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Abstract

Ground states of HamiltoniaH of quantum field models are investigated. The infimum of the
spectrum ofH is in the edge of its essential spectrum. By means of the asymptotic field theory,
we give a necessary and sufficient condition for that the expectation value of the number operator
of ground states is finite, from which we give an upper bound of the multiplicity of ground states
of H. Typical examples are massless GSB models and the Pauli—Fierz model with/8pin 1
© 2005 Elsevier Inc. All rights reserved.
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1. Preliminaries

1.1. Boson Fock spaces

Let W be a Hilbert space ovet with a conjugation. The boson Fock spacgj,
over W is defined by

o
Fo=TFoW) == PIeIW]
n=0
[e¢)
= {lP = (Y)W € W, IIWIF, =D ™15y < oo} :
n=0
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where "W denotes then-fold symmetric tensor product ofV with @°W := C.
In this paper(f, g¢)x and || f|lx denote the scalar product and the norm on Hilbert
spacekC over C, respectively, wheré f, g)x is linear ing and antilinear inf. Unless
confusions arise we omi€ of (-, -)x and| - ||[x. D(T) denotes the domain of operator
T. Moreover, for a bounded operat8y we denote its operator norm Bys||.

The Fock vacuunf) € Fy, is given byQ = {1,0,0, ...}. The finite particle subspace
of Fp is defined by

Fiin = {¥ = (¥} € Fp|P™ =0 for all m >n with somen}.

It is known thatFs, is dense inF,. The creation operatch(f) . Fp — Fp with test
function f € W is the densely defined linear operator/iy defined by

@HYMO =0, @HY" =VnS(f¥Y" ), nx1,
where S, is the symmetrization operator @&'W, i.e., S,[®"W] = @7 W. The annihi-
lation operatora(f), f € W, is defined bya(f) = (aT(?))*{fﬁn. Since it is seen that
a(f) anda'(f) are closable operators, their closures are denoted by the same symbols,

respectively. Note that(f) (a* = a or a') is linear inf. On F, the annihilation
operator and the creation operator obey canonical commutation relations,

la(f).a' @1 =F. 9w, [a(f),a@l=0, [a'(f).a"(g)]=0,
where[A, B] := AB — BA. Define
FP .= the linear hull of{a"(f1)---a"(f)Q.Q|fj e D, j=1,...,,n>1).

Let S be a self-adjoint operator acting . The second quantization &
dl'(S) : Fp — Fp, is defined by

n=0 \j=1 n

ares) =P (Z 1®---®’§“®--.®1)

with DT (S)) := ]—'ﬁ[;(S). Here we defingdI'($)¥)© := 0. In particular it follows
that
dT(5)Q = 0. (1.1)

Note that

dr(S)a'(fr)---a"(f)Q =" a'(f1)---a’(Sfp) - -a' (0. (1.2)

j=1
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From (1.2) it follows that, for f € D(S),

[dT(S), a(f)] = —a(Sf), (1.3)
[dT(S), a" ()1 =a'(Sf) (1.4)

on }'ﬁa(s). It is known thatdT'(S) is essentially self-adjoint. The self-adjoint extension
of dI'(S) is denoted by the same symhalI'(S). It can be seen that unitary operator
TG acts as

eizdF(S)aT(fl) . CIT(fn)Q — aT(e‘itSfl) - aT(eitan)Q.
Thus we see that

eitdF(S)a(f)e—itdr(S) _ a(e—itSf)’ (1.5)

1T g T(f)e=itdTS) — 4T(i1S 7 (1.6)

on Fiin. For a self-adjoint operatdF, we write its spectrum (resp. essential spectrum,
point spectrum) as(T) (resp.cesdT), op(T)). The second quantization of the identity
operator 1 onW, dI'(1), is referred to as the number operator, which is written as

N :=dT(1).

We note that
o ')
D(Nk) — {\PZ {l}l(n)} |Zn2k”\{](n)”2 < 00
n=0 s

and
a(N) = op(N) = N U {0}
1.2. Abstract interaction systems

Let 7 be a Hilbert space. A Hilbert space for an abstract coupled system is given
by

F=HRQF
and a decoupled HamiltoniaHp acting in F is of the form

Ho=A®1+1®dI(S).
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Assumptions (Al) and (A2) are as follows.

(A1) OperatorA is a self-adjoint operator acting i, and bounded from below.
(A2) OperatorSis a nonnegative self-adjoint operator actingh
Total Hamiltonians under consideration are of the form

H = HO + gH|, (17)

where ¢ € R denotes a coupling constant af] a symmetric operator. Assumption
(A3) is as follows.
(A3) H, is Hp-bounded with

| H\Y|<alHoY| +blI'Y], ¥ e D(Ho),
wherea and b are nonnegative constants.
Under (A3), by the Kato—Rellich theorent is self-adjoint onD(Hp) and bounded

from below forg with |g| < 1/a. MoreoverH is essentially self-adjoint on any core
of Hp. The bottom ofc(H) is denoted by

E(H) := inf o(H),

which is referred to as the ground state energyHoflf an eigenvectorY associated
with E(H) exists, i.e.,

HY = E(H)Y,

then ¥ is called a ground state dfl. Let E7(B) be the spectral projection of self-
adjoint operatofT onto a Borel setB ¢ R. We set

Pr = Er({E(T)}).

Then Py denotes the projection onto the subspace spanned by ground staltes of
The dimension ofPyF is called the multiplicity of ground states df, and it is
denoted by

m(H) := dim Py F.

If m(H) = 1, then we call that the ground state ldfis unique.
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1.3. Expectation values of the number operator
For Hamiltonians like as1(7), the existence of a ground stapg such that
¢g € D(L®N'?) (1.8)

has been shown by many authors, e[4,9,10,15,17,23,38]. Conversely, ¢y exists,
little attention, however, has been given to investigate whether (1.8) holds or not. Then
the first task in this paper is to give a necessary and sufficient condition for

PyF c D1 NY?). (1.9)

As we will see later, to showl(9) is also the primary problem in estimating an upper
bound of M(H).

1.4. Massive and massless cases

Typical examples of Hilbert spacd’ and nonnegative self-adjoint operat®rare

W = LARY), (1.10)
S = the multiplication operator byv, (k) := v/|k|2 + V2. (1.12)

In the case ofv > 0 (resp.v = 0), a model is referred to asraassive(resp.massless
model. Note that under (A1) and (A3),

D(H) = D(Hg) = D(A® 1) N D(1® dT(wy)). (1.12)

In a massive case, one can see tHaB) is always satisfied. Actually in a massive
case, we haved(dI'(w,)) c D(N) and

%”dr(wv)\l"” Z[INYI, Y e DIl'(wy)).
Together with 1.12) we obtain that
PyF C D(H) € DA®dT () € DA® N) C D& N*?).
Hence (.9) follows. Kernela(k) of a(f), f € L2(R%), is defined for eaclt € R? as

@)™ (k, ... k) = N+ TPk, ke, ... ky)
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and

(a(fH) )™ = / Fo@k)?)™ dk

COOR(I
for ¥ ¢ Fo0 )

fin , and it is directly seen that

(1.13)

fin .

00 (mod
/d lao®|2 dk = [NY2)2, ¥ e 70
R

From (1.13),a(\)¥ for ¥ € D(NY?) can be defined as af,-valued L? function on
R? by

a¥ :=s- lim a()¥, in L%(R?; Fp),

oo (d
where s-lim,_, - denotes the strong limit im2(RY; Fp) and sequenc¥,, ]—}ﬁ? (R
is such that¥,, - ¥ and N/2¥,, - NY2¥ strongly asm — oo. By an informal

calculation, it can be derivedointwisethat
(1® a(k))pg = g(H — E(H) + o(k)) *[H), 1® a(k)]pg. (1.14)

Note that at least we have to assumg € D(1® NY/?) for (1.14) to make a
sense, and the right-hand side of (1.14) is also delicate. See e.g., [37, Lemma 2.6,
13, p. 170, Conclusion] for this point. For massive casgé a(-))¢q is well defined

as anF-valued L? function onR?, sincepy € D(1® N/?), but of course it does not
make sense pointwise. From (1.13) and (1.14) it follows that

IL® NY2)pq)? = ¢ /R H = ECD) + o) 7 H, 1@ a®)]gg|®dk.  (1.15)
We may say under some conditions that
¢ € D(L® N*/?) and /R I(H — E(H) + o) [Hi, 1® a(k)]pgl* dk < oo
= [(1® N"?)pg|* = ¢ fR I(H — E(H) 4+ o) '[H, 1® a(b)]eg||* dk.

