Spectral theory for a class of periodically perturbed unbounded Jacobi matrices: elementary methods

Jan Janasa, Serguei Nabokob, Gunter Stolzc\textsuperscript;*

aInstitute of Mathematics, Polish Academy of Sciences, ul. sw. Tomasza 30, Krakow 31-027, Poland
bDepartment of Mathematical Physics, Institute of Physics St. Petersburg University, Ulianovskaiia 1 198904 St. Petergoff. St. Petersburg, Russia
cDepartment of Mathematics, University of Alabama at Birmingham, CH 452, Birmingham, AL 35294-1170, USA

Received 29 May 2003

Norrie Everitt on the occasion of his 80th birthday.

Abstract

We use elementary methods to give a full characterization of the spectral properties of unbounded Jacobi matrices with zero diagonal and off-diagonal entries of the type \(\hat{\lambda}_n = n^x + c_n \), where \(\frac{1}{2} < x \leq 1 \) and \(c_n \) is a real periodic sequence. The spectral properties depend strongly on the parity of the minimal period of \(c_n \). The methods used are asymptotic diagonalization techniques, including the finite difference version of Levinson’s theorem, subordinacy theory, and the variational principle.

\(\textcopyright \) 2004 Elsevier B.V. All rights reserved.

MSC: primary: 47B36; secondary: 39A70; 47A10

Keywords: Jacobi matrices; Spectral theory

1. Introduction

Let \(J \) be a Jacobi matrix acting in \(L^2(\mathbb{N}) \) by the formula

\[
(Ju)(n) = \lambda_{n-1}u(n-1) + \lambda_n u(n+1), \quad n \geq 1
\]

with the condition \(u(0) = 0 \). In this paper we shall consider the case of weights \(\hat{\lambda}_n = n^x + c_n \), \(x > 0 \), where \(c_n \) is a periodic sequence of real numbers such that \(\hat{\lambda}_n > 0 \) for all \(n \). As is seen from the methods of proof, essentially all of our results remain the same if finitely many entries of \(J \)
are changed. Denote by T the minimal period of c_n. In the special case of $T = 2$ and $\alpha = 1$ the Jacobi matrix with weights $n + c_n$ has been studied (from the spectral point of view) in [12,4]. We shall study the general case of arbitrary T and α. In the case $\alpha \leq 1$ we know that J is essentially self-adjoint on the finite vectors (with finitely many coordinates different from zero) due to the Carleman condition: $\sum_k \lambda_k^{-1} = \infty$, see [1, p. 504, Theorem 1.3].

J is not essentially self-adjoint on the finite vectors if $\alpha > 1$. This also follows from the results in [1] (note that J is a bounded perturbation of the Jacobi matrix with weights n^2 and that the latter is not essentially self-adjoint due to [1, p. 507, Theorem 1.5]. Thus all self-adjoint extensions of J have discrete spectrum (see [1, p. 528, Corollary]). Therefore we assume in the following that $\alpha \leq 1$.

One of our main goals here is to provide elementary techniques which demonstrate the recent discovery that Jacobi matrices of the type considered here provide examples of unbounded Jacobi matrices with a spectral gap. This topic is now under very active investigation and new results appear in rapid succession. It is not our aim to survey the most general results, for which we rather provide references.

The case $T = 2$ will be treated separately in Theorem 1.3, where our methods will allow for arbitrary $\alpha \in (0,1)$ (but we will exclude $\alpha = 1$). In this case one can also study the spectral structure of Jacobi operators with zero diagonal and n^α replaced by a more general “regular” sequence j_n tending to infinity as n goes to infinity, see [3].

