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The Gilbert�Pollak conjecture, posed in 1968, was the most important conjecture
in the area of ``Steiner trees.'' The ``Steiner minimal tree'' (SMT) of a point set P
is the shortest network of ``wires'' which will suffice to ``electrically'' interconnect P.
The ``minimum spanning tree'' (MST) is the shortest such network when only
intersite line segments are permitted. The generalized GP conjecture stated that
\d=infP/Rd (lSMT(P)�lMST(P)) was achieved when P was the vertices of a regular
d-simplex. It was showed previously that the conjecture is true for d=2 and false
for 3�d�9. We settle remaining cases completely in this paper. Indeed, we show
that any point set achieving \d must have cardinality growing at least exponentially
with d. The real question now is: What are the true minimal-\ point sets? This
paper introduces the ``d-dimensional sausage'' point sets, which may have a lit to
do with the answer. � 1996 Academic Press, Inc.

1. Introduction

The conjecture of Gilbert�Pollak [5] was the most important conjecture
in the area of ``Steiner trees.'' The ``Steiner minimal tree'' (SMT) of a point
set P is the shortest network of ``wires'' which will suffice to inter-
connect P. The ``minimum spanning tree'' (MST) is the shortest such network
when only intersite line segments are permitted. The Gilbert and Pollak [5]
conjectured that

\2= inf
P/Rd

l SMT(P)
l MST(P)
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was achieved when P was the vertices of an equilateral triangle. In the same
paper, they also suggested a generalization of their conjecture that

\d= inf
P/Rd

l SMT(P)
l MST(P)

was achieved when P was the vertices of a regular d-simplex. This
generalization was also referred as the Gilbert�Pollak conjecture in some
later references [7, 8, 12]. To distinguish their original serious conjecture
and their suggested conjecture,1 we will use the terminologies, the
Gilbert�Pollak conjecture and the generalized Gilbert�Pollak conjecture,
respectively. The Gilbert�Pollak conjecture was proved by Du and Hwang
[4]. The generalized Gilbert�Pollak conjecture in the cases 3�d�9 was
disproved by Smith [12]. We settle remaining cases completely in this
paper.

The purpose of this paper is to present disproofs in all dimensions
�3. We2 will first (Section 3) present an ultrasimplified disproof. The
reader who is solely interested in convincing himself that the generalized
Gilbert�Pollak conjecture is false when d�3, may stop here. Next
(Section 5) we will sketch a second disproof, whose advantage is that
it brings to center stage the remarkable ``d-dimensional sausage'' point
set.

Finally (Section 7), we present a third disproof based on a nonconstruc-
tive ``packing principle.'' This one's advantage is that it shows that any
N-point set in Rd having the minimal Steiner ratio must have cardinality
N growing at least exponentially as a function of d. Both the second and
the third disproofs work well for large d and leave small d for computa-
tional verification or more careful calculation.

The attention now (Section 8) shifts to determining just what point
set P is the one with minimal \d for each d�2. The d-sausage could be
the answer. Section 6 presents tables of \ values showing that it is the
current record-holder in all dimensions. A forthcoming study by WDS and
J. MacGregor Smith will present extensive heuristic evidence to support the
belief that the 3-sausage is optimal. There is reason to suspect, however
(Section 8), that in sufficiently high dimensions d, the d-sausage is not
optimal. (Section 8 summarizes what is and is not known about \d .) Thus,
the situation is rather mysterious.

116 DU AND SMITH

1 The original statement is as follows: ``One might further conjecture, by analogy with the
situation in the plane, that the corners of the regular simplex in D-dimensional Euclidean
space provide a minimum of Ls �Lm .'' (Ls=lSMT and Lm=lMST.)

2 Different disproofs were found by both authors, working independently. We then decided
to write a joint paper.
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2. Some Well-Known Facts and Some Notation

Any Steiner tree is in fact a tree made of line segments and has no angle
<120%. (Reason. otherwise, an infinitesimal perturbation would shorten the
tree.) An easy theorem, which was proven in more generality by Rankin
[9], asserts that no more than three points on a d-sphere can exist, such
that the angular separation between any two of them is �120%. Hence
every vertex of a Steiner three has valency �3.