Although (1.15) has been applied to studyl ® N'/?)¢4|| by many authors, it must
be noted again that (1.15) is derived franformal formula (1.14).



F. Hiroshima/Journal of Functional Analysis 224 (2005) 431-470 437

We are most interested in analysis of ground states for massless cases. In this case
pg € D(1®N/?) is not clear, and it is also not clear a priori that® a(k))p4 makes
a sense. Then it is uncertain that identify14) holds true for massless cases.

Because of the tedious argument involved in establishing (1.14) pointwise, a quite
different method is taken to show (1.15) in this paper. We will show under some
conditions that

pge D(1® N'/?) <:>/d I(H—E(H)+o(k) ' [H, 1® a()]pgl* dk < oo, (1.16)
R

and (.15) follows when the right or left-hand side of (1.16) holds. The method
is an application of the fact that asymptotic annihilation operators vanish arbitrary
ground states. See (1.21). As a result, (1.15) and (1.16) can be valid rigorously
for both massive and massless cases without using (1.14). As far as we know, this
method is new, cf., see [6,7,20,21]. By means of (1.16) we can find a condition for
PyF C D(1® NY?),

1.5. Multiplicity

Generally, in the case wherg(H) is discrete, the min-max principle [35] is avail-
able to estimate the multiplicity of ground states. Actually the ground state energy of
a massivegeneralized-spin-boson (GSB) model with a sufficiently weak coupling is
discrete. Hence the min-max principle can be applied for this model [4]. However,
for some typical models, e.g., massless GSB models, the Pauli—-Fierz model, and the
Nelson model [33], etc., their ground state energy is the edge of the essential spectrum,
namely it is not discrete. See also [3,26]. Then the min-max principle does not work
at all.

Instead of the min-max principle, we can apply an infinite dimensional version of
the Perron—Frobenius theorem [16,18,19] to show the uniqueness of its ground state.
l.e., in a Schrddinger representation,

(P, e D) >0, W¥=0(£0), ®>0 (£0), (1.17)

implies m(H) = 1. Property 1.17) is called that—'# is positivity-improving. The
Perron—Frobenius theorem has been applied for some models, e.g., the Nelson model
in [9], and the spinless Pauli-Fierz model in [24]. It is, however, for, e.g., the
Pauli—Fierz model with spin/R, Hpg, we cannot apply the Perron—Frobenius theorem,
since, as far as we know, a suitable representatior f0f*F to be positivity-improving
cannot be constructed.

In this paper, applying the facPy F c D(1® N/?), we establish a wide-usable
method to estimate an upper bound of the multiplicity of ground states under some
conditions.
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1.6. Main results and strategies

The main results are (m1) and (m2).

(m1) We give a necessary and sufficient condition RyrF ¢ D(1® NY/?).
(m2) We prove niH) <m(A) under some conditions.

Strategies are as follows. It is proven that

o
¢g € DA NY?) = > (1@ alen)pgll” < oo, (1.18)

m=1

where {e,,}°°_, is an arbitrary complete orthonormal systemf. When the left or

m=1

right-hand side of 1.18) holds, it follows that
oo
Dl ®alem)pgl® = (L@ N2 g% (1.19)
m=1

Let us define an asymptotic annihilation operator by

a+(f)¥ =s- lim e IMH iTHo (1 @ g (f))e i 1HoH (1.20)
— 00

Of course some conditions o andf are required to show the existenceaf(f)¥.
It is well known [1,29], however, that (1.20) exists for an arbitrary ground statelof
Y = ¢4, anda(f) vanishesg, i.e.,

a4 (f)pg=0 (1.21)

for f € D with some dense subspa@®, (1.21) is applied for (ml1). We decompose
ar ()Y as

ar(NHY =A@a(MNHY -gG(NHY, [feD.
with some operatoG(f) : F — F. From (L.21) it follows that
A®a(Neyg=8G(Neg feD. (1.22)
We define the operatdf, : W — F by

Tpof =G(f)pg f€D. (1.23)
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1® a(f))(:og = gT(/)gf-
It is seen that the closure dT(pg,T(pg, is a Hilbert Schmidt operator and
Toyf = f fKp (kydk,  feW,
Rd

with some kernebcq,g(k) € F. See R.17) for details. Note that

o
Y T ggemll> =Tr((Tp,) Ty,) = / g (I dk.

m=1 R?
Using (.18), (1.24) and (1.25), we see that
pg€ DA®NY?) = g° /Rd Iy () I1Z dk < 00

and by @.19),

M1®Nﬂ5¢ﬁz=g2f Ww;@ﬁdk
Rd
Thus we can obtain that

[mfcIX1®N”5¢::/W%J@de<a3mrmh%eimf.

To show (m2) we apply the method [@8], by which we can prove that

dim(PyF N D1 ® NY?) < m(A),

1-04(g)

11 ® NY2) g4
whered(g) = sup —Z‘Pg
(pgePHfﬁD(l®N1/2) ”QDg”

_ i e, (K) 1% dk
lim sup — = <00,
0 Py gl

439

(1.24)

(1.25)

(1.26)

+ o(g). By (1.26) and the fact
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we see that lip.o 6(g) = 0. Hence for a sufficiently smaly, it is proven that

dim(PgF N D(1® NY2)) <m(A). Together with the facPy F ¢ D(1® N/2) under
some conditions, we get

m(H) = dim Py F<m(A).

We organize this paper as follows.

Section 2 is devoted to showyF c D(1® N¥/?). In Section 3, we estimate the
multiplicity of ground states. In Sections 4, we give examples including massless GSB
models, the Pauli-Fierz model and Coulom-Dirac system.

2. Equivalent conditions to Py F c D(1® N/?)
2.1. The number operator

Let {e,}-_; be a complete orthonormal system)af. We defineA,;, by

M
Ay = (N + 112 (Z a*(em>a(a)> (N+D7V2, mM=12....

m=1

Lemma 2.1. It follows that(1) Ay can be uniquely extended to bounded operatgy,
(2) Ay is uniformly bounded in M a$A /|| <1, and (3) s-limy— 00 Ay = N(N+1)~L.

Proof. Let us define
00 finite

For= [P D oi.ia’en) a’e,)Q . i, € CY | () Fin.

n=0 i1 <<y
Note thatF,, is dense inFp. Let ¢ =a'(e;))---a'(e;)Q, i1< --- <i,. Then

Avd = Piy..i, (M), (2.1)

where
n .
n+17 ln ng

1. .
ZTla ln—lgM < In,

1 . .
n+i’ llgM <12,
0, M < ij.
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Let ¥ € F, be such that¥ = Z?lniéemgin %y iat(ey) --al(e;)Q. We see that

.....

