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a b s t r a c t

Let G := B o Z be an infinite cyclic extension of a group B where the action of Z
on the set of conjugacy classes of non-trivial elements of B is free. This class of groups
includes certain strictly descending HNN-extensions with abelian or free base groups,
certainwreath products byZ and the soluble Baumslag–Solitar groups BS(1,m)with |m| ≥

2. We construct a model for EG, the classifying space of G for the family of virtually cyclic
subgroups of G, and give bounds for the minimal dimension of EG. Finally we determine
the geometric dimension gdG when G is a soluble Baumslag–Solitar group.
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1. Introduction

Let G be a (discrete) group and let F be a family of subgroups of G. That is F is non-empty and closed under conjugation
and taking subgroups. A classifying space of G for the family F is a G-CW-complex X such that

1. the fixed point space XH is contractible if H ∈ F;
2. the fixed point space XH is empty if H is any subgroup of G that does not belong to F.

We also say that X is a model for EFG. The quotient space X/G is called a model for BFG.
Classifying spaces exist for any family F and are unique up to equivariant homotopy [8]. However in order to do some

computation with classifying spaces it is important to know nice representatives in the G-homotopy class of models for
EFG. Generally a model for a classifying space is considered nice if it satisfies some finiteness conditions, for example being
finite dimensional or being of finite type (only finitely many equivariant cells in each dimension). For more details see for
example [9].

In the case that F = {1} is the trivial family of subgroups, the universal cover of an Eilenberg–Mac Lane space K(G, 1) is
a model for EG := EFG. A classifying space for the family F = Ffin(G) of finite subgroups of G is also known as the universal
G-space for proper actions and denoted by EG. For these families many nice models are known. For more details we refer to
the comprehensive survey article on classifying spaces by Lück [10].

The object of study in our text is the classifying space for the family F = Fvc(G) of virtually cyclic subgroups which is
denoted by EG. Recently, classifying spaces for this family of subgroups caught the interest of the mathematical community
due to its appearance as the geometric object in the Farrell–Jones conjecture in algebraic K - and L-theory (this conjecture is
originally stated in [4]). In contrast to models for EG and EG, the classifying spaces for virtually cyclic subgroups are not well
understood. Classes of groups that are understood are word hyperbolic groups [5], virtually polycyclic groups [12], relative
hyperbolic groups [7] and CAT(0)-groups [11,3]. Furthermore, there exist general constructions for finite extensions [9] and
direct limits of groups [12]. Some more specific constructions can also be found in [2,14].
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Among the classes of groups for which there are no known nice models for EG are soluble groups or, more broadly,
elementary amenable groups. Even in the case that G is metabelian there is no known general constructions for a nicemodel
for EG. In a recent paper [6] it has been shown that one cannot expect any finite type model for EGwhen G is an elementary
amenable group. In general it is conjectured that there exists no finite model for EGwhen G is not virtually cyclic [5].

It turns out that virtually cyclic extensions are the major source of obstruction to a general construction of nice models
for EG, see for example Theorem 5.1 in [15]. As mentioned above, there exists a general construction for finite extensions.
However there is no known general construction for an infinite cyclic extension, not to mention the case of a virtually cyclic
extension.

In this article we will consider infinite cyclic extensions of an arbitrary group B. These are precisely the semidirect
products G = B o Z. We will show how to construct a model for EG when a model for EB is given, provided that the
following condition on the extension is satisfied: Z acts freely by conjugation on the set of conjugacy classes of non-trivial
elements of B. This construction will be such that a finite dimensional model for EBwill give a finite dimensional model for
EG. The resulting models will be far away from being of finite type. One major ingredient in our paper is an adaptation of a
construction of Juan-Pineda and Leary in [5].

The main result of this paper is Theorem 15, where we give bounds on the minimal dimension a model for EG can
have. The class of groups to which this theorem can be applied to includes certain strictly descending HNN-extensions with
abelian or free base groups, certain wreath products by Z, and the soluble Baumslag–Solitar groups BS(1,m) with |m| ≥ 2.
Furthermore, in the latter case we will give an explicit construction of a model for EG of minimal dimension. This brings us
to our secondmain result, Theorem 20, which gives a precise answer for the possible minimal dimensions of a model for EG
when G is a soluble Baumslag–Solitar group.