We will let \(P) denote the Steiner ratio (length of the Steiner minimal
tree divided by the length of the minimum spanning tree) of a point set P.
\d is the infimum of \(P) over all point sets P in Rd. We use ``MST'' to
stand for minimum spanning tree and ``SMT'' to stand for Steiner (mini-
mal) tree. K denotes the end of, or absence of, a proof. (Proofs of easy
lemmas will be omitted.) All ``simplices'' mentioned from Section 4 on will
be regular.

3. Ultra-simplified Disproof

Here is the simplest disproof of the generalized Gilbert�Pollak conjecture
we have been able to devise.

Theorem 1. The regular d-simplex cannot have the minimal Steiner ratio
if d�3.

Proof. Consider the set P of 1+d+d 2 points in Rd+1 whose Cartesian
coordinates are all permutations of (1, &1, 0, 0, ..., 0), plus the additional
point (0, 0, ..., 0). Observe:

1. These points actually lie in the d-space arising from the hyperplane
�d+1

i=1 xi=0.

2. The distance between any two of these points is �- 2.

3. The points form d+1 regular d-simplices, each of which share the
common vertex (0, 0, ..., 0) but no other vertices. (The i th of these d+1
regular simplices just arise from the points having a 1 in coordinate i.)

4. Each of these regular simplices has edge length - 2.

Now clearly \(P)�\ (d-simplex) by observations 2, 4. But by observa-
tion 3, the fact that d+1�4, and the fact that any tree with a point of
valency �4 cannot be minimal, we see \(P)<\ (d-simplex) if d�3. K

117GENERIZED GILBERT�POLLACK CONJECTURE
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4. The d-Sausage

The disproof above showed that an angle was <120%. The proof of this
was simply by use of Rankin's theorem; no attempt was made to force
angles to be as small as possible and thus gain the largest possible decrease
in \. (Indeed, the point set we used probably never even minimizes \ to
small perturbations.)

The d-dimensional point set which we call the ``d-sausage'' is the product of
such a minimization attempt.3 This point set may be described as follows.

1. Start with a unit (diameter) ball in d-space.

2. Successively add unit balls so that the N th ball you add, is always
touching the min(d, N&1) most recently added balls.

This procedure uniquely (up to congruence) defines an infinite sequence
of interior-disjoint numbered d-balls. The centers of these balls form a dis-
crete point set, which we call the d-sausage. Indeed it is most convenient
to consider the doubly infinite sausage in which there is a ball correspond-
ing to very integer, both positive and negative (although this makes no
difference to the Steiner ratio). The first N points of the d-sausage will be
called the ``N-point d-sausage.''

There are two convenient mental images of the d-sausage. The first is to view
it as the vertices of a simplicial complex made of d-simplices pasted together at
common faces. Namely, points numbers m, m+1, m+2, ..., m+d for a regular
d-simplex for any integer m, and two such simplices are adjacent at a common
(d&1)-face iff their m values are adjacent.

The second mental image is that the points lie in consecutive order equally
spaced along a d-dimensional ``helix.'' That is, the d-sausage has an infinite,
transitive, discrete group of symmetry isometries. An isometry ofd-space exists
that will map sausage point m to sausage point m+k for all m simultaneously
where k is any integer, and it consists of a translation by k times a particular
fixed ``axial'' vector, plus k times a particular ``twist'' (rotation of d-space pre-
serving the axial vector). The complete linear transformation��axial translation
and twist��arising when k=1 is readily uniquely determined from the coor-
dinates of points 0, 1, 2, ..., d+1. Suitable helices would arise by generalizing to
allow k to be a real number by means of suitable (nonunique) notions of nonin-
teger powers of a linear transformation.

It is an immediate consequence of this second view.

Lemma 2. The construction above can be continued indefinitely and hence
the d-sausage does exist.

118 DU AND SMITH

3 The 6-point 3-sausage was first discovered by J. MacGregor Smith. The generalization to
any values of N and d is due to WDS.
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It also follows that

Lemma 3. Every sausage point is an extreme point of the d-sausage's
convex hull.

Clearly the length of the MST of the N-point d-sausage is N&1. The
Steiner ratio of the d-sausage will be defined as the infimum of the Steiner
ratios of the N-point d-sausages as N � �. Since \ for the N point sausage
is obviously at least as large as \ for the (2N&1)-point sausage (consider
gluing two SMTs for an N-point sausage together at a common sausage
point), one realizes that this is not only the infimum, but in fact it is the
limit.