P12 = qulnge < |%....i,]%. From @.1) it follows that

,,,,,

finite
A¥= > iy i By, (Ma' (i) al(e,).
1< Sip
Then
finite n 2
2 2 2 2
HAMPIP = Y ot i PlBey, i, MDIP< (— ) IWPI%
) ) n+1
1< <y

Note thatAy leaves®?W invariant. Hence for an arbitrarlt’ = (¥} € F,,
we have

IAMYI? =D 1A ) ™)I2 = ZHAM‘P(’”H <Z( +1> REEN I
n=0

Since F,, is dense inFy, (1) and (2) follow. Let¥ € F, be as above. We see that
s-MIim AyY = 1‘1’. Hence for an arbitrargd € F,,
—00

n-+

s- lim Ay®= N(N + 1)~ 1. (2.2)
M—o0

Since ||[Ay||<1, we obtain 2.2) for ® € F, by a limiting argument. Thus (3)
follows. O

Lemma 2.2. Let {e;,};,_, be an arbitrary complete orthonormal system ). Then
(1) and (2) are equivalent

(1) ¥ € D(NY/?).
(2) ¥ € N2> D(a(en)) and Y oy lla(en)¥)|? < oo.
Moreover when(1) or (2) holds it follows that | NY/2¥|2 = 3%, |la(e,) Y|

Proof. (1) = (2) SinceF,, is a core of N2, for ¥ € D(NY/?), there exists a sequence
¥, € F,, such that s-limo ¥, = ¥ and s-lim_o NY2¥, = NY2¥ . It is well known
that ||a(/)®| < || fIIINY2®| for ® € D(N/?). Hence from the fact¥ € D(N/?), it
follows that¥ € D(a(e,;)). We have

M
Y la@Well? = (N + DY2¥,, Ap(N + DY2W) SINTV2E 2 + | Well?. (2.3)

m=1
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From this it follows thata(e,,)¥, is a Cauchy sequence in Sincea(e,,) is a closed
operator, s-lim.ga(e,)¥Y, = a(e,)¥ follows. Hence we obtain that, as— 0 and
then M — oo on the both sides of2(3), we have

o
Y la@)WIP<INY2P )2 + |2,
m=1

Thus the desired results follow.
(2) = (1) We see that

00 oo M
mgl la@n¥|?= lim >3 (@@, a@n)'¥™).

n=0m=1

Since "M (a(en)P™, a@,)¥™) is monotonously increasing ag 1 co and by the
fact that limy 0o .20 M (a(@n)P™, a(@n)P™) < oo, we have by the Lebesgue
monotone convergence theorem and (3) of Leniirig

oo M o0 M
i ——\\p(n) S—\p(n)y _ ; ——\\p(n) ——\\p (1)
00 > J@“;;—lm@mw ,a@m)¥ )_,;) A}@mmz_l(a(em)‘ll ,a@m)P™)

o0 o0
=Y lim (N +DY2P® Ay (N + DYV2PW) = "0 W02,
n=0 Moo n=0

This yields that¥ € D(NY/2). O
2.2. Weak commutators
In Sections 2.2-2.4, we consider the case wheve= ®PL2(RY) ~L3(R? x

{1,...,D}) and § = [w] where [w]: &P L2(RY) - &P L2(R?) is the multiplication
operator defined by

[wl@_1 /) = 0f; (2.4)

with w(-) : R — [0, c0) and (wf)(k) = w(k)f(k). The creation operator and the
annihilation operator ofF,(W) are denoted by

jth
Af,j)=a0® - f®--®0, felL*RY), j=1,...,D,

which satisfy onFip,

la(f, ). a'(g, iD= (F, )0, [a'(f.)),a'(g. i) =0, [a(f.j),alg, j)]=0.
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Let Sand T be operators acting in a Hilbert spagée We define a quadratic form
LS, T]v?, with a form domainD such thatD ¢ D(S*) N D(S) N D(T*) N D(T) by

[S, T1H (¥, ®) := (S, TD) — (T*V¥, SD), V¥,DeD.
The proposition below is fundamental.
Proposition 2.3. Let w f, f/</o € L2(R®%). Then

[1®dT([o]), 1@ a(f, HEETED 9 @) = (¥, —1 @ a(wf, j)D), (2.5)

[1®dT (o)), 1ea'(f, NIEETID ¢ o) = (¥, 1@ d (f, )HD). (2.6)

2.3. Asymptotic fields
Define onD(H),
at(fa J) = e_itHeitHO(].@a(f, j))e—i[HoeilH — e_i[H(1®a(€_”wf, j))eitH.

Note thatHp = A ® 1+ 1 ® dT'([w]). Assumption (B1) is as follows.

(B1) o satisfies that (1) the Lebesgue measurekof := {k € RY|w(k) = 0} is
zero, (2) there exists a subsgt c R? with Lebesgue measure zero such that

0
w e C3(R?\ K) and a:)(k);éOfornzl,...,d, k= (kt,... ko) € R\ K.
Example 2.4. A typical example ofw is w(k) = |k|? with p > 0. In this case

Ko = {0} and K = _;{(k1. ..., k) € Rk, = O}.

Lemma 2.5. Supposg?2) of (B1). Then

with some constant.c

2

/Rd P £ (k) dk‘ gsi for f € C3(RY\ K)

-1 _1 .

) 1 isw
Proof. We have, for KXm,n<d, ¢** = —= (60)) g <6—w> de on
52 Oky \ \ Ok, Ok

Okn
R?\ K. Hence it follows that by integration by parts,

. 1 o ([0t o ([ow\ "
isw(k) - v
‘/Rde f(k) dk‘ gsz /Rd akm ((akm) akn ((akn> f(k)>)

Since the integrand of the right-hand side above is integrable, the lemma
follows. [

dk.
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Proposition 2.6. Suppose(B1). Let f € C2(R%) N L2(R?Y) and f/yw € L%(RY).
Then

s-lim a,(f, )og=0, j=1,....,D. 2.7)
1—00

Proof. Note that it follows that |a,(f, )P <I|f/~Jolll(1 @ dT([w])Y2)e P,
j=1,...,D. Thus it is seen that

la:(f, DN <call f/Volll(H+ DY (2.8)

with some constant;. Let D be a core ofA and¥ = G @ a'(f1, j1) - --a'(fo, j)Q,
whereG € D and f; ch(Rd \K),l=1,...,n. We see that for an arbitraiy € R,

a1 Y ="V NG @al(fr jo) - a (g d i)
=1

where X means neglectingK. Since ff; € Cg(le \ K), by Lemma2.5 we see that
(€@~ £ )] <co/|t|? with Some constanty. Hence s-lim, o a(e’’ @9 £, ))¥ =0
follows. Let £ be the set of the linear hull of vectors such‘Hsabove, which is a core
of Hp. Thus there exist¥, € £ such that¥;, — ¢g Ho¥Y: — Hogq strongly ass — 0,

which yields that lim_.o || (Ho+ DY?(¥; — ¢g)| = 0. Let [ (Ho+ D) 2(¥: — @)l < &.
We obtain that

las (£, /gl
<NA®a(e™OTEID) £ Wl + (A @ ale ™ OEID) £ i) (P, — g

<A ®a(e " EHD £ N, + Ce.

Then limy— « lla: (f, j)@gll < Ce for an arbitrarye. Then the proposition follows. []

In addition to (B1), we introduce assumptions (B2)—(B4).

(B2) There exists an operatcfj(k) : F — F, k € R, j = 1,..., D, such that
D(T;(k)) > D(H) for alomst everywheré ¢ R? and

L@ ats i) HIRP w0 = [ F008. 1000 dk
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(B3) Let ¥ € D(H) and f € C3(R? \ K) with some measurable s& c R? such
that K ¢ K and its Lebesgue measure is zero. Then

‘/Rd dkf (k)(, e~ S HZEHITOOIT, (6o )| € L0, 00), ds).
(B4) [ITj()ggll € L2(RY).
Lemma 2.7. SupposgB1)—(B4). Let f, f/ /o € L2(RY). Then it follows that
[ 1 G = EGH) + 000) 7T Gl dk < o (2.9
and
A@atf Doy =g [, FOH = E(H) + 06) 7T 0pgdk. (210)

Proof. Noting that ||(H — E(H) + w(k))‘lTj(k)(pg||<||Tj(k)(pg||/w(k) for k ¢ K,
we see that

/Rd If )(H — E(H) + (k)™ T; (k) gl dk

2 1/2 1/2

| f (k)| -1 2

< ( / —dk) ( f o®)|(H — E(H) + o) T k) g4l dk)
k<1 (k) k<1

1/2 1/2
+ ( / |f(k)|2dk) ( / I(H — E(H) + co(k))lT,-(k)qog||2dk)
[k =1 k| >1

<(If/Vol + IFIDIT () gl < oo. (2.11)
Then @.9) follows. We divide a proof of (2.10) into three steps.
Stepl: Let f € C3(RY\ K), f/J/o € LAR?), and¥, ® € D(H). Then

(¥, A®a(f, ey = —ig / h ( / (W, f(kye SHZEEDFENT; (k) o) dk) ds.
0 R4

(2.12)

Proof. Let ¥, ® € D := Cgo([RR") ® D(dT'([w])). Note thatD is a core ofH. We see
that by @.5) of Proposition 2.3 and (B2),

%(\P, ai(f. )®) = ig / OO, 7T (e ) k.
R
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Then we obtain that fol/, ® € D,

(Y, a:(f, )H®P)

t
= (Y. A®a(f. )P +ig / ( / FReT O, e T (ke ) dk) ds.
0 R
(2.13)

Let W,® € D(H). There exist sequenceB,,, ®, € D such that lim, o ¥,, = ¥
and lim,_, o ®, = ® strongly. Eq. 2.13) holds true forV, ® replaced by¥,,, ®,,
respectively. By a simple limiting argument as — oo and thenn — oo, we get
(2.13) for¥, ® € D(H). By Proposition 2.6 and (2.13) we have

0= lim (¥, a:(f, Nog)
_ . A s att ey +is /-oo (/d(\P’ f(k)e—is(H—E(H)-i-w(k))Tj(k)(Pg) dk) ds.
0 R

Thus (2.12) follows. [J
Step2: (2.10) holds true fof such thatf € C3(R? \ K) and f//@ € LA(R%).