For general period T we will state our results for $\alpha \in (\frac{1}{2}, 1]$. One can obtain the same results for any positive α but the analysis is more complicated (and has been done in a recent paper [7]). Nevertheless, the elementary methods used here are strong enough to uncover the spectral structure of J. We shall use the so-called grouping in blocks approach as already applied successfully in our earlier paper [8]. This approach, when combined with the discrete version of the Levinson theorem (with l^1 perturbation), will allow to find the asymptotics of generalized eigenvectors of J at infinity (see Section 4). Knowledge of the asymptotics of generalized eigenvectors and the Gilbert–Pearson theory of subordinacy is sufficient to determine the character of the spectrum of J. It will be shown that the spectral properties of J depend crucially on the parity of T. The asymptotics of generalized eigenvectors of J (found below in the case of even T) will also be used in a forthcoming paper to demonstrate the sharpness of Combes–Thomas-type estimates for the resolvent of general Jacobi operators [10].

We will give proofs of the following results.

Theorem 1.1. Let J be the Jacobi matrix with weights

\[\lambda_n = n^\alpha + c_n, \quad \alpha \in (\frac{1}{2}, 1], \]

where c_n is a periodic sequence of real numbers with minimal odd period such that $\lambda_n > 0$ for all n. Then the spectrum of J is purely absolutely continuous in \mathbb{R}.

In the proof Theorem 1.1 as well as in the statement and proof of the following Theorem 1.2 we will use the abbreviation

\[a := \sum_{s=1}^{L} (c_{2s} - c_{2s-1}). \]
Theorem 1.2. If λ_n is given by (1.1) and $T = 2L$ is the even minimal period, then $\sigma(J)$ is purely absolutely continuous in $\mathbb{R} \setminus [-|a|/L, |a|/L]$ and is discrete in $(-|a|/L, |a|/L)$. Moreover, $0 \in \sigma_p(J)$ if and only if $a > 0$.

Theorem 1.3. In the case $T = 2$ and for any $\alpha \in (0, 1)$, the spectrum of J in $(-|c_1 - c_2|, |c_1 - c_2|)$ is finite, i.e. no accumulation of eigenvalues appears at $\pm |c_1 - c_2|$.

In fact, the result of Theorem 1.3 also holds for $\alpha = 1$ as was proven in [4,12] with different methods. We exclude it from our presentation here as the elementary method of proof which we provide in Section 5 (using quadratic forms) would become technically less transparent in this case.

2. Preliminaries

We start with some preparatory computations which will be used in the next sections. Fix $\lambda \in \mathbb{R}$. A complex sequence $u(n) \ (n \geq 1)$ satisfying the equation

$$(Ju)(n) = \lambda u(n), \quad n \geq 2$$

(2.1)
is called a generalized eigenvector for J and λ. Following a standard procedure we rewrite the scalar system (2.1) in the vector form

$$\tilde{u}(n + 1) = B(n)\tilde{u}(n),$$

(2.2)

here,

$$\tilde{u}(n) := \begin{pmatrix} u(n - 1) \\ u(n) \end{pmatrix} \quad \text{and} \quad B(n) := \begin{pmatrix} 0 & 1 \\ -\lambda_n^{-1} & \lambda_n^{-1} \end{pmatrix}$$

is the transfer matrix. Due to the periodic perturbation the entries of $B(n)$ are not sufficiently regular to directly apply the well-known methods used already in our previous papers, [8,9,13]. However the products of $B(k)$ of length T behave more regularly and so we define

$$C(n) := \prod_{s=0}^{T-1} B(nT + s).$$

(2.3)

Now consider the equation

$$x(n + 1) = C(n)x(n), \quad n \geq 1.$$

(2.4)

Note that for any solution $x(\cdot)$ of (2.4) there is a unique generalized eigenvector $u(\cdot)$ for J and λ satisfying $\tilde{u}(nT) = x(n)$. It is easy to check that for $\alpha \leq 1$

$$B(n) = E + n^{-2} \begin{pmatrix} 0 & 0 \\ c_n - c_{n-1} & \lambda \end{pmatrix} + \alpha n^{-1} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + O(n^{-2\alpha}),$$

where

$$E := \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$
In what follows, \(O(n^{-2s}) \) terms can be different in various formulas (but we shall keep the notation to stress their order of decay). As usual it is useful to work with pairs of the \(B(k) \)'s.

\[
B(k + 1)B(k) = -I + \alpha k^{-1}I + \frac{\lambda}{c_{k+1} - c_k} - \lambda \frac{c_k - c_{k-1}}{c_{k+1} - c_k} + O(k^{-2s}) \\
= -(1 - \alpha (k + 1)^{-1}) \left[I - k^{-a} \begin{pmatrix} c_k - c_{k-1} & \lambda \\ -\lambda & c_{k+1} - c_k \end{pmatrix} + O(k^{-2s}) \right]. \tag{2.5}
\]

In particular, (2.5) will be used below to find a suitable form of \(C(n) \) given by (2.3).