5. The d-Sausage's Steiner Ratio Is Less than the d-Simplex's

We will prove

Theorem 4. The Steiner ratio of the (2d+1)-point d-sausage is less than
the Steiner ratio of the regular d-simplex (which is the (d+1)-point
d-sausage) if d�3.

Remark 5. In fact a stronger statement apparent from our argument is
that the Steiner ratio of the (2N&1)-point d-sausage is less than the
Steiner ratio of the N-point one, for each integer N, N>d�10.

It is immediately obvious that

\(d-sausage)�\(d-simplex) if d�1.

This arises from the ``first mental image'' of the sausage, by consideration
of a network T made of the SMTs of the simplices whose vertices are
[1, 2, ..., d+1], [d+1, d+2, ..., 2d+1], [2d+1, 2d+2, ..., 3d+1], et
cetera.

In fact, equality holds when d=1 and d=2. (When d=2 this is a conse-
quence of the Du-Hwang theorem (verification of the GP conjecture when
d=2).)

To prove strict inequality when d�3, we will show that T is improvable,
because at sausage points numbered 1 mod d, which have valence 2 in T,
the angle 9d formed by the incident line segments of T is <120%. Note that
there are many possible equal-length versions of T, arising from applying
any of (d+1)! possible isometries to each of these simplices.

Let ;d denote the angle, as viewed from sausage point d+1, between the
centers of the simplices whose vertices are sausage points 1, 2, ..., d+1, and
d+1, d+2, ..., 2d+1.

119GENERIZED GILBERT�POLLACK CONJECTURE
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Frank Morgan pointed out the following to us.

Lemma 6. At least one of the equal length version of T must involve an
angle, at sausage point d+1, whose cosine exceeds cos ;d .

Proof. The (2d+1)-point d-sausage consists of two simplices S, S$ with
a point p (which we have been calling ``sausage point d+1'') in common.
Let â be a unit vector from p towards the center of S. Let b� 1 be a unit vec-
tor of some edge from p of the SMT of S. Let [b� i : i=1. . .m] be its images
under the m isometries of S & T fixing p. Let primes indicate similar objects
of S$. Then

:
m

i=1

:
m

j=1

b� i } b� j$=\ :
m

i=1

b� i$+ } \ :
m

j=1

b� j$+=(sâ) } (s$â$)=ss$ cos ;d

with s, s$ positive and at most m. K

So if ;d is less than 120%, our theorem is proven.
Although we do not know a closed formula for ;d , the first few values

arise from cos ;d= f (d )�(d d( d+1
2 )), where the values of the integer f (d ) are

d f(d)

1 &1

2 &6

3 &34

4 &40

5 5829

6 225568

7 7221500

8 229477248

9 5781285995

10 264454496768.

We have calculated the first 500 values by use of the following convenient
explicit coordinates for the points of the d-sausage: The first d+1 points
are columns of the (d+1)_(d+1) identity matrix in Rd+1. (These, of
course, lie in the hyperplane whose coordinate sum is 1.) The remaining
points pi are got by the recurrence

pi=
2
d

:
d

j=1

p i&j&pi&d&1.

120 DU AND SMITH



File: 582A 265207 . By:BV . Date:04:02:00 . Time:13:09 LOP8M. V8.0. Page 01:01
Codes: 3099 Signs: 2545 . Length: 45 pic 0 pts, 190 mm

(We are now using ball diameters of - 2 instead of 1; for convenience.
Hopefully the reader will have no trouble adjusting to this irrelevant scale
factor.)

For all d with 3�d�500, we found cos ;d>&1
2. In fact, as is suggested

by the fact that cos ;160r0.960637,

Lemma 7. When d � �, ;d approaches 0.

Remark 8. Indeed, ;dr- 12.6�d radians when d is large. (This number
``12.6'' is merely an extrapolation from numerical results. It may not be
precise and we do not claim to have proven it.)

Proof Sketch. Use the convenient coordinates mentioned above. The
distance from a vertex to the simplex center is (d 2&d+1)�d 2 � 1. Con-
structing the sausage by a sequence of reflections of simplices in their faces,
we see that the distance Ld, k between simplex centers m and m+k is the
total length of a k-step walk, each of whose steps is �2�d long (i.e., since
1�d upper bounds the distance from a simplex center to a face center). The
turning angles between the walk steps (regarded as line segments) are the
same as the dihedral angle of a d-simplex, that is arc cos(1�d ), which
approaches a right angle.