Proof. By (B3) and the Lebesgue dominated convergence theorem, we have

o0
—ig /O < /R LS (kye 'sH-EHTOOIT, (k) ) dk) ds
00 .
= —iglim / dse™® ( / (P, f(k)e—”(”—E<H>+w(k>>T,~(k)<pg)dk).
e—0 0 Rd
By (B4),

0 .
/R Lk /0 |75, e H-EMOOIT; (g0 ds

< ([ rwonmwegar) [ estas <o
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Hence Fubini's theorem yields thdtdk and [ ds can be exchanged, i.e.,

OO .
—iglim fo e ( /R (¥, f e SHEE+OINT; (k) ) dk> ds

e—0

— —iglim / </00(q{ f(k)efis(H—E(HHw(k)fis)Tj(k)q,g) ds) dk
e—0 Rd 0

=—g IimO/d(‘P, fk)(H — E(H) + wk) — is)_lTj(k)(pg) dk.
=0 JR

We can check that, fok ¢ K,,,

(W, f(k)(H — E(H) + wk) — i) T (k) ¢g)|

SIWIF®NIH — EH) + o) Tj (k) pgll, (2.14)
[[R{d |fENIH — E(H) + o()) " Tj (k) pg dk
SUF/Nol +1FIDIT;Oegl < 0o (2.15)

and

s-lim(H — E(H) + o(k) —ie) " pg = (H — E(H) + 0(k) " ¢g. (2.16)
Egs. @.14)—(2.16) imply that by the Lebesgue dominated convergence theorem,

tm, |8, 00 = EGD) + o = 974,005 dk
= [ 0¥ S0 H = ECH) + 00T (09 d
Since, by (2.15) we have
(¥, a(f, )og) = /R (¥ FOOH = ECH) + 00) ™5 (00g) dk
= (%= [ FOOH = G+ 00) T, ()0 b,

we obtain (2.10). OJ

Step3: Eq. (2.10) holds true fof such thatf, f//@ € L2(R?).



448 F. Hiroshima/Journal of Functional Analysis 224 (2005) 431-470

F &)/~ olk), [k <1,
f k), k| = 1.

g € Cgo(Rd \ K) such thatg, — g strongly ase — 0. Define

Proof. Setg(k) := { Sinceg € L2(RY), there exists a sequence

[ JoWgh), 1k < 1
folk) 1= {ggac), e

Hence f, € C3(R? \ K) by (2) of (B1), and [ | f (k) — fo(k)|? /o(k)dk — O and
S 1 G0) = fo(k)|? dk — 0, ase — 0. We see that

I1®a(fNeg— AR alf)egl <I(f = fo/Voll1®dT(w)?) gl — 0

and

”/Rd(f(k) — fe()(H — E(H) + w(k))lTj(k)q)gdkH

< ( / Mdk) + ( / k) — fa(k)lzdk) 17500l
|k|<1 (k) k| >1

-0

ase — 0. Then we can exten®(10) tof such thatf, f//o € L3(RY). O
2.4. Main theorem |

Set

Koy, (k) = (H — E(H) + o) 7 Tj(k)pg. &k ¢ Ko,
We defineT,, . LARY) - F, j=1,..., D, by

Tog f = /R | f R, (k) dk

with the domain

<o,

DTy, ) = {f e L3R H/Rd fyxg, (k) dk
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where the integral is taken in the strong senseFinNote that generaIIqu,g/, is an
unbounded operator, and '

A®a(f.)Neg=—8Tp, f. f. /N0 LARY). (2.17)
Actually
IA®alf. Mo <l f/Voll 1A dT (0D e,
holds, sincep, € D(1® dT'([w])¥?).

g7 IS

a Hilbert—-Schmidt operator(2) Suppose thaT(pgj is a Hilbert—Schmidt operatoithen

Lemma 2.8. (1) /d ||;<q,gj(k)||2dk < oo if and only if the closure oﬂ‘q,gj, T

oo
T 2 _ 2
;HT%J.emu 3 fR , 10, (117 ak

for an arbitrary complete orthonormal systefa,,};>_; in L2(RY).

Proof. The adjoint oqu)gj, T(;‘g‘ : F — L%(R%), with the domain
J

D(T; ) ={® € FI(x(), ®) € LXR)
J
is referred to as Carleman operator...
It is known [39, Theorem 6.12] thafRd ||;<¢,gj(k)||2dk < oo if and only if Tg;*g, is
J

a Hilbert—-Schmidt operator. When;‘g _is a Hilbert—Schmidt operator, it is also known
J
that

Tr(T;:jT;gj) = /Rd ||;c(pgj(k)||2dk,

which implies that . ||K(pgj(k)||2dk < oo if and only if T(,,gj(z Tyx ) is a Hilbert—
J
Schmidt operator,

ol T 2
TH(T g, ) Ty ) = THT0 T3 = /Rd g, , ()11 dk.

Thus the proposition follows. [

The main theorem in this section is as follows.
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Theorem 2.9. SupposgB1)—(B4). Then (1), (2) and (3) are equivalent

(1) PuF C DA® N?),
(2) T(ng is a Hilbert-Schmidt operator for alj =1,..., D and all ¢4 € PyF,

() Jri I(H — E(H) + o(k) " T;j(k)pgl?dk < oo for all j = 1,....D and all
Pqg € Py F.

Suppose that one dfl), (2) and (3) holds it follows that for an arbitrary ground
state ¢,

D
I8 N 0l = ¢ /R N = ECH) + 000) 7 Ty(0pg2dk. (2.18)
j=

Proof. Let {e,,}>>_; be a complete orthonormal system Bt(RY) such thate,, //o €
L2(RY). It is proven in Lemma2.2 that Py F C D(1® N¥2) if and only if

D oo

Y > A @ am. i)egl® < oo (2.19)

j=1lm=1
for an arbitrarypy € PyF. By (2.17), 1 ® a(@m, j))pg = —8Tp, em = —gT(ng_§.

Hence Py F ¢ D(1® N¥2) if and only if

D oo
§2 D T, enl? <00, g€ PuF.
j=1m=1

That is to say,PyF C D(1® N¥/?) if and only if Tq,gj is a Hilbert—-Schmidt operator

forall j=1.....D, and allpg € Py F, i.e., by Lemma2.8, Py F C D(1® NV/?) if
and only if

D
2 2
g XE/R" I, (KNP dk < 00, g€ PyF.
j:

Then the first half of the theorem is proven. Moreover by Lenni2, whenggy €
DA®NY?), [A® NY2)pg2 = 301 301 (1@ a(@m. /) ¢gll?, which yields that

D D
@@ NY2)pgl? = g2 3 Tr(To, )Ty, ) =87 /R 10, ()11 dk.
j=1 j=1

Thus the proof is complete.[J
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Remark 2.10. In [7] a more general formula than (2.18) is obtained.

3. Proof of m(H) <m(A)
3.1. Quadratic forms

We revive H = Hp + gH), where Hp = A® 14+ 1® dI'(S), and (A.1)—(A.3) are
assumed. Set

Ho:= Ho — E(Hp).