This article is part of the author’s Ph.D. thesis, supervised by Brita Nucinkis at the University of Southampton. The author
wishes to express his gratitude to Brita Nucinkis, Ashot Minasyan, Armando Martino and Holger Reich for their inspiring
conversation and very valuable comments which helped the author a lot towards this article. Thanks are also due to Andrew
Warshall who kindly made the author aware of a missing assumption in Lemma 1.

2. Technical preparations

Let B be a group and let ϕ ∈ Aut(B). Recall that a model for the semidirect product

G := B o Z

where Z acts on B via the automorphism ϕ is the set B × Z with the multiplication given by

(x, r) · (y, s) := (xϕr(y), r + s).

The identity is (1, 0) and the inverse of any element (x, r) is given by (x, r)−1
= (ϕ−r(x−1), −r). The group B is embedded

via x → (x, 0) as a normal subgroup of G and we consider Z embedded as a subgroup of G via r → (1, r).

Lemma 1. Assume that B is torsion free and does not contain a subgroup isomorphic to Z2. Then Z acts freely by conjugation on
the set of conjugacy classes of the non-trivial elements of B if and only if G does not contain a subgroup isomorphic to Z2.

Proof. ‘‘⇒’’: Suppose that H is a subgroup of Gwhich is isomorphic to Z2. Since H cannot be contained in B it follows that
there exists (x, r) ∈ H \ B. On the other hand H cannot have a trivial intersection with B and thus there exists a non-trivial
(y, 0) ∈ B ∩ H . Then the commutator

[(x, r), (y, 0)] = (xϕr(y)x−1y−1, 0)

must be trivial which is the case if and only if xϕr(y)x−1y−1
= 1. This implies that ϕr(y) and y belong to the same conjugacy

class in B. Since r ≠ 0 and y ≠ 1 this implies that Z does not act freely on the set of conjugacy classes of non-trivial elements
of B.

‘‘⇐’’: Suppose that Z does not act freely on the set of conjugacy classes of non-trivial elements of B. Then there exists
1 ≠ y ∈ B and 0 ≠ r ∈ Z such that ϕr(y) = x−1yx for some x ∈ B. This implies that the non-trivial elements (x, r) and (y, 0)
commute. In general (x, r) has infinite order and since B is assumed to be torsion free it follows that the order of (y, 0) is
also infinite. Therefore (x, r) and (y, 0) generate a subgroup of Gwhich is isomorphic to Z2. �

The statement in the next lemma is only non-trivial if B has torsion.

Lemma 2. Assume that Z acts freely via conjugation on the set of conjugacy classes of non-trivial elements of B. If H is a virtually
cyclic subgroup of G which is not a subgroup of B then H is infinite cyclic.
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Proof. First we note that all x ∈ G \ B have infinite order. Hence the subgroup τ(H) of H which is generated by all the
elements of H which have finite order is a subgroup of B.

By assumption there exists (x, r) ∈ H with r ≠ 0. Then the infinite cyclic subgroup of H generated by this element has a
trivial intersection with B and therefore also has a trivial intersection with τ(H). Since H is virtually cyclic this can happen
only if τ(H) is finite.

Assume towards a contradiction that there exists a non-trivial (y, 0) ∈ τ(H). Then (zk, 0) := (y, 0)(x,r)
k
, k ∈ N, is a

sequence of elements in τ(H) such that for each k ∈ N the element zk is conjugate in B to ϕ−rk(y). This claim is verified by
induction. The case k = 0 is trivial. Thus assume that (zk, 0) ∈ τ(H) and that there exists u ∈ B such that zk = u−1ϕ−rk(y)u.
Since τ(H) is a characteristic subgroup of H and (x, r) ∈ H it follows that (zk+1, 0) = (zk, 0)(x,r) ∈ τ(H). Furthermore we
have that

(zk+1, 0) = (zk, 0)(x,r) = (ϕ−r(x−1zkx), 0)

and hence zk+1 = ϕ−r(x−1u−1ϕ−rk(y)ux) = v−1ϕ−r(k+1)(y)v with v := ϕ−r(ux). That is that zk+1 is conjugate in B to
ϕ−r(k+1)(y). By assumption Z acts freely via conjugation on the conjugacy classes of non-trivial elements of B and hence all
zk belong to different conjugacy classes. In particular they are all pairwise different. Thus {(zk, 0) : k ∈ N} forms an infinite
subset of τ(H). But this is a contradiction as we have shown above that τ(H) is finite! Therefore τ(H) must be trivial. It
follows that the virtually cyclic group H does not have any torsion and thus it must be infinite cyclic. �

Lemma 3. Assume that Z acts freely via conjugation on the set of conjugacy classes of non-trivial elements of B. Then for any
(x, r) ∈ G \ B and y ∈ B we have

(x, r)y = (x, r) ⇐⇒ y = 1.