Were it the case that these were exactly right angles, every step being in
a direction orthogonal to all previous ones, then it would be the case that
Ld, k=Ld, 1 - k, which is the intuition behind this proof��matters being
slightly more complicated since the angles are not exactly right angles. In
fact,

Ld, k=|(I+R+R2+ } } } +Rk&1) v|,

where v is the vector representing the first walk step, and R is a certain
orthogonal matrix whose effect is to shift one's sense of direction in
between walk-steps. (Incidentally, R&I is noninvertible so the usual trick
for summing these series does not apply.) Imagine you are walking through
Rd carrying a (d&1)-simplex, oriented normally to your direction of
motion. R has the effect of turning your direction of motion an angle
arc cos(1�d ) away from the last vertex of our simplex, and then shifting
your sense of direction in the directions orthogonal to your motion, by
mapping vertex i of our (d&1)-simplex to vertex i+1 mod d. Now, if it
were the case (which it is not) that R were the circulant matrix ``Q'' with
1's on the superdiagonal and a 1 in the bottom-left entry, and 0's elsewhere,
then Ld, k=Ld, 1 - k for k=1.. .d, and this would be precisely the all-right-
angle case we had just considered. (Once k>d, the growth eventually
becomes linear in k. This regime will not be of interest to us.) In fact, R is
very similar in structure to Q. The angles we are rotating through are not

121GENERIZED GILBERT�POLLACK CONJECTURE
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right angles but in fact are arc sec d and arc sec(d&1), which, when d is
large, are very close to right angles. As a result, in a suitable basis R is a
small perturbation of Q. In fact, one may see that the L2 norm |R&Q| of
the perturbation is O(1�d ). As a result Ld, k=- k Ld, 1+O(k�d ) Ld, 1 so that
the perturbation has no effect on the fact that Ld, d=O(1�- d).

This proves ;d=O(1�- d), since ;d is the apex angle of an isosceles
triangle with legs t1 and base Ld, d . K

These two lemmas show that the GP conjecture is false in all sufficiently
large dimensions. In fact, by exercising slightly more care (i.e., using
explicit numbers instead of big ohs) one may see that Lemma 7 shows
falsity when d�100. The range 3�d�500 is covered by our explicit
calculations of ;d .

6. Explicit Upper Bounds on the Steiner Ratio of d-Sausages

We have computed the following upper bounds g(d ) on \(d-sausage):

d g(d)

1 1

2 0.866025403784438647=sqrt (3)�2
3 0.784190373377122247

4 0.743985617828134

5 0.721810674855881

6 0.708536716660975

7 0.700120875002678

8 0.694558735568743

9 0.690767953841645

10 0.688124343497604

11 0.686248729433044

12 0.684900899944705

13 0.683923344683512

14 0.683209788374833

15 0.6826867992

16 0.68230263

17 0.68205

18 0.68183

122 DU AND SMITH
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Fig. 1. Postulated ``path''-type topology for d-sausage SMT.

These upper bounds4 g(d ) are the lengths of certain Steiner trees for the
d-sausage which have the ``path-topology'' given in Fig. 1, where the
numbers denote the sausage points in their natural order.

The best Steiner tree with path-topology was found by using the well-
known [5] concave-up behavior of the SMT-length as a function of Steiner
(or any) point coordinates with the SMT topology held fixed, to see that
there must be a unique local (and global) length minimizing configuration
which has the same symmetry group as the d-sausage itself. Hence the
geometry of the SMT within each individual sausage-simplex must be the
same (i.e., the SMT is periodic, with the ``unit cell'' being a simplex). In
that case \(d-sausage) may be found by solving a (d&1)-dimensional
convex optimization problem, which we wrote a special-purpose computer
program to do.

Specifically, inside a ``unit cell'' simplex there is exactly one Steiner point,
attached to exactly one vertex of the simplex and to the ``same'' points on
the two cell-faces. One need only solve for the d&1 barycentric coordinates
of the point on the cell face which minimizes the length of this 3-terminal
Steiner tree (the point on the other cell face has the same barycentric coor-
dinates, only cyclically shifted), to determine everything. The formula for
the length L of the SMT of three points forming a triangle with sides
a, b, c, a�b�c, and area Q is

L=min(- (a2+b2+c2)�2+2 - 3 Q, a+b)

and this length-function, of course, is a concave-up function of the
unknown barycentric coordinates. This concavity makes the minimization
problem easy despite its (d&1)-dimensionality.