Actually E(Hp) = E(A). The quadratic formp, associated WithH ¢ is defined by

Bo(W, @) := (HY W, HY @), W, ® e DHY).

Define a symmetric form by
By (¥, @) := (¥, H®), Y,De D(Ho).

Since || HY| <alHo¥| + b|\P||, it follows that | H¥| <alHo¥| + b'||'¥||, where
b’ = b+ a|E(Hp)|. By an interpolation argumer84, Section IX], it obeys that

(Ho+ w~Y2H i (Ho + 1)~ Y2 <a 4+ b'/p.
Then
1By (¥, W) <@+ /who(¥. V) + (a+b'/wI¥I% ¥ e D(Ho, (3.1)

for an arbitraryu > 0. By (3.1), a polarization identity and a limiting argument,
By, (¥, @) can be extended ¥, ® D(ﬁé/z). The extension of3, is denoted by
Bu,» and which satisfies

By (P W) < (a+ b /PP, W) + @+ b /wP|°,  Pe D(H®). (3-2)

Thus we see that, for a sufficiently small
ﬁH = ﬁO + gﬂH|

is a semibounded closed quadratic form Dmﬁ(l)/z) X D(ﬁé/z). Then by the repre-
sentation theorem for form80, p.322, Theorem 2.1], there exists a unique self-adjoint
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operatorH’ such thatD(H') C D(ﬁé/z) and

By(W.®) = (W, HD), ¥eDHS) ®cDH).

On the other hand, we can see directly thatH) C D(ﬁé/z) and

By (P, @) = (P, HD), ¥eDHY)., ®e D(Ho),

which yields thatH’ = H. l.e.,H is a unique self-adjoint operator associated with the
quadratic formf,. We generalize this fact in the next subsection.

3.2. Abstract results

As was seen in the previous subsection, self-adjoint opeFater Hy+g H, is defined
through the quadratic fornf,. In this subsection, as a mathematical generalization,
we define a total Hamiltoniai#/y through an abstract quadratic form, and estimate an
upper bound of dinf Py, 7 N D(1® NY/2)}.
Remark 3.1. The Nelson Hamiltonians without ultraviolet cutoffs are defined as the

self-adjoint operator associated with a semibounded quadratic form[22%33]. As
far as we know, it cannot be represented as the féfgnt+ ¢ H.

Let Bi,; be a symmetric quadratic form with form domam(ﬁé/z) such that
—1/2
B (¥, B) | <aPo('¥, V) +b(P, W), ¥ e D(HY) (3:3)

with some nonnegative constarsandb. Define the quadratic fornf on D(ﬁé/ 2) by

B = Bo + &Bint-

Proposition 3.2. Let |g| < 1/a. Then there exists a unique self-adjoint operafdy
associated with$ such that its form domain i@(ﬁé/z),

BOY. @) = (W, Hy®), W e D(HY). e D(Hg)

and

—1/2
BOP, @) = (H/*W, Hy*?®) — (HyY?W. Hy?®), W, ® e D(HY).

where Hq, = HqEp,((0, 00)) and Hq_ := —HqEp,((—00, 0]).
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Proof. From @3.3) it follows that |gBi, (¥, ¥)|<|glaBo(¥, ¥) + |g|b(¥, ). Hence
by the KLMN theorem [34, Theorem X.17], the proposition follows.]

Assumptions (Gap) and (N) are as follows.
(Gap) infoesd{A) — E(A) > 0.
: 1® NY2)¥
(N) lim sup Ide NOF_q
870 we(Py, HINDIONY2) Pl
Suppose thatop(S) # 0. Then by the facts that inf(dI'(S) [o2 1enw)) 20,
op(dl(Hfex,erwy) # 0, and a(dI'(Hgop) = op(dl'($)[goyy) = {0}, it is seen
that dI°(S) I1s a nonnegative self-adjoint operator, and has a unique ground Qtate
with eigenvalue 0. We have a lemma.

Lemma 3.3. Assume(Al), (A2), (3.3), (Gap), (N)and op(S) # 0. Then there exists
6(g) > 0 such thatlim,_,0d(g) = 0 and, for g with é(g) < 1,

dim {(Pqu) NDA® Nl/z)} < m(A). (3.4)

1-4(9)

Proof. Let ¢ > 0 be such that{E(A), E(A) + &) No(A) = {E(A)} and we set
Ps := EA([E(A), E(A) + ¢)) and P;- := 1 — P,. Furthermore letPq := E,r(s)({0}).
We fix a ¢q € (Pp,F) N D(1® N'?). Using the inequality ® 1<1® N +1® Pq
in the sense of form, we have

(9g. 0x) <A NYD g2 + (P ® Po)ogll® + (P @ Pa)epgl®. (3.5)

Let Q := PL®Pq. Itis checked thapy € D(ﬁé/z), Qg € D(ﬁ(l)/z) andﬁ(l)/ngog =

Qﬁé/zq)g. Hence we have
0=(Q¢qy. (Hq — E(Hg))¢g)
= Po(Q@g. ¢g) + gPint(Q9g. pg) — E(Hg)(Qg. ¢g).
From this we have

~8Bin(Q0g. 0g) = (Hy > 094 Hg *0g) — E(He)(Q0g. 0. (3.6)

Since

—1/2 —1/2 —1/2 —1/2
(Hg Qg Hg ¢g) = (Hy Qg Hy Q¢g)

(A + = E(ANI(EA(2) ® Ears)(10) Qogl? = (0. 00y,

/[E(A)+£,oo) x {0}
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then @.6) implies that

—gBint(Q@g, @g) = (¢ — E(Hg))(Q g, Pg)- (3.7)

We shall estimatéfiiy(Qpg, ¢g)l-

/))O(Qogv ¢g) = (g, Hypg) — gﬂint(q’gf ®g)
< EHlogl? + 11 (aho(9g: 0g) + b(@g.0g)) .

which yields that, sincelg| < 1/a, Bo(@g ¢g) < (E(Hg) + |2Ib) (g, ¢g)/(1 — alg))
follows. Then we have

Bint(@g, pg)l <aPo(@g. 9g) + b(@g, ¢g) < cint(@g, ¢g),

a(E(Hq) + |g1b)

where cjpt := 1 aig|

+ b. From the polarization identity, it follows that

|ﬁint(Q(ng (pg)| < ZCint(QDg’ q)g) (38)
Note that
IBCY, ) — Bo(F, V)| = |gl|fin (¥, V)| < |gl(a + b) | (Ho + DY) 2.

Then

|FCY. ) — Bo(F. )]

lim —
(Ho+ 1)Y2¥|?

0 -
8 wep@y?

< lim [gl(a +b) =0,
g—0
which implies that forz € C with Iz # 0,
lim |(Hq =)™ = (Ho—2)"1| = 0. (3.9)

See e.g.[33]. Thus it follows that

IimOE(Hq) = E(Hg) = 0. (3.10)
g—)

Then there exists a constant> 0 such that for allg with |g| < ¢, it obeys that
¢— E(Hg) > 0. Then by 8.7) and (3.8), forg with |g| < c,

|ﬂint(Q(pg9 (Pg)| <2l Cint

2
1Qpgll“< gl ¢ — E(Hg) ¢ — E(Hg)

lpgll>.
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Let c(g) := sup (1 ® NY?)¥|/||¥||. Together with 8.5) we have
We(Pig FYNDADNY2)

(9. 9 <c()llggll® + g1~ lpgl? + 1P ® Po)ogl?. (3.11)

E(H )

Settingd(g) := c(g)? +2|g|T(H) we see that by3.10) and (N), lim_.o d(g) =

Then by (3.11) there existg, <c such that forg with |g| < g,
(@g: pg) <(L = 3(2) " (g, (P ® Po)9g)- (3.12)

Let {q)g} "1, M<oo, be a complete orthonormal system @, 7) N D(1® NY/?).
Then by 38.12),

(@f, 0§ < (L= 5(2) (9}, (P: ® Pa)p)). (3.13)