Although the spectral analysis of \(J \) looks similar for odd and even \(T \), we shall deal with each case separately because there are some important differences. Below \([x]\) stands for the integer part of \(x \).

3. Odd case

Proof of Theorem 1.1. Let \(T = 2L + 1 \). The asymptotic behaviour of solutions of (2.2) is reduced to the asymptotic analysis of the products \(\prod_{n=1}^{N} C(n) \). Thus we start by finding a suitable form of \(C(n) \).

Using (2.5) we can write

\[
C(n) = \prod_{s=1}^{L} \left(B(nT + 2s)B(nT + 2s - 1) \right)B(nT) \\
= \prod_{s=1}^{L} \left[-(1 - \alpha (nT + 2s)^{-1}) \right] \times \left(I - (nT + 2s - 1)^{-a} \begin{pmatrix} c_{2s-1} - c_{2s-2} & \lambda \\ -\lambda & c_{2s} - c_{2s-1} \end{pmatrix} + O(n^{-2s}) \right) B(nT) \\
= (-1)^{L} (1 - \alpha(nT)^{-1})^{L} \left[I - (nT)^{-a} \begin{pmatrix} -a & b \\ -b & a \end{pmatrix} + O(n^{-2s}) \right] B(nT) \\
= (-1)^{L} (1 - \alpha(nT)^{-1})^{L} E(n),
\]

where \(\Delta_n = c_T - c_{T-1} + \alpha(nT)^{2} - 1 \), \(b = \lambda L \) and

\[
E(n) := E + (nT)^{-2} \begin{pmatrix} b & a \\ a + \Delta_n & \lambda + b \end{pmatrix} + O(n^{-2s}).
\]

In the above computations we have replaced \(1 - \alpha(nT + 2s)^{-1} \) by \(1 - \alpha(nT)^{-1} \) and \((nT + 2s - 1)^{-a} \) by \((nT)^{-a} \), for \(s = 1, \ldots, L \), which is correct up to \(O(n^{-2s}) \).

Note that \(E(\cdot) \) belongs to \(D^1 \) (the class of bounded sequences of bounded variation) and \(E(n) \to E \), as \(n \to \infty \). Applying [6, Lemma 1.7], we obtain a sequence of invertible matrices \(S_n \) in \(D^1 \) and
a sequence of diagonal matrices \(\{D_n\} \in D^1 \) such that \(E(n) = S_nD_nS_n^{-1} \) whenever \(n \geq n_0 \) for some positive integer \(n_0 \). Since \(\{S_n\} \in D^1 \) and the norms of \(S_n^{-1} \) are uniformly bounded we have
\[
\prod_{n=n_0}^{N} \|S_{n+1}^{-1}S_n\| = \prod_{n=n_0}^{N} \|S_{n+1}^{-1}[S_{n+1} - (S_{n+1} - S_n)]\| \\
\leq \prod_{n=n_0}^{N} (1 + \|S_{n+1}^{-1}\|\|S_{n+1} - S_n\|) \leq M,
\]
for some \(M > 0 \) and all \(N \geq n_0 \).