For example when d=4, the barycentric coordinates at the minimum are
r(0.162, 0.338, 0.338, 0.162). If the unit cell simplex is taken to have ver-
tices which are the rows of the 5_5 identity matrix, then the intersection
of the 4-sausage's SMT with the unit cells is in fact the SMT of the three

123GENERIZED GILBERT�POLLACK CONJECTURE

4 We believe the numerical errors in g(d ) are a unit last place. Regardless of possible
numerically inadequate optimization, the values given are still valid upper bounds to unit last
place accuracy.
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Fig. 2. Postulated ``path of trees'' topology for d-sausage SMT.

points with coordinates5 (0.162, 0.338, 0.338, 0.162, 0), (0, 0, 1, 0, 0), and
(0, 0.162, 0.338, 0.338, 0.162). By (6) we see that this SMT has length
r1.052. Meanwhile the MST of this 4-sausage has length - 2r1.414 per
sausage point, for a ratio g(4)r0.744.

The postulation of the path-topology of Fig. 1 is supported by the fact
that it is true when d=1 and true WLOG when d=2, and the path topol-
ogy is correct for the N-point sausages when d=3 and N=4, 5, ..., 13. Even
if and when this postulation is not true (more on that below), it still leads
to valid upper bounds, of course.

We have the following monotonicity lemma.6

Lemma 9. \(d-sausage) is a strictly decreasing function of d.

Proof Sketch. The (d&1)-sausage may be embedded inside the
d-sausage by ``folding'' (d&1)-space inside d-space much as you would
fold a sheet of paper. The folding process leads to an interconnecting tree
for the d-sausage which is not longer than the shortest such tree for the
(d&1)-sausage; in fact this tree must be improvable due to the fact that it
contains bent line segments, which it must do unless the SMT consisted of
a union of SMTs each lying inside a component simplex, a possibility
which we have previously ruled out. K

By applying Wynn's epsilon extrapolation [14] to g(1. . .14), we find that

lim
d � �

g(d )r0.6812\0.0001.

Meanwhile it is know [1] that the d-simplex has the Steiner ratio which
tends to C=- 3�(4&- 2)r0.66984 or below, and that the 80-simplex

124 DU AND SMITH

5 For your information, the exact values of the numbers ``r0.162'' and ``r0.338'' are the
root r of 90x4+24x3+5x2&8x+1=0 and 1�2&r, respectively.

6 Meanwhile, one may show a\(a-simplex)+b\(b-simplex)<(a+b) \([a+b]-simplex) if
a�b�1. Also, obviously \d is a nonincreasing function of d. Finally, by a proof exactly
similar to the lemma's, g(d ) is a strictly decreasing function.
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has \�0.677754. The fact that 0.6812>0.6777>0.6698 indicates that,
although the path-topology of Fig. 1 is almost certainly correct when d=3,
it probably is not optimal in sufficiently large dimensions of d, in particular,
d=80.

We conjecture that the correct topology is in the ``path-of-trees'' topol-
ogy family pictured in Fig. 2. (The path-topology of Fig. 1 is the special
case of Fig. 2, arising when L=1.)

7. Sets with the Minimal Steiner Ratio Have Exponentially

Large Cardinality

The fundamental idea which made the proof of Theorem 1 work, is
encapsulated by the following theorem.

Theorem 10 (Packing principle). Given a d-dimensional point set P,
d�3, construct the union U of cones of (diametric) apex angle 60% whose
common apex is a fixed point A # P, and whose axial rays are rays AB,
B # P. If at least four interior-disjoint copies of U can be placed in d-space
with common apex A, and | P|<�, then \d<\(P).

Proof. Four suitable copes of P placed with common point A, form a
set P4 of cardinality 4 |P|&3, which will have the Steiner ratio strictly
smaller than \(P) if |P|<� since the Steiner tree formed of four copies of
the SMT of P has a 4-valent vertex A and is, hence, improvable. The 60%
angular ``buffer zones'' prevent l MST(P4)<4l MST(P). K

One may conjecture that a minimal-\ point set Rd for any d�3 must
have infinite cardinality. We have no inkling of how to prove this con-
jecture, but we can show the following remarkable consequence of the
packing principle.