Proof. (x, r)y = (x, r) is equivalent to ϕ(y) = xyx−1, which is by assumption on the action ofZ on B equivalent to y = 1. �

Lemma 4. Under the assumptions of the previous lemma, if H is an infinite cyclic subgroup of G that is not a subgroup of B, and
y ∈ B, then |H ∩ Hy

| = ∞ if and only if y = 1.

Proof. The ‘‘if’’ statement is trivial. Therefore assume that y ≠ 1 and let (x, r) be a generator of H . Then r ≠ 0 and

(z, r) := (x, r)y ≠ (x, r)

is a generator of Hy where the inequality is due to Lemma 3. Suppose, for a contradiction, that |H ∩ Hy
| = ∞. Then there

must exist k, l ∈ Z \ {0} such that (x, r)k = (z, r)l. In particular this implies that k = l. But then we get

(z, r)l = (z, r)k =

(x, r)y

k
=


(x, r)k

y
≠ (x, r)k,

where the last inequality is again due to Lemma 3, and so we achieve our desired contradiction. Hence we must have
|H ∩ Hy

| ≠ ∞. �

As in [12, p. 502] we define an equivalence relation ‘‘∼’’ on the set Fvc(G) \ Ffin(G) by

H ∼ K :⇐⇒ |H ∩ K | = ∞.

We denote by [H] the equivalence class of the group H . If K is not finite then K ≤ H implies that K ∼ H . Furthermore the
equivalence relation satisfies H ∼ K if and only Hg

∼ K g . Therefore the action of G by conjugation on the set Fvc(G)\Ffin(G)
gives an action of G on the set of equivalence classes. If [H] is an equivalence class, then we denote by G[H] the stabiliser
of [H].

Given a subgroup H of G, the commensurator CommG(H) of H in G is defined as the subgroup

CommG(H) := {g ∈ G : |H : H ∩ Hg
| and |Hg

: H ∩ Hg
| are finite}.

This subgroup is also known as the virtual normaliser VNG(H) of the subgroup H in G. In general it contains the normaliser
NG(H) of H in G as its subgroup. In the case that H is a virtually cyclic subgroup of Gwhich is not finite we have

CommG(H) = {g ∈ G : |H ∩ Hg
| = ∞}.

In particular we have that CommG(H) = G[H] in this case.

Lemma 5. Assume that Z acts freely by conjugation on the set of non-trivial conjugacy classes of non-trivial elements of B. Then
CommG(H) is infinite cyclic for any virtually cyclic subgroup H of G that is not a subgroup of B.

Proof. Any such virtually cyclic subgroup H of G is infinite cyclic by Lemma 2. Therefore G[H] = CommG(H). Suppose that
G[H] is not infinite cyclic. Then the canonical projection π : BoZ → Z cannotmap G[H] isomorphically onto its image. Hence
there exists a non-trivial y ∈ G[H] ∩ ker(π) = G[H] ∩ B. Since H is infinite cyclic we get |H ∩ Hy

| ≠ ∞ by Lemma 4 which is
equivalent to [H] ≠ [Hy

], and this is a contradiction to the assumption that y ∈ G[H]. Therefore G[H] = CommG(H) must be
infinite cyclic. �
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Proposition 6. Let G be an arbitrary group and let F and G be families of subgroups of G such that

Ffin(G) ⊂ F ⊂ G ⊂ Fvc(G).

Assume that the commensurator CommG(H) ∈ G for any H ∈ G \ F, then every H ∈ G \ F is contained in a unique maximal
element Hmax ∈ G and NG(Hmax) = Hmax.