Summing up fromj =1 to M, we have

M
dim {(Pﬂqf) NDA® Nl/z)} <@=68) "D (9h, (P.® Po)o)).
j=1

Since
M . .
> (@} (P: ® Pa)p) <Tr(Pa ® Pq) = TrPa x TrPq = m(A),
j=1
we obtain 8.4). Thus the lemma is proven[]
From Lemma 3.3, corollaries immediately follow.
Corollary 3.4. Suppose the same assumptions as in Len3n3aand, in addition
Py, F C D(1® NY?). Then m(Hq) < (1 — 6(g))~*m(A). Moreover suppose that g
is such thaté(g) < 1/2. Thenm(H) < m(A).
Proof. SincePHq]-'ﬂD(1®Nl/2) = Py, F, the corollary follows from Lemma 3.3. [J
Corollary 3.5 (Overlap). Suppose the same assumptions as in Ler@@and, in ad-

dition, Py, 7 C D(1® N¥/?). Let g be such that(g) < 1. Then for an arbitrary
ground stategy, it follows that (¢4, (Pa ® Pa)pg) # 0.
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Proof. By (3.12) it is seen that
0 < logli> < (1= 3() H(@g. (P: ® Pa)eg) = (1 — 5(2)) (g (Pa ® P)g).
Hence the corollary follows. (I
3.3. Main theorem Il
We assume thatV = @PL2(R%) and S = [w], i.e., H = Hg + gH) and Hy =
A®1+1®dI([w]). Now we are in the position to state the main theorem in this

section.

Theorem 3.6. Suppose tha(B1)-(B4), (Al), (A3), (Gap)In addition assume that for
arbitrary ¢4 € PyF,

/R H = EC(H) + o) (k) pg|1® dk < oo

and

im ¢ sup Y23 Jpe ICH = ECH) + 0(0) 15 (k) g% dk
8
g—>0 (/)gEPH]: ”(709”2

=0 (3.14)

Then there exists a constapt such that for g with|g| < g+, M(H) <mM(A).

Proof. By Theorem2.9, it follows thatPyF c D(1® N¥/?) and
D
11 NY2)pgl> =g /R I(H — E(H) + ()T (k) oyl dk.
j=1

By this and 8.14) we have lim_.o sUppcp, = (1 ® NY2)qq4ll/llogll = 0. From this
and Corollary 3.4, the theorem follows[]

4. Examples
4.1. GSB models

GSB models are a generalization of the spin-boson model, which was introduced
and investigated in [4]. Examples of GSB models are é\gevel systems coupled to

a Bose field, lattice spin systems, the Pauli—Fierz model with the dipole approximation
neglectedA? term, a Fermi field coupled to a Bose field, etc. See [4, p. 457].
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The Hilbert space on which GSB Hamiltonians act is
Fese = H ® Fo(L*(RY)),

where? is a Hilbert space. Let(f) anda'(f), f € L2(R?), be the annihilation oper-
ator and the creation operator o (L2(RY)), respectively. We use the same notations
a(f) anda'(f) as those of Sectiod.1. We set

1

ﬁ(aT(Z) +a(), J4eL%RY.

() =
GSB Hamiltonians are defined by

Hgsp := Hgspo + ¢HgsB|-

Herea € R is a coupling constant, and

7
Hgspo:=A®1+1®dl'(wgse), Hgsp| := Z B; ® ¢(4)),
j=1

where wgsg : LA(RY) — L2(R?) is a multiplication operator bysgsg(k) such that
wese() : R — [0, 00) and X denotes the closure of. Assumption (GSB1)—(GSBS5)
are as follows.

(GSB1) OperatoA satisfies (Al). Se#d := A — E(A).
(GSB2) /4, 2j/Jogss € LAR?), j=1,...,J.

GSB3) B;, j =1,...,J, is a symmetric operatorD(Zl/z) c n!_.D(B;) and there
J j=1 J
exist constants; andb; such that ‘

—1/2 —1/2
1B, fll<a; 1A fIl +b;1 £, fe D@

J -1

Moreover |o| < Zajn,lj/ wossll
j=1
(GSB4) wgsp satisfies that (1yogsg(-) is continuous, (2) lim—co wasek) = oo,
(3) there exist constants > 0 andy > 0 such that

lwase(k) — wese(k)| < Clk — k'|"(1+ wesp(k) + wesp(k).

(GSB5) 4, j=1,...,J, is continuous.



458 F. Hiroshima/Journal of Functional Analysis 224 (2005) 431-470
Assume (GSB1)—(GSB3). Then it can be shown thédtsg is self-adjoint on

D(Hgsgo) = D(A® 1) N D(1® dI'(wgse)) and bounded from below. Moreover
it is essentially self-adjoint on any core éfgsgo. We introduce assumptions.

(IR) A;/mgsg € L*(R?), j=1,...,J.
(GSB6) wgsp satisfies (B1) withw replaced bywgsg.
(GSB7) 1; € CA(R\K), j=1,...,J, whereK satisfies(B1).

Proposition 4.1. Assume(GSB1)—(GSB5), (IR)and (Gap). Then there exists a con-
stant o, > O such that foro with || < «,, Hgsg has a ground statepg such that
11® NY2)gq4)l < oo.

Proof. See[4, Theorem 1.3, 8, Appendix].]

Let f € C3(R?\ K) and ¥, ® € D(Hgsg). We have

[a(f). Hosaily "o (¥, @) = fR | FO(Y, Tospk)®) dk,

J

where Tgsp(k) := » 2 (k)(B; ® 1).
j=1

Theorem 4.2. SupposgGSB1)—(GSB3), (IR), (GSB 6and (GSB 7). Then it follows
that

PrgssFose C D(L® N2 (4.2)
and
I(1® NY?)gqll* = o fR lI(Hese — E(Hese) + wese(k) ~Tesek) ggll* dk.  (4.2)
In addition, supposeg(Gap). Then there exists,. such that fora with |o| < o,
mM(Hgse) <M(A). (4.3)

Proof. We shall check assumptions (B1)—(B4) and (3) of Theoz with the fol-
lowing identifications:

F =FesB, Ho= Hespo, H = Hgsgl, w=wgss, D=1,
Tj—1(k) = Tesa(k).
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(B1) and (B2) have been already checked. We have

/d FO(P, e*iS(HGSB*E(HGSB)+(UGSB(/<))TGSB(k)Q)g) dk
R

J
=Y (P, e sHoss-EHese) (B @ 1)) /R SU)A(Rkyewess O . (4.4)

Since f; € C3(R?\ K), we see that by Lemma.5, ‘ / ) FU)2j(kye~is@ess®) gl ¢
R
L([0, 00), ds), which implies, together with (4.4), that (B3) follows. We have

J
2 ] 2 2
/Rd | Tasak) gl dk<JZ;(/Rd|Aj(k>| dk) 1(B; ® Dpgll* < 00
j:

and

|, WHasa — EHese) + oseth) Tasebypgl? dk

<JZ</ 14,01 dk) I(B; ® Dggll? < oo
= Rt 0GsB(k)2 ! 9 '

Thus (B4) and (3) of Theoren2.9 follow. Hence (4.1) and (4.2) are proven. We
check (3.14) in Theorem 3.6 to show (4.3). Note that with some constarasid c»
independent of,, we have

1(B; ® Dpgll < (a; (c1E(Hasp) + c2)/% + b)) [ pgl. (4.5)
Thus
lim sup o? [ (Hoss — E(Hgsp) + COGSB(k))_lTGSB(k)(ngZ dk
x>0 ¢g€PrggpFase ||(Pg||2

J
< lim o?J ) “(aj (c1E(Hgsp) + c2)*/? + bj)?|| 4/ wessl* = 0
a—0 1
j:

Then @.3) follows from Theorem 3.6.

Corollary 4.3. AssumgGSB1)—(GSB4), (GSB6), (GSB7), (IRdnd (Gap). Then there
existsa. such that foro with |o| < o444, Hgsg has a ground state anth(Hgsp) <
m(A). In particular in the case oin(A) = 1, Hgsg has a unique ground state
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Proof. It follows from Proposition4.1 and Theorem 4.2.0]
4.2. The Pauli-Fierz model

The Pauli-Fierz model describes a minimal interaction between electrons with spin
1/2 and a quantized radiation field quantized in the Coulomb gauge. The asymptotic
field for Hpf is studied in e.g., [14,26]. The Hilbert space for state vectors of the
Pauli—-Fierz Hamiltonian is given by

Fer = LA(R3; C?) ® Fo(LA(R3x{1, 2})).