Theorem 11. An N-point set P/Rd which achieves the minimal Steiner
ratio \d , must have cardinality N obeying

N�W 1
2 - VB(?�3, d )X+1,

where

VB(%, d )=
2Id&2(?�2)

Id&2(%)

125GENERIZED GILBERT�POLLACK CONJECTURE
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and

Im(x)=|
x

0
(sin u)m du.

Remark 12. The functions Im(x) and VB(%, m) are discussed in the
WDS's Ph.D. thesis [10, Section III.C.3.1-2]. In particular, full asymptotic
expansions, derived using Laplace's method, are given there for m large.
For our present purposes it will suffice to say that

I0(x)=x, I1(x)=1&cos x, I2(x)=
x&sin x cos x

2

and for m>2 one may recover Im(x) by use of the integration by parts
formula

Im(x)=
m&1

m
Im&2(x)&

(cos x)(sin x)m&1

m
.

When d is large and %, 0<%<?�2, is fixed, we have

VB(%, d )tcos % - 2? d (csc %)d&1.

Thus Theorem 11 proves that N grows at least exponentially as a function
of d. Note csc (?�3)=2�- 3; in fact,

N>(3�4)d�4 when d�2.

Proof. Definition. A point set P on the unit sphere in Rd is ``K-unpack-
able'' if it is impossible to find K (possibly transformed by multiplication
by an orthogonal matrix) copies of P on the d-sphere so that each copy is
at least distance 60% away from each other copy.

Thus, for example, if the angular ``covering radius'' of P is <60%, that
is, if every point of the sphere is covered by at least one spherical cap
centered at a point of P and having angular radius 60%, then certainly P is
2-unpackable. The reverse implication is not necessarily true, however.

For another example (and we intend to use this one!) if P is 4-unpack-
able, then any set P _ OP, were O is some orthogonal matrix such that
dist(P, OP)�60% (distances being measured angularly on the sphere) must
be 2-unpackable. K

The packing principle may now be restated as follows: The radial projec-
tion of a finite point set in Rd achieving \d onto a sphere centered at any one
of its points, must be 4-unpackable.
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Now, we will show the following lemma, from which the theorem
follows.

Lemma 13. Any 2-unpackable point set on a sphere in Rd must have
cardinality N with

N2�VB(?�3, d ).

Proof. We will be implicitly using the Haar measure on the space Od of
d_d orthogonal matrices. This measure (as is well known) is uniquely
specified by the facts that its total integrated mass is 1 and it is invariant
under group operation (multiplication by an orthogonal matrix).

Now a mass 1�VB(?�3, d ) of the matrices in Od will map a specified
point i of P to within angular distance �60% of a specified other point j
(which could be the same point) of P. This is because VB(%, d ) is the sur-
face area of a sphere in Rd of unit radius, divided by the (d&1)-volume of
a spherical cap of angular radius % drawn on this sphere. This set of
matrices will be called ``excluded'' by point pair (i, j ). Since there are N2

pairs of points, even if all the excluded sets of Od were disjoint, a non-
excluded matrix would still have to exist if N2<VB(?�3, d ).

If a matrix O exists that is not excluded by any point pair, then P is not
2-unpackable since P _ OP is a 2-packing. K

It is an interesting question just what the minimal cardinality of
K-unpackable sets are, as a function of K and d and possibly when ``60%''
is changed to some other angle.

In low dimensions the packing principle is rather weak. Suppose one
conjectures that any 2-unpackable set on a sphere in R3 must have car-
dinality �5. (The 5-point set arising from the radial central projection of
the triangular bipyramid is 2-unpackable.) If this is true, it would follow
that any 4-unpackable set must have cardinality �3, and in fact the set
arising from an equilateral triangle inscribed in the sphere's equator, is
apparently 4-unpackable. Even if this is all true, then the packing principle
when d=3 leads to nothing stronger than the obvious fact that N�4 for
any \-minimizing N-point set in R3.

