t0 > 0, 0< δ < 1, andl < ∞. Qn is an orthogonal projection
of H on a suitably selected subspace of codimensionn.

To accomplish this, we denoteW(t) ≡ T (t)W, Ŵ (t) ≡ T (t)Ŵ and use the
decomposition

T (t)W − T (t)Ŵ =U(t)+Z(t), (110)

whereu(t) andz(t) satisfy{
utt −∆u+ g(ut + ŵt )− g(ŵt )= 0 inQ,
u= 0 onΣ,

(u(0), ut(0))=W(0)− Ŵ(0) in Ω

(111)
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and {
ztt −∆z+ g(wt )− g(wt − zt )= f (w)− f (ŵ) in Q,
z(0)= zt (0)= 0 inΩ,

z = 0 onΣ.
(112)

Verification of condition (108) is straightforward. It follows from the monotonic-
ity of the dissipation and local Lipschitz property off together with thea priori
bound of solutions. The crux of the proof is to establish the validity of (109). To
this task we devote the rest of the paper.

Sinceg(ut + ŵt ) − g(ŵt ) is monotone, we can appeal to Lemma 3.2 in Sec-
tion 2 in order to conclude that|U(t)|H � S(t) → 0, t → ∞ for all W(0) ∈ A.
We recall thatS(t) is given by (32) and the convergence is uniform for all
W(0) ∈A. This, in particular, implies that∀ε > 0 there existt0 > 0 such that

|U(t0)|H � ε
∣∣W(0)− Ŵ (0)

∣∣
H. (113)

Thus, in order to show that Lipschitz condition (109) holds, it suffices to prove
this condition forZ(t). The main estimate responsible for this is the following:
Lipschitz regularity for the the variablez. In what follows we will use the notation
A = −∆ with D(A)=H 2(Ω)∩H 1

0 (Ω).

Lemma 5.1. For all 0 � r < 1/2 we have

• |Zt(t)|H � CT (A), t � T ,
• |Z(t)|D(A1/2+r )×D(Ar ) � CT |W(0)− Ŵ (0)|H, t � T .

Proof of the Lemma 5.1. This proof is based on the following propositions.

Proposition 5.2.

• |f (w(t))− f (ŵ(t))|1,Ω � C(A)|W(0)− Ŵ (0)|H,
• |(d/dt)[f (w(t))− f (ŵ(t))]|H � C(A).

Proof of Proposition 5.2. This proof follows from the growth condition assumed
onf along with critical use of additional regularity of the attractor established in
Theorem 5, i.e.,W(t) ∈ H 2(Ω)×H 1(Ω). ✷

Returning to the proof of Lemma 5.1, in order to prove the first statement
we consider the new variablēz ≡ zt . It is straightforward to verify that function
z̄ satisfies the following equation, where time derivatives are understood in the
distributional sense:

z̄t t −∆z̄+ g′(wt − zt )z̄t

= [g′(wt − zt )− g′(wt )]wtt + d

dt
[f (w)− f (ŵ)] in Q,
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z̄(0)= 0, z̄t (0)= f (w(0))− f (ŵ(0)) in Ω,

z̄ = 0 onΣ. (114)

By virtue of the additional regularity stated in Theorem 5 and the assumption
g′(s) � M, we infer that∣∣[g′(wt − zt )− g′(wt )]wtt

∣∣
0,Ω �M|wtt |0,Ω � CM(A)

and combining the above with the second statement in Proposition 5.2 yields via
the standard energy estimate the inequality in the first part of Lemma 5.1.

The second part is much more involved and requires the following estimate:

Proposition 5.3. Under the assumptions imposed on functiong we obtain with
anyr < 1/2∣∣g(wt (t))− g(wt (t)− zt (t))

∣∣
2r,Ω � CT (A)|zt (t)|2r,Ω, t � T .

Proof of Proposition 5.3. We shall first prove the inequality

|g(u+ v)− g(u)|α,Ω �C[1+ |u|1,Ω + |v|1,Ω ]|v|α,Ω,

0 � α < 1. (115)

We begin by quoting from [25, Section 2.3.1] the following result on multipliers in
Besov potential spacesHl

p(Ω). For l = integer orp = 2 Hl
p(Ω) spaces coincide

with classical Sobolev’s spacesWl
p(Ω) [25,30,32]. By the theorem in [25] with

lp < n, γ ∈ Hl
n/l(Ω)∩L∞(Ω)

we have

γ ∈ M
(
Hl

p(Ω)
)
,

whereM(H) are spaces of multipliers [25]. In addition, we have control of the
norms, i.e.,

|γ v|Hl
p(Ω) � C

[|γ |L∞(Ω) + |γ |Hl
n/l (Ω)

]|v|Hl
p(Ω).

Applying the above result withl = α < 1, p = 2, n = 2 (so thatlp < n holds
true), we obtain

|γ v|Hα
2 (Ω) � C|v|Hα

2 (Ω)

[|γ |L∞(Ω) + |γ |Hα
n/α(Ω)

]
. (116)

From [30, p. 206, formula (15)] we have

H 1
2 (Ω)⊂Hα

n/α(Ω), α < 1.