Formally the annihilation operator and the creation operatoﬂ-"asz(Rsx{l, 2})) is
denoted bya*(f, j) = / f)a*(k, j)dk. The Pauli-Fierz Hamiltonian with ultraviolet
cutoff @ is defined by

1 e
Hppi= ——(p®1—eAp)? +V®1+1® Hi — ——(c®1) - By,
2m 2m

wherem > 0 ande € R denote the mass of an electron and the charge of an electron,
respectively. We regar@ as a coupling constanp denotes the momentum operator

0 0 G,
of an electron, i.e.p = (p1, p2, p3) = (—i—, —i—, —i—), andV is an external
Ox1 axz (’)xg
potential. We identifyFpr as

(&)
Forx 2 /R  Fo(LAR(1. 2))) dx, (4.6)

where fﬂfgmdx denotes a constant fiber direct integfdb]. A; and B; denote a
guantized radiation field and a quantized magnetic field with ultraviolet cytpffe-
spectively, which are given by, under identification (4.6),

®
Ap = 1®/3 Ap(x)dx, = 1®/ By(x)dx
R
with
Ap) =) / ﬂe(k,n{f”‘xa%, j)+eatk, p) de
) v/ 20pg(k)
and

— (?)(k) _; : —ikx T o ikx .
By(x) = 121:2/ Nl zkxe(k,])){e a'k, j)—e a(k,j)} dk
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Here wpr(k) := |k| and @ denotes an ultraviolet cutoff functiort; := dI ([wpF])
is the second quantization of the multiplication operaiopg] : L2(R3x{1, 2)H) —
L2(R3{1, 2}) such that([wpf] f) (k, j) = wppk) f(k, j). Vectore(k, j) € RS, j=12,
denotes a polarization vector satisfyiag, 1)-e(k, 2) = 0, e(k, 1) x e(k, 2) = k/|k| and
le(k, Hl =1, j =1, 2. Finally o := (01, 02, 03) denotes X 2 Pauli matrices satisfying
the anticommutation relationdg;, o;} = 26;; for i, j = 1,2,3, where{A, B} :=
AB + BA. Assumptions (PF1)—(PF3) are as follows.

(PF1) (1) /orrd. {//@pF &/wpr € LA(R?) and (k) = p(—k) = opk). (2) V is
A-bounded with a relative bound strictly less than one.

(PF2) (1)§ € C®(R3). (2) e(-, j) € C¥(R3\ Q), j = 1, 2, with some measurable set
Q with its Lebesgue measure zero.

- 1 o
(PF3) The ground state energy of self-adjoint operdipr.= —2—A + V acting in
m
L2(R3) is discrete.

Let Hpro be Hpr with ¢ =0, i.e., Hpro := Hp ® 1+ 1 ® Hy, where

_(hp O
Hp'_<0 hp)

acting in L2(R%; C?) ~L2(R% @ L2(R3). In what follows, simply we writeT ®
1 for <€ 2) ® 1 unless confusions arise. We note thdpro is self-adjoint on
D(Hpro) = D(A®1)ND(1® Hf). Note that(p®1) - AQ, = AQ, -(p®1) on D(Hpro).

We set
Hpr = Hpro + ¢HpF |,

where

e
—A

1
o @-A@—g(d@l)-B@.

1
Hpg) = —Z(P ®1-Ap+

Assume (PF1). I1125,27] it is shown thatHpg is self-adjoint onD(Hpg) and bounded
from below. Moreover it is essentially self-adjoint on any coreHyro.

Proposition 4.4. SupposgPF1) and (PF3). Then there exists a constaat <oco such
that for e with|e|<e., Hpr has a ground state such that; € D(1® N1/2y,

Proof. See e.g.[10,11,17,23,31,32]. J

Remark 4.5. Spinless Pauli—Fierz Hamiltonians are defined by

Hspinless,_

1
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which acts inF = L2(R%) @ Fi(L2(R3x{1, 2})). It can be proven thaHFS,Einlesshas a
ground statepy such thatgy € D(1® N/?), and it is unique[24]. Then it follows

that P spiessF C D(1® N2y,
PF

We have
[1® a(f, j), Herili PP (¥, @) = / FU P, Tog; (k)W) dk,

where Tpe; (k) := ToeS (k) + e[ (k) with

O, 1 0k :

Tpr; (k) == —Eme ek, j) - (p®1—eAy),
@y L OB ik ) -

TpF; (k) := 2wPF(k)e (—ik x e(k, j)) - (6 ®1).

Let HFC,’F be Hpr with V = 0. Then the binding energy is defined by
Epin := E(HSp) — E(Hpp).

Proposition 4.6. SupposgPF1) and (PF3). Then Epin> — E(Hp).
Proof. See[17,22]. [

Assumption (V) is as follows.
(V) Potential V =V, — V_ (Vi(x) = max{0, V(x)}, V_(x) = min{0, V(x)}) satisfies

that (1) 1My —ee Vo(x) = Voo < 00, (2) X2V € LES(R®), (3) E(Hp) < —Veo.

Lemma 4.7. SupposgPF1), (PF3)and (V). Then for a sufficiently smal > 0 there
exists a constant(¢) independent of e such that

1(x] ® Dyl c(e)
PpgePyF ”(pg” Ebin — Voo — &

Proof. It can be proven in the similar manner g,22]. O
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Remark 4.8. Proposition4.6 and (3) of (V) imply thatEpin — Voo > 0. Furthermore
combining Lemma 4.7 and (3) of (V) imply we have

[1(x] ® Dgll - c(e)
PpgePyF llogll —E(Hp) — Voo — ¢

= Cexp, (47)

where we note thatexp > 0 is independent oé.

Theorem 4.9. Assumg(PF1), (PF2),and (V). Then it follows that
PhoeFpE C D(1® NY2) (4.8)

and

11 NY?)pgl> =€ > fR | (Hpe — E(Hpp) + wpe(k)) " Tor,; () ggl|* dk.  (4.9)
j=12

In addition, assume&PF3),then there exists a constast, such that for e withe| < e,

M(HpF) <M(Hp). (4.10)

To prove Theoremd.9 it is sufficient to check (B1)—(B4), (3) of Theorem 2.9 and
(3.14) with the following identifications:

F =Fpr, Ho=Hpro, H =Hpri, w=wpr, D=2 Tjk)=TpFk).
Let K := (J3_,{(k1. k2, k3) € R®|k, = 0} and K := K U QU {O}.
Lemma 4.10. Assume(PF1) and (PF2). Then for f € C%(R3 \ K) and ¥ € D(Hpp),
‘ /R Ty, e sHpr=EHpR Tore) 7o D (k) ) dk| € L(10, 00).ds), 1 =1,2.
Proof. We see that
fR S, st EHRRerE O T () o) dk

1 .
_ - Z (p@1— eA(?))ue—zs(HPF—E(HPF))\R K;tl)(s’x’ Nog).
m
n=12,3
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where KD (s, x, j) = 2K (s, x, ) + 2K (5, %, ) with

) . » 0 (owprtk) k) .
KOs x. i) = — / l(s(DPF(k)-ch)_( PF Kek. )dk,
1 (s, x, ) E ) e \k, —prp(k)f( ye(k, j)

. —i 0 P (k) ) )

(1) ._ i (swpp(k)+kx) %

K VX, )= — | —=—=FK)e(k, dk.
2 (52 ]) ./[Rqae Ok, («/_prlz(k)f( ye(k. )

From the fact thath) € C*(R%) and f e C3(R®\ K), it follows that forv =1,2, 3,

0 b ok
(wPF() 2B ek j))ecg°(R3\{0}>’

Ok \ ku 20pF(k)
0 P(k) . ,

G e Ay v(K, (R )
Ok, ( Banc Dok J>) € C&(R®\ (0)