Proof. SinceH is an infinite virtually cyclic subgroupofG it follows thatG[H] = CommG(H) and thusG[H] ∈ Gby assumption.
Trivially we have that H ≤ G[H]. If K ∈ G with H ≤ K , then H ∼ K since H is not finite, and for any k ∈ K we get

[Hk
] = [K k

] = [K ] = [H]. Therefore any k ∈ K stabilises [H]. This implies K ≤ G[H] and thus G[H] is maximal and unique in
G \ F, that is Hmax = G[H].

Finally, Hmax ≤ NG(Hmax) ≤ CommG(Hmax) = G[Hmax] = Hmax and hence Hmax = NG(Hmax). �

Together with Lemma 2, we get then the following result:

Corollary 7. Let G = B o Z and assume that Z acts freely by conjugation on the set of conjugacy classes of non-trivial elements
of B. Then every H ∈ Fvc(G) \ Fvc(B) is contained in a unique maximal element Hmax ∈ Fvc(G) \ Fvc(B) and NG(Hmax) = Hmax.
Moreover, any H ∈ Fvc(G) \ Fvc(B) has a trivial intersection with B. �

3. Juan-Pineda and Leary’s construction

Let G be an arbitrary group and assume that F and G are two families of subgroups of G which satisfy the conditions of
Proposition 6.

Let H be a virtually cyclic group. Then by [5, p. 137], there exists a unique maximal normal finite subgroup N of H and
precisely one of the cases occurs: H is finite, H/N is infinite cyclic (we say H is orientable) or H/N is infinite dihedral (we say
H is non-orientable).

The following result is a natural generalisation of Proposition 9 and Corollary 10 in [5]. Juan-Pineda and Leary’s proof can
be used unchanged to verify these statements.

Proposition 8 (Juan-Pineda and Leary). Assume that every H ∈ G \ F is contained in a unique maximal element Hmax ∈ G and
NG(Hmax) = Hmax. Moreover, assume that any H ∈ G \ F has finite intersections with the elements of F. Let C be a complete set
of representatives of conjugacy classes of the maximal elements of G \ F. Denote by Co the set of orientable elements of C and
denote by Cn the set of non-orientable elements of C. Then a model for EGG can be obtained from model for EFG by attaching

1. orbits of 0-cells indexed by C;
2. orbits of 1-cells indexed by Co ∪ {1, 2} × Cn;
3. orbits of 2-cells indexed by C.

Furthermore, a model for BGG can be obtained from a model for BFG by attaching 2-cells indexed by Co. �

Juan-Pineda and Leary’s construction is essentially the following. For eachmaximalH ∈ G\F there exists a 1-dimensional
model EH for EH which is homeomorphic to the real line. The model EH has one orbit of 1-cells and either one or two orbits
of 0-cells depending on if H is orientable or non-orientable. Let X be a model for EFG. Then a model for EGG is obtained from
X by attaching pieces of the form

XH := EH × [0, 1]

∼

to X for each maximal element H ∈ G \ F using suitable equivariant maps η: EH × {0} → X and where the equivalence
relation ‘‘∼’’ identifies all elements (x, 1) ∈ XH . Juan-Pineda and Leary have shown how to implement this construction
such that we get a G-CW-complex with the desired properties.

Note that in the case G = Fvc(G) and F = Ffin(G), we recover the original statements in [5]. However, we apply it to the
case that G = Bo Z, F = Fvc(B) and G = Fvc(G). If Z acts freely by conjugation on the set of conjugacy classes of non-trivial
elements of B, then Corollary 7 tells us that we can use Proposition 8 in order to construct a model for EG from a model for
EFvc(B)G. However, in order to obtain this way a nice model for EGwe need to have a nice model for EFvc(B)G to start with. In
the next section we will give a general construction for such a model if a nice model for EB is given.

4. Constructing a model for EFG from a model for EFB

We carry out the construction in a setting that is more general than in Section 3. Let G = B o Z be an arbitrary infinite
cyclic extension, where Z acts on B via an automorphism ϕ ∈ Aut(B). Let F be a family of subgroups of B. We assume that F

is invariant under the automorphism ϕ, that is, ϕk(H) ∈ F for every H ∈ F and k ∈ Z. This implies that H ∈ F if and only if
ϕ(H) ∈ F for any subgroup H of B. Furthermore this implies that F is not just a family of subgroups of B but also a family of
subgroups of G.