It follows (due to the fact that \(D_n \) has complex conjugate eigenvalues and thus \(\|D_n\| = |\det D_n| \)) that
\[
\left\| \prod_{n=n_0}^{N} E(n) \right\|^2 \leq \|S_N\|^2 \|S_{n_0}^{-1}\|^2 \prod_{n=n_0}^{N-1} \|S_{n+1}^{-1}S_n\|^2 \prod_{n=n_0}^{N} |\det D_n| \\
\leq M_1 \prod_{n=n_0}^{N} |\det E(n)|,
\]
for some \(M_1 > 0 \). Since \(C(n) = (-1)^{L}(1 - \alpha(nT)^{-1})E(n) \), using (3.1) we have (for \(NT \leq n < (N+1)T \) and \(s_0 \) sufficiently large)
\[
\left\| \prod_{k=\ell}^{n} B(k) \right\|^2 = \left\| B(n) \ldots B(NT) \prod_{s=1}^{N-1} C(s) \right\|^2 \\
\leq M_2 \left\| \prod_{s=1}^{N-1} C(s) \right\|^2 \leq M_3 \prod_{s=s_0}^{N-1} |\det C(s)| \\
= M_5 \prod_{k=s_0T}^{NT-1} |\det B(k)| \\
\leq M_4 \prod_{k=2}^{n} |\det B(k)|,
\]
for some positive constants \(M_2, M_3 \) and \(M_4 \).

But \(\det B(k) = \lambda_{k-1}/\lambda_k \) and the above estimates imply that for any solution \(\hat{u} \) of (2.2), \(\|\hat{u}(n)\|^2 \leq \text{const} \lambda_n^{-1} \). Using the generalized Behncke–Stolz Lemma, see [8], it follows that (2.1) has no subordinate solutions. Finally, by applying Gilbert–Kahn–Pearson theory [11] we conclude that \(J \) is purely absolutely continuous in \(\mathbb{R} \). The proof of Theorem 1.1 is complete. \(\square \)

We emphasize that in the odd case the analysis is simple because the matrices \(E(n) \) are small real perturbations of the real matrix \(E \) with elliptic spectrum (complex conjugate eigenvalues). Hence the spectrum of \(E(n) \) is again elliptic and this leads to the conclusion about pure absolute continuity of the spectrum of \(J \).
4. Even case

Proof of Theorem 1.2. If the minimal period T is even, i.e. $T = 2L$, then the spectral structure of J is more complicated. Again, let λ be real. By repeating the computation in pairs of transfer matrices we have

$$C(n) := \prod_{s=0}^{T-1} B(nT + s)$$

$$= (-1)^{\frac{T}{2}}(1 - z(nT)^{-1})^{rac{T}{2}} \times \prod_{j=0}^{L-1} \left[I - (nT)^{-2} \begin{pmatrix} c_{2j} - c_{2j-1} & \lambda \\ -\lambda & c_{2j+1} - c_{2j} \end{pmatrix} + O(n^{-2x}) \right]$$

$$= d_n \left[I - (nT)^{-2} \begin{pmatrix} a & b \\ -b & -a \end{pmatrix} + O(n^{-2x}) \right], \quad (4.1)$$

where $d_n := (-1)^{\frac{T}{2}}(1 - z(nT)^{-1})^{rac{T}{2}}$, $b = \lambda L$.

Denote by

$$A := \begin{pmatrix} a & b \\ -b & -a \end{pmatrix},$$

such that $\sigma(A) = \{z_+, -z_+\}$, where $z_+ = (a^2 - b^2)^{1/2}$. Provided that $a^2 - b^2$ is different from zero, we may diagonalize A through $A = SD_1S^{-1}$, where $D_1 = \text{diag}(z_+, -z_+)$. It is clear that the properties of generalized eigenvectors of J depend strongly on the sign of $a^2 - b^2$.

Assume first that

(i) $a^2 - b^2 < 0$.

Then z_+ is pure imaginary. We have

$$\left\| \prod_{n=1}^{N} C(n) \right\|^2 = \left\| \prod_{n=1}^{N} d_n \right\|^2 \left\| S \prod_{n=1}^{N} [I - (nT)^{-2}D_1 + O(n^{-2x})]S^{-1} \right\|^2.$$

But

$$I - (nT)^{-2}D_1 + O(n^{-2x}) = \exp[-(nT)^{-x}D_1][I + O(n^{-2x})].$$

Therefore, the right-hand side of (4.2) can be estimated from above by

$$C_1(N^{-2/2})^{2L} \prod_{n=1}^{N} (1 + O(n^{-2x})) \leq C_2 N^{-x},$$

where $C_1, C_2 > 0$. This is obvious because the matrices $\exp[-(nT)^{-x}D_1]$ are unitary.