However, when d becomes large, the exponential growth in Theorem 11
eventually kicks in to yield impressive results. Thus to compute some
numbers in (11)7
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7 As can be seen, Theorem 11 first shows N�d+2, disproving the Gilbert�Pollak conjec-
ture in a third way, when d=50. The particular formula (11) is not strong enough to disprove
GP when d<50, due to the rather weak (Haar measure and 4-unpackability) argument we
used, but the fundamental idea behind it (the packing-principle), of course, disproves GP in
every dimension d�3.
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d N is at least

49 49

50 53

100 2218

200 3481911

500 10233465928731809

100 50354832002265644106698068172260

8. What Is Known about \d ? Open Questions

In this section we will survey the known upper and lower bounds on \d

and state two remaining open questions and some speculation.
Chung and Gilbert [1] showed that lim supd � � \(d-simplex)�

C=- 3�(4&- 2)r0.66984 and, in fact, it is likely [12] that equality
holds. Certainly the ``path of trees'' topologies are capable of approaching
C, and it may also be shown that \(d-octahedron)�C+=d , where =d � 0
as d � �. We do not know whether the d-sausages or the d-octahedra can
get below C.

The proofs of Theorem 4 (and Theorem 1, if one is careful) show
\(d-simplex)&\(d-sausage)=0(1�d ) but cannot hope to show anything
stronger.

Open Question 1. Is \d>C for all d�1?

It is trivial to see [5] that in any metric space, \� 1
2.

Graham and Hwang [6] showed that \�1�- 3r0.57735 in any
Euclidean space.

Du [3] found the improved bound \�l, where l=(2+z&- z2+z+1)�
- 3r0.6158277481, and zr0.148663719631161 is the unique positive real
root of

128z6+456z5+783z4+764z3+408z2+108z&28.

As regards finite point sets, we remark that the 6-point 3-sausage has
\r0.808065. This compares with the (4d+1)-point set from the proof
of Theorem 1 (when d=3) at r0.809325, the regular tetrahedron
(r0.813052) and the regular octahedron (r0.811197). All numerical facts
about �13-point sets mentioned arise from use of the computer program
described in Smith [12].
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In fact, the N-point 3-sausages are the current record-\ N-point sets in
3-space for every N�4 with the exception of N=5. (The best known
5-point set in 3-space is the regular tetrahedron plus another point
infinitesimally near to one of the tetrahedron vertices.)

Open Question 2. For which d, if any, is it the case that \d=
\(d-sausage)?

Certainly d=1 and d=2 work. J. MacGregor Smith and WDS [13] will
soon publish a study providing extensive experimental evidence (but no
proof!) that it is also true when d=3. The sausages hold the current
records in every dimensions. Could it be that the sausages are optimal in
all dimensions?

Although this question is unresolved in any dimension �3, the packing
principle method makes it seem plausible��although it does no
prove!��that the d-sausage is not optimal in all sufficiently large dimen-
sions. Indeed, this is plausible when d�15. To explain this remark: in large
dimensions d it becomes easy to find out d-sausages whose ``balls'' are inte-
rior-disjoint, except that all four sausages have exactly one ball in common.
(By ``easy'' we mean that random rotations will work with high probability.
Cf. the proof of Lemma 13.) In this case, the MST of the resulting
4-sausage object is the same as the union of the MSTs of the sausages, but
the SMT is not the union of the four sausage's SMTs (since this union con-
tains a point of valency 4) but is in fact shorter. This almost proves, but in
fact does not prove (because �&1=�), that the d-sausage is nonoptimal
in each suitable dimension.

Still, even if this almost-proof were to turn into a proof, the sausage
would still be absolutely safe from it when d=3 and d=4, and quite safe,
although not absolutely safe, when d=5. This is since four suitable
sausages can only exist in dimensions d in which 8d disjoint unit balls can
``kiss'' one. The maximal kissing number when d=3 is 12, and when d=4
is 24 or 25 (widely believed to be 24 and arising in a unique configuration)
and when d=5 is 40�46 (widely believed to be 40 and arising in a unique
configuration). For these facts about kissing numbers, see [2].

Finally, a suitable infinitesimal perturbation of the d-sausage will show
that the ``greedy trees'' (GT) of Smith and Shor do not necessarily achieve
a better ratio than the MST, even for the current record-\ point sets. This
was recently observed by DZD (in a manuscript submitted to Algorithmica)
when d=2, but his technique generalizes8 to d�2. Could it be that the
d-sausage yields the minimal ratios for both SMT�MST and SMT�GT?
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8 The conjecture that greedy trees will force a better approximation than \d , d fixed, may
still be salvageable by altering the definition of ``greed'' to allow bounded ``lookahead.''
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