We begin our construction with the assumption that we are given a model X for EFB. For each k ∈ Z let Xk be a copy of X
seen as a set. We define a B-action

Φk: B × Xk → Xk
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Fig. 1. A schematic picture of the B-CW-complex Y .

on Xk by Φk(g, x) := ϕ−k(g)x. Note that each Xk is a model for EFB since F is assumed to be invariant under the
automorphism ϕ.

Since X0 and X1 are models for EFB there exists a B-map f : X0 → X1. In other words f is a continuous map f : X → X
which satisfies f (gx) = ϕ−1(g)f (x) for every x ∈ X and g ∈ B. By the equivariant Cellular Approximation Theorem [8, p. 32]
we may assume without loss of generality that f is cellular. Denote by X∞ the disjoint union of B-spaces

X∞ :=


k∈Z

(Xk × [0, 1])

and let Y be the quotient space

Y := X∞/ ∼

under the equivalence relation generated by (x, 1) ∼ (f (x), 0) whenever x ∈ Xk and f (x) ∈ Xk+1 for some k ∈ Z. Since f is a
cellular B-map it follows that Y is a B-CW-complex. Essentially, it is a mapping telescope which extends to infinity in both
directions, see Fig. 1. Note that if X is an n-dimensional B-CW-complex, then Y is (n + 1) dimensional B-CW-complex.

Lemma 9. The B-CW-complex Y is a model for EFB.

Proof. Let H be a subgroup of B such that H /∈ F. Let k ∈ Z and x ∈ Xk. Since F is assumed to be invariant under the
automorphism ϕ we have ϕ−k(H) /∈ F. Therefore there exists a h ∈ H such that ϕ−k(h)x ≠ x. But then

Φk(h, x) = ϕ−k(h)x ≠ x,

which implies that x /∈ XH
k . Thus XH

k = ∅ for every k ∈ Z and it follows that YH
= ∅.

On the other hand, consider the case that H ∈ F. Since the family F is assumed to be invariant under the automorphism
ϕ it follows that ϕk(H) ∈ F for every k ∈ Z. Then XH

k = Xϕk(H) is contractible for every k ∈ Z. It follows that the subcomplex
YH is the infinite mapping telescope of the contractible spaces XH

k . Since any map from an n-sphere into YH is contained
in a finite subtelescope whose deformation retracts to its contractible right-hand end space it follows that YH is weakly
contractible. Since YH has the structure of a CW-complex this implies that YH is contractible. �

For every (x, t) ∈ Xk × [0, 1] and (g, r) ∈ G set

Ψ ((g, r), (x, t)) := (Φk+r(g, x), t) ∈ Xk+r × [0, 1].

Straightforward calculation shows that this induces a well defined action

Ψ : G × Y → Y

ofG on Y , which extends the already existing B-action on Y . If (g, r) ∈ G\B, then r ≠ 0 and therefore clearlyΨ ((g, r), x) ≠ x
for any x ∈ Y . Then together with Lemma 9 this implies that Y is an (n+ 1)-dimensional model for EFG. Altogether we have
then shown the following result.

Proposition 10. Let G = B o Z be an arbitrary infinite cyclic extension where Z acts on B via an automorphism ϕ ∈ Aut(B). Let
F be a family of subgroups of B which is invariant under the automorphism ϕ. If there exists an n-dimensional model for EFB then
there exists an (n + 1)-dimensional model for EFG. �

5. Examples

Strictly descending HNN-extensions are a natural source for candidates for infinite cyclic extensions G = B o Z where Z
acts freely by conjugation on the set of conjugacy classes of the non-trivial elements of B.

The general setup is the following. Let B0 be a group and ϕ: B0 → B0 a monomorphism. Recall that the descending
HNN-extension determined by this data is the group G given by the presentation

G := ⟨B0, t | t−1xt = ϕ(x) for all x ∈ B0⟩
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and this group is usually denoted by B0∗ϕ in the literature. The group B0 is called the base group of the HNN-extension. The
HNN-extension is called strictly descending if the monomorphism ϕ is not an isomorphism. We consider B0 in the obvious
way as a subgroup of G.

Conjugation by t ∈ G defines an automorphism of G which agrees on B0 with ϕ, which we will therefore denote by the
same symbol. In other words, the monomorphism ϕ: B0 → B0 extends to the whole group G if we set

ϕ: G → G, x → ϕ(x) := t−1xt.