Hence, again $\|\tilde{u}(n)\| \leq M\lambda_n^{-1}$ and so (2.1) has no subordinate solutions. Consequently J is purely absolutely continuous in $\mathbb{R} \setminus [-|a|/L, |a|/L]$.

In the case
(iii) \(a^2 - b^2 > 0 \)
the analysis is more complicated (the matrices \(\exp[-(nT)^{-2}D_1] \) are no longer unitary!). Moreover, the matrices \(C(n) \) have the form

\[
C(n) = d_n S[I - n^{-2}D + O(n^{-2\alpha})]S^{-1},
\]

(4.3)

where \(D = \text{diag}(\eta, -\eta), \ T^{-2}A = SDS^{-1}, \) and \(\eta = (a^2 - b^2)^{1/2}T^{-2}. \)

Since the identity has a double root we cannot apply the standard version of the discrete Levinson theorem, see [5]. However, we can use the idea of grouping in blocks (developed in [8]) to find the asymptotics of \(\tilde{u}(n) \). As a matter of fact, this is a new version of the grouping in blocks method. It will be based on the “accumulation” of slight differences between two eigenvalues of \(C(n) \) over sufficiently long blocks of indices, eventually allowing us to apply the standard version of the discrete Levinson theorem.

Assume first that \(\alpha < 1 \). Let \(\mathbb{N} = \bigcup_{l=1}^{\infty} (N_{l-1}, N_l) \) be the decomposition of natural numbers into an infinite union of intervals \((N_{l-1}, N_l) \) satisfying

\[
\sum_{k=N_{l-1}+1}^{N_l} k^{-\alpha} = 1 + \varepsilon_l,
\]

(4.4)

where \(\varepsilon_l = O(N^{-\alpha}_l) \) for large \(l \). One can choose \(N_0 = 0 \) and \(N_l = [sنز (1-\alpha)^{1/(1-\alpha)}] \) for \(l \geq 1 \), where \(sنز := (1-\alpha)^{1/(1-\alpha)}. \) Therefore, \(\varepsilon_l = O(I^{-\alpha/(1-\alpha)}) \) is summable (remember that \(\alpha > \frac{1}{2} \)).

Note that

\[
C(n) = d_n S[I - n^{-2}D + O(n^{-2\alpha})]S^{-1}
= d_n S[\exp(-n^{-2}D) + O(n^{-2\alpha})]S^{-1}
= d_n S[I + O(n^{-2\alpha})] \exp(-n^{-2}D)S^{-1}.
\]

(4.5)

Using (4.5) we can write (note that \(S \) does not depend on \(k \))

\[
\prod_{k=N_{l-1}+1}^{N_l} C(k) = \prod_{k=N_{l-1}+1}^{N_l} \{ d_k S[I + O(k^{-2\alpha})] \exp[-k^{-2}D]S^{-1} \}
= S \prod_{k=N_{l-1}+1}^{N_l} \{ I + O(k^{-2\alpha}) \} \prod_{k=N_{l-1}+1}^{N_l} (d_k \exp[-k^{-2}D])S^{-1},
\]

(4.6)

the last equality holds due to the uniform boundedness of \(\sum_{k=N_{l-1}+1}^{N_l} k^{-\alpha} \) in \(l \).