Thus by[36, Theorem X1.19 (c)] there exist constants and ¢, such that

D . cl — =
S)Lcjlel’u(s,x,J)|<1+s, 1=12 u=123. (4.11)
By this we have
KD G, gl < ——= {eallggh + c2ll(x1 @ Dggl} (4.12)
I T ¢} S(S+1) ¢} [¢]

Since|[(p ® 1 — eAg) Yl <yl (Hpr — E(Hpp) Y| + ¢ with some constants)
and ¢, we conclude that

1 ,
_= Z (p®1— eA(?))'ue—lS(HPF—E(HPF))\.P’ K;Sl)(s’ X, ))Pg)
m n=123
3 /
S (all(Hpr — E(Hpe) Yl + 2l P (callpgll + c2ll(1x] @ Dopgl)

s(L+s)
(4.13)

Similarly we can estimate

/”‘%d Fk)(P, e*l'S(HPF*E(HPF)+(1)PF(k))TPFS?) (k)QDg) dk

1 4
=5 Y (0u@ e T EHDY KD, x, [y,
n=12.3
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where K@ (s, x, j) = 2(K{P (s, x, j) + 2K (5, x, j)) with

2 .
Ki )(s, X, J)

. i 0 (wprk)  @k) . .
o i(swpr(k)+kx) _
= l/R3e —ak“ ( k, ) fU)(=ik x e(k, J))) dk,

2 .
Ké )(s, X, j)

. 0 (k) . .
. i(swpr(k)+kx) A _
— A;sg 6kﬂ < Sone D fk)(—ik x e(k, J))) dk.

We can see that there exist consta@tsand ¢, such that

(2)(S,X,j)|<i, l:1,2, M:1,2,3

sup|K
xpl L 1+

Then we conclude that
1 .
~5 Z (04 ® 1)e s (HPr—E(HpE) K;SZ)(S’x’ Nog)
n=123

3 ~ ~
<o 11 {llogl + 220101 © gl (414)

1
s(L+s)
Hence the lemma follows from4(13) and (4.14). O
Lemma 4.11. Supposg1) of (PF1). Then ||Tp|:§-l)(~)(/)g|| e LAR3), 1=1,2.

Proof. It follows that

3 ~
1 oMl
@
Tor ) (gl < Y = ——e 1-eA, :
I Tpr; (k) gl 2 J20mr ) [(p®1—eAp)upyll
p(k)

3
1 Toe? (k) gl <

— 1k .
o —prp(k)l [lgl
Since Joprd, ¢/ J/opr € L2(R%), the lemma follows. [J

Lemma 4.12. Assume(PF1). Then

fR (H— ECHep) + opr(k) T (k) ggl2dk < 00, 1=1,2
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Proof. It is seen that(x, ® Deog € Her with

i
Z(P Q1l—eAp)upg =[x, ® 1, Herlpg = (Hpr — E(Hpp) (xu ® Dopy.

Then
1 ok .
ToeY () pg = —;%eﬂ“e(k, J) - (—im)(Hpg — E(Hpp) (x ® 1)@pg.

Hence we have

(Hpr — E(HpF) + wPF(k))_lTPFi»l) (k) pgq

_ipWetk, j)

- -1 _ —ikx
0] (Hpr — E(Hpp) + wpr(k)) " (Hpr(k) — E(Hpp))e™ "™ (x @ 1)@y,

where we used that'** maps D (Hpro) onto itself and onD(Hpf),
—ikx ikx 1 1 2
Hpp(k) == e Hpge =HPF+—(p®1—eA¢)~k+—|k| .
m 2m

Thus we have

|(Hpr — E(Hpp) + wpp(k)) " (Hpr(k) — E(Hpp) e (x, ® Daogll

<||(Hpg — E(Hpp) + wpr(k) " (Hpg — E(Hpp))e ™ (x, ® Doyl (4.15)

1 )
+I(Hpe — E(Hpp) + 0pr(k)) ™ —(p @ 1= eAy) - ke™ (x, @ Dpgll

(4.16)
+[(Hpr — E(Hpp) + wpp(k)rl%|k|2e*”“(xu ® Dyl (4.17)

It obeys that
(415 < [I(Ix| ® Dapg| (4.18)

and

1
(G IDI< oIk (x] @ Depgll- (4.19)
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Note that by|[(p ® 1 — eAp) Yl <cyll(Hpr — E(Hpp) Il + 31,

/

I(p ® 1— eAy)u(Hpr — E(Hpp) + wpr(k) togl <cillogll t 5 ( ) —=—lgl.
Then
3 / /
((4.16)] < — (c1lk] + ) [1(1x] ® Dopgll- (4.20)
Together with 4.18)—(4.20), we have
I(Hpg — E(Hpr) + pr<k>)*1TpF§” *) g
|p(k)] ( IkI )
B—==(1 (c Ikl 4 ¢3) ) 1(1x] ® Dpgll- (4.21)
V2ore \ " 2m T A T2 ¢
Since \/@prd, ¢/ /opF € LA(R3),
/R (Hor — ECHep) + 0pe)Toe™ (g dk < o0 (4.22)
follows. Moreover we have
3 ¢k
Hpr — E(H 1) T (k) g |l < . 4.23
1P — E(Hpp) + pe(k) ™" Tor;” (K)pgll < o «/7(k” Pgll (4.23)
Hence
fR NI(Hpe — E(Hpp) + 0pe(k) ™ Tpe? () ggl1% dk < o0 (4.24)

follows. Thus by 4.22) and (4.24), we get the desired results]

Proof of Theorem 4.9. Lemmas 4.10-4.12 correspond to assumptions (B3), (B4) and
(3) of Theorem 2.9, respectively. Then (4.8) and (4.9) follow from Theorem 2.9. By
(4.21), (4.23) and (4.7), we have

i 2 2i=1.2 Jas | (Her — E(Her) + ope(k)) - Yok () gl dk
im sup

e=0 g€ PHpeFPF ||(Pg||2
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_ Dk k3 z

pald 20pr(k) 2m
. 3 W)l }2
lim 6¢? | | ———2—1 dk=0.
+ oo {Zm V20prk)

Thus @.10) follows from Theorem 3.6.]

Remark 4.13. Although, in[28], formula (4.9) has been used to showhf) <2, there
is no exact proof to derive this formula in it. See Section 1.3.

In [28] it has been also proven that@n(Hpr) under some conditions od. We
state a theorem.

Theorem 4.14.In addition to (PF1)—-(PF3)and (V), we assumem(Hp) = 2 and
V(x) = V(—x). Then there exists a constani., such that for e withle] < ey,
M(Hpf) = 2.

Proof. m(Hpp) <2 follows from Theorem4.9 and ZX m(Hpp) from [28]. O

Example 4.15. Suppose thatV, € L,loc([R{3) and V_ is infinitesimally small with re-
spect toA. Then, by a Feynman—Kac formula, it is shown that»=£() s positivity
improving in L2(R®). Hencehp has a unique ground state IF(R®). Then MHp) = 2.

4.3. The Coulomb-Dirac systems

We can apply the method stated in this paper to a wide class of interaction Hamil-
tonians in quantum field models. Hamiltonidiicp of the Coulomb-Dirac system is
defined as an operator acting in

Fep = F(@*L2(R%) @ Fo(L?(R3x(1, 2))),

where F; (@*L2(R%) denotes a fermion Fock space ovefL2(R%). The Coulomb-
Dirac system describes an interaction of positrons and relativistic electrons through
photons in the Coulomb gauge. Operafé¢p is of the form

Hcp = Hiermion® 1+ 1 ® dI'(wep) + e Hrad + €2HCoqumb

where Hiermion denotes a free Hamiltonian of; (@*L2(R%)), wcp the multiplication
operator bywcp(k) = |k|, and Hrad, Hcoulomb interaction termsHcp has been investi-
gated in[12], where the self-adjointness and the existence of a ground state are proven
under some conditions. It is known that(Hermion) = 1. Then using the method in



F. Hiroshima/Journal of Functional Analysis 224 (2005) 431-470 469

this paper we can also show

M(Hcp) <M(Hiermion) = 1,

i.e., the ground state aficp is unique for a sufficiently smak. We omit details.
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