Hence

|γ |Hα
n/α(Ω) � C|γ |H1

2 (Ω) (117)
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and

|γ v|Hα
2 (Ω) � C|v|Hα

2 (Ω)

[|γ |L∞(Ω) + |γ |H1
2 (Ω)

]
. (118)

Since Besov potential spaces coincide with Sobolev’s spaces whenp = 2 by
combining (118) and (117) we obtain

|γ v|α,Ω � C|v|α,Ω
[|γ |L∞(Ω) + |γ |1,Ω

]
. (119)

We apply next the multiplier’s inequality (119) with the following choice of the
multiplier γ :

γ (x)≡
1∫

0

g′(s(u+ v)(x)+ (1− s)u(x)
)
ds.

Then by the integral form of the Mean Value Theorem [28]

g(u+ v)− g(u)= γ v

and by (119)

|g(u+ v)− g(u)|α,Ω � C|v|α,Ω
[|γ |L∞(Ω) + |γ |1,Ω

]
. (120)

By using growth conditions imposed ong′ andg′′ we easily obtain

|γ |L∞(Ω) � M,

|γ |1,Ω � C
[|u|1,Ω + |v|1,Ω + 1

]
.

Therefore,

|γ |L∞(Ω) + |γ |1,Ω �C
[
1+ |u|1,Ω + |v|1,Ω

]
, (121)

which combined with (120) yields (115).
To complete the proof of Proposition 5.3 it suffices to apply the inequality in

(115) with α = 2r, to replacev with zt (t) and to replaceu with wt(t) − zt (t).
This gives∣∣g(wt)(t)− g(wt (t)− zt (t))

∣∣
2r,Ω

�C|zt (t)|2r,Ω
[|wt(t)|1,Ω + |zt (t)|1,Ω + 1

]
. (122)

Applying the result of Theorem 5 and the estimate in the first part of the
Lemma 5.1 we obtain

|wt(t)|1,Ω + |zt (t)|1,Ω � CT (A),

which combined with (122) yields Proposition 5.3.✷
To continue with the proof of the second part of Lemma 5.1, we take an inner

product of equation forz with an elementA2rzt . The energy estimate gives
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∣∣Arzt (t)
∣∣2
0,Ω + ∣∣A1/2+rz(t)

∣∣2
0,Ω (123)

+
t∫

0

(
Ar(g(wt )− g(wt − zt )),A

rzt
)
Ω

+ (
Ar(f (w)− f (ŵ)),Arzt

)
Ω
dt = 0. (124)

SinceD(Ar)=H 2r
0 for r < 1/4 [33], we obtain∣∣Arzt (t)

∣∣2
0,Ω + ∣∣A1/2+rz(t)

∣∣2
0,Ω (125)

� C

t∫
0

|g(wt )− g(wt − zt )|22r,Ω + |f (w)− f (ŵ)|22r,Ω dt. (126)

Applying the result of Proposition 5.3 and Proposition 5.2 withr < 1/4 we
obtain∣∣Arzt (t)

∣∣2
0,Ω + ∣∣A1/2+rz(t)

∣∣2
0,Ω (127)

� CT (A)

t∫
0

[|zt |22r,Ω +C(A)|f (w)− f (ŵ)|21,Ω
]
dt (128)

� CT (A)

t∫
0

∣∣Arzt
∣∣2
0,Ω dt +CT (A)

∣∣W(0)− Ŵ(0)
∣∣2
H, (129)

where in the last inequality we again used the fact [33] thatD(Ar)⊂H 2r(Ω), r <

1/4.
Gronwall’s inequality applied to (127) completes the proof of the second

inequality in the lemma. ✷
Proper Proof of Theorem 8. To complete the proof of (109) (and hence of the
theorem) we proceed now as in (e.g., see [34]). We denote byQn a coprojection of
L2(Ω) ontoVn ≡ span(φ1, . . . , φn), whereφi are the eigenvectors corresponding
to the eigenvaluesλn of A. SinceA is a positive, self-adjoint operator onL2(Ω),
the following relations are well known [30]:∣∣QnA

−r
∣∣
L((L2(Ω))

= sup
|x|L2(Ω)=1

∣∣QnA
−rx

∣∣
L2(Ω)

� Cλn
−r , (130)

D
(
Aθ
)=H 2θ

0 (Ω), for θ <
1

4
. (131)

DenotingQn(x, y) ≡ (Qnx,Qny), and using the commutativity of fractional
powersAα with coprojectionsQn, we obtain the following inequality valid for
all t � 0 andα < 1/4:
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∣∣Qn(z(t), zt (t))
∣∣2
H

�C|Qnz(t)|21,Ω + |Qnzt (t)|20,Ω
�C

∣∣QnA
−r
∣∣2
L(L2(Ω))

[∣∣QnA
1/2+rz(t)

∣∣2
0,Ω + ∣∣QnA

rzt (t)
∣∣2
0,Ω

]
�C

∣∣QnA
−r
∣∣2
L(L2(Ω))

[∣∣A1/2+rz(t)
∣∣2
0,Ω + ∣∣Arzt (t)

∣∣2
0,Ω

]
. (132)

Hence∣∣Qn(z(t), zt (t))
∣∣
H �C

∣∣QnA
−r
∣∣
L(L2(Ω))

|Z(t)|D(A1/2+r )×D(Ar)

�CT,m,M(A)
∣∣W(0)− Ŵ (0)

∣∣
Hλ−r

n , t � T , (133)

where we have used the result of Lemma 5.1.
The estimate in (109) follows now from (113) and (133). Indeed, it suffices to

taket0 large enough in (113), then select a sufficiently largen in (133). ✷
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