Moreover, direct computation shows that

\[
\prod_{k=N_{l-1}+1}^{N_l} (I + O(k^{-2\alpha})) = I + O(I^{-\alpha/(1-\alpha)})
\]

(4.7)

(because \(N_l - N_{l-1} \sim sنز (l^{1/(1-\alpha)} - (l - 1)^{1/(1-\alpha)}) \sim sنز (1 - \alpha)^{-1} l^{2/(1-\alpha)} \) for large \(l \)).
Combining (4.4), (4.6) and (4.7) we have
\[
\prod_{n=1}^{N_s} C(n) = \prod_{l=1}^{s} \left(\prod_{k=N_{s-l+1}}^{N_s} C(k) \right) = S \left(\prod_{n=1}^{N_s} d_n \right) \prod_{l=1}^{s} \left[(I + O(I^{-s/(1-z)}) \exp(-(1 + \varepsilon_l)D)) S^{-1} \right].
\] (4.8)

But
\[(I + O(I^{-s/(1-z)}) \exp(-(1 + \varepsilon_l)D) = \exp(-(1 + \varepsilon_l)D) + W_l,\]
where \(\|W_l\| = O(I^{-s/(1-z)})\).

Thus if we set \(n = N_s\) in (2.4), then for all \(s \geq 1\),
\[
x(N_s + 1) = S \left(\prod_{n=1}^{N_s} d_n \right) \prod_{l=1}^{s} (\exp(-(1 + \varepsilon_l)D) + W_l) S^{-1} x(1).
\] (4.9)

Setting
\[w(s) := \left(\prod_{n=1}^{N_s} d_n \right)^{-1} S^{-1} x(N_s+1)\]
for \(s \geq 1\) and \(w(0) = S^{-1} x(1)\), then (4.9) becomes equivalent to
\[w(s) = \prod_{l=1}^{s} (\exp(-(1 + \varepsilon_l)D) + W_l) w(0), \quad s \geq 1.\] (4.10)

Applying the discrete Levinson theorem (see [5]) we obtain a solution \(w_1\) of (4.10) such that
\[w_1(s) = \prod_{l=1}^{s} \exp(-\eta(1 + \varepsilon_l))(e_1 + o(1))\]
for large \(s\).

Thus the solution \(x_1\) of (2.4) with \(x_1(1) = S w_1(0)\) satisfies
\[x_1(N_s + 1) = \left(\prod_{n=1}^{N_s} d_n \right) S w_1(s) = S \left(\prod_{n=1}^{N_s} d_n \right) \exp\left(-\eta \sum_{k=1}^{N_s} k^{-2}\right) (e_1 + o(1)).\] (4.11)

One can extend formula (4.11) to arbitrary \(n \in (N_{s-1}, N_s]\). Indeed, using the argument from (4.6) we have
\[C(n)C(n-1) \ldots C(N_{s-1} + 1) = S \prod_{k=N_{s-1}+1}^{n} d_k \exp\left[-\sum_{k=N_{s-1}+1}^{n} k^{-2}D\right] (I + o(1)) S^{-1},\] (4.12)
as \(s \to \infty\).
Combining (4.11) and (4.12) we obtain
\[x_1(n + 1) = S \prod_{k=1}^{n} \left((-1)^k \left(1 - \frac{x}{2k} \right) \right) \exp \left[-\eta \sum_{k=1}^{n} k^{-2} \right] \left(e_1 + o(1) \right) \] (4.13)
as \(n \to \infty \). In particular \(\{ x_1(n) \} \in l^2 \).

There is a unique generalized eigenvector \(\tilde{u}_1 \) for \(J \) and \(\lambda \) with \(\tilde{u}_1(nT) = x_1(n) \) for all \(n \). Thus \(\{ \tilde{u}_1(nT) \} \in l^2 \) and, as \(\sup_n \| B(n) \| < \infty \), the whole sequence \(\{ \tilde{u}_1(n) \} \) is in \(l^2 \). Since \(\lambda \) is an arbitrary point in \((-|a|/L, |a|/L) \), it follows that the spectrum of \(J \) in this interval is pure point.

In the case \(\alpha = 1 \), the grouping in blocks approach is also efficient but we have to choose integers \(N_l \) to satisfy the condition: \(\sum_{s=N_l-1}^{N_l} S^{-1} s^{-1} = 1 + \varepsilon_l \), where \(\{ \varepsilon_l \} \in l^1 \) (put \(N_l = [e^l] \), then \(\varepsilon_l = O(e^{-l}) \)).

By repeating the reasoning given for \(\alpha < 1 \) above it is clear that \(\sigma(J) \) is pure point in the gap \((-|a|/L, |a|/L) \) also in the case \(\alpha = 1 \).

Finally, for \(\lambda = 0 \) direct computation shows that \(0 \in \sigma_p(J) \) if and only if \(a > 0 \). The proof of Theorem 1.2 is now complete. \(\Box \)

Remark 4.1. Whether the boundary points \(\lambda = \pm |a|/L \) do belong to \(\sigma_p(J) \) is an open question (we conjecture they do not).

Remark 4.2. In the next section we shall prove that for \(T = 2 \) (which is much easier than the general even case) the point spectrum in \((-|c_1 - c_2|, |c_1 - c_2|) \) is finite.

Remark 4.3. As a matter of fact, Silva proved (private communication) by using a uniform version of a discrete Levinson-type theorem due to him that (in the case \(a \neq 0, T = 2L \)) \(\sigma_p(J) \) is discrete in \((-|a|/L, |a|/L) \).

5. Case \(T = 2 \)

Proof of Theorem 1.3. In this section we will prove Theorem 1.3, namely that for period \(T = 2 \) the number of eigenvalues in \((-|a|/L, |a|/L) \) is finite. We do not know the answer to this question for general \(T = 2L \).

The idea of proof is simple. We want to prove that for some \(N > 0 \) and all
\[f = (0, \ldots, 0, f_N, f_{N+1}, \ldots) \in D(J) \]
it holds that
\[\| Jf \|^2 \geq (c_1 - c_2)^2 \| f \|^2. \] (5.1)

Then, by the variational principle, estimate (5.1) forces the number of eigenvalues of \(J \) in \((-|c_1 - c_2|, |c_1 - c_2|) \) to be less than \(N \). The proof of (5.1) is straightforward but tedious. We shall try to be brief.
First note that J^2 preserves the subspaces M_e (M_o) generated by even (odd) canonical vectors e_s. Denote $\varphi_k := e_{2k}$. Let $f \in M_e$. Then $f = \sum_s f_s \varphi_s$.

Suppose that $f \in D(J^2)$. We have

$$||Jf||^2 = (J^2 f, f)$$

$$= \sum_{n \geq 1} [(\lambda_{2n}^2 + \lambda_{2n+1}^2)|f_n|^2] + \lambda_{2n-2}\lambda_{2n-1}f_{n-1}\bar{f}_n + \lambda_{2n}\lambda_{2n+1}f_{n+1}\bar{f}_n].$$

(5.2)

But for any $c, \delta > 0$ and $n > \delta$

$$\lambda_{2n+1}\lambda_{2n}|f_{n+1}\bar{f}_n| \leq \frac{1}{2} \left\{ \lambda_{2n}\lambda_{2n+1} \left[\left(1 - \frac{\delta}{n+1}\right)|f_n|^2 + \left(1 - \frac{\delta}{n+1}\right)^{-1}|f_{n+1}|^2 \right] \right\},$$

(5.3)

and

$$\lambda_{2n-1}\lambda_{2n-2}|f_{n-1}\bar{f}_n| \leq \frac{1}{2} \left\{ \lambda_{2n-2}\lambda_{2n-1} \left[\left(1 - \frac{\delta}{n}\right)|f_{n-1}|^2 + \left(1 - \frac{\delta}{n}\right)^{-1}|f_n|^2 \right] \right\}. $$

(5.4)

After inserting into (5.2) it follows that the series in (5.2) can be estimated from below by a “diagonal” series with coefficients of $|f_n|^2$ given by

$$\lambda_{2n-1}^2 + \lambda_{2n}^2 - \left[\lambda_{2n-2}\lambda_{2n-1} \left(1 - \frac{\delta}{n}\right)^{-1} + \lambda_{2n}\lambda_{2n+1} \left(1 - \frac{\delta}{n+1}\right) \right].$$

For this expression we can write $[\cdots] = A_n(\delta) + O(n^{2z-3})$, where

$$A_n(\delta) := \lambda_{2n-2}\lambda_{2n-1}n^{-2}\delta^2 + (\lambda_{2n-1}\lambda_{2n-2}n^{-1} - \lambda_{2n}\lambda_{2n+1}n^{-1} + \lambda_{2n}\lambda_{2n+1}n^{-2})\delta$$

$$+ \lambda_{2n-2}\lambda_{2n-1} + \lambda_{2n}\lambda_{2n+1}.$$

Now choosing $\delta = x - \frac{1}{2}$ (which is asymptotically close to the position of the minimum of $A_n(\delta)$ as $n \to \infty$) we can write

$$[\cdots] = (2n)^{2z} \left\{ I_1(n) \left(1 + \frac{\delta}{n} + \frac{\delta^2}{n^2}\right) + I_2(n) \left(1 - \frac{\delta}{n} + \frac{\delta}{n^2}\right) \right\} + O(n^{2z-3}),$$

where

$$I_1(n) := [(1 - xn^{-1} + c_2(2n)^{-x} + \frac{1}{2}x(x - 1)n^{-2})]$$

$$\times [(1 - x(2n)^{-1} + c_1(2n)^{-x} + \frac{1}{2}x(x - 1)(2n)^{-2}),$$

$$I_2(n) := (1 + c_2(2n)^{-x})[(1 + x(2n)^{-1} + \frac{1}{2}x(x - 1)(2n)^{-2} + c_1(2n)^{-x}].$$

We also find that

$$(\lambda_{2n-1}(2n)^{-x})^2 + (\lambda_{2n}(2n)^{-x})^2$$

$$= 2 + 2(c_1 + c_2)(2n)^{-x} + (c_1^2 + c_2^2)(2n)^{-2x} - xn^{-1}$$

$$- 2xc_1[(2n)^{x}2n]^{-1} + \frac{1}{4}(2x^2 - x)n^{-2} + O(n^{2z-3}).$$

(5.6)
Combining (5.5) and (5.5) we find after a number of cancellations that the coefficient at $|f_n|^2$ is bounded from below by

$$(c_1 - c_2)^2 + d n^{2\alpha - 2} + O(n^{2\alpha - 2}),$$

with positive $d = 4^{\alpha - 1}(1 - \alpha)^2$.

This proves the desired estimate of $\|Jf\|^2$ for $f \in M_e$.

In the case $f \in M_o$ one could repeat similar estimates but we shall use the following simple observation.

Let U^e (resp. U^o) be the canonical isometries mapping l^2 onto M_e (resp. M_o) and given by $U^e e_n = e_{2n}$ (resp. $U^o e_n = e_{2n-1}$).

If $(Au)(n) := \lambda_{2n-1} u(n) + \lambda_{2n} u(n+1)$ then direct computation shows that

$$U^o A^* A = J^2 U^o \quad \text{and} \quad U^o A A^* = J^2 U^e$$

(5.7)

(here we consider A as an operator in l^2). Since $A^* A$ and AA^* are unitary equivalent on the orthogonal complements of their null spaces (of finite dimension), relation (5.7) implies the same equivalence of

$$J^2 |M_e \quad \text{and} \quad J^2 |M_o.$$

This completes the proof of Theorem 1.3.

Remark 5.1. Note that much simpler calculations of similar type allow to prove the discreteness of the spectrum in the gap with possible accumulation of eigenvalues at the boundary points only. The above more precise considerations showed that accumulations do not occur. Moreover, in the recent work of Dombrowski [2] it was shown (in the case $0 < \alpha < 1$) that $(-|c_1 - c_2|, |c_1 - c_2|)$ has no nonzero eigenvalues provided that all weights λ_n are positive.

Acknowledgements

This work was supported through NATO Collaborative Linkage Grant PST.CLG.976441. The work of G. S. was also supported through NSF Grant DMS 0070343.

References