For each k ∈ Z we set Bk := ϕk(B0). We obtain this way a descending sequence

· · · ⊃ B−2 ⊃ B−1 ⊃ B0 ⊃ B1 ⊃ B2 ⊃ · · ·

of subgroups of G. This sequence of subgroups is strictly descending if and only if the HNN-extension is strictly descending.
We denote the directed union of all these Bk by B. The automorphism ϕ restricts to an automorphism of Bwhich is therefore
a normal subgroup of G. It is standard fact that we can write G as the semidirect product G = B o Z where Z acts on B via
the automorphism ϕ restricted to B.

Lemma 11. Assume that for every non-trivial x ∈ B0 there exists a k ∈ N such that x /∈ ϕk(B0). Given x ∈ B0 denote by [x] the
set of all elements in B0 which are conjugate in B0 to x. Assume that for each x ∈ B0 we are given a finite subset [x]′ ⊂ [x], which
only depends on the conjugacy class [x] of x in B0, such that ϕ([x]′) ⊂ [ϕ(x)]′ for every x ∈ B0. Then Z acts freely on the set of
conjugacy classes of non-trivial elements of B.

Proof. We suppose that Z does not act freely on the set of conjugacy classes of non-trivial elements of B. Then there exists
x ∈ B and n ≥ 1 such that ϕn(x) is conjugate in B to x. Without any loss of generality we may assume that x ∈ B0 (otherwise
replace x by ϕk(x) for a suitable k ∈ N). Furthermore, without any loss of generality wemay assume that x ∈ [x]′. Finally we
may assume without any loss of generality that ϕn(x) is actually conjugate in B0 to x (otherwise, again, replace x by ϕk(x)
for a suitable k ∈ N).

Now ϕrn(x) ∈ [x]′ for any r ≥ 1. Since [x]′ is finite this implies that ϕrn(x) = ϕsn(x) for some s > r . Therefore
ϕ(s−r)n(x) = x and since (s − r)n > 0 it follows that x ∈ ϕk(B0) for any k ∈ N. However, this is a contradiction on the
hypothesis that Z does not act freely on the set of conjugacy classes of non-trivial elements of B. Therefore the opposite
must be true. �

Note that the requirement that for every non-trivial element x ∈ B0 there exists a k ∈ N such that x /∈ ϕk(B0) implies
that the descending HNN-extension G = B0∗ϕ is actually strictly descending. Furthermore, we can conclude from it that the
intersection of the groups Bk, k ∈ Z, is trivial.

Example 12. Let B0 be an abelian group and ϕ: B0 → B0 a monomorphism such that for every non-trivial x ∈ B0 there
exists a k ∈ N such that x /∈ ϕk(B0). Since B0 is abelian, each conjugacy class [x] of elements in B0 contains precisely one
element. Therefore Lemma 11 states that Z acts freely by conjugation on the set of non-trivial elements of B. In particular
we can use Proposition 8 to obtain a model for EG from a model for EFvc(B)G.

Let B0 be a free group. An element x ∈ B0 is called cyclically reduced if it cannot be written as x = u−1yu for some non-
trivial u, y ∈ B0. It follows from [13, Section 1.4] that every element x ∈ B0 is conjugate to a cyclically reduced element x′

and that there are only finitely many cyclically reduced elements in B0 which are conjugate to x. Therefore

[x]′ := {x′
∈ [x] : x′ is cyclically reduced}

is a finite subset of [x] for every x ∈ B0. Then the following two assumptions on the monomorphism ϕ: B0 → B0 are
necessary in order to apply Lemma 11:

1. For every non-trivial x ∈ B0 there exists a k ∈ N such that x /∈ ϕk(B0);
2. If x is a cyclically reduced element in B0, then so is ϕ(x).

Example 13. Let X be an arbitrary non-empty set and let B0 := F(X) be the free group on the basis X . Let {αx}x∈X be a
collection of integers such that |αx| ≥ 2 for every x ∈ X . Consider the endomorphism ϕ: B0 → B0 that maps any basis
element x to xαx . Then ϕ is a monomorphismwhich satisfies the assumptions (1) and (2) above. Lemma 11 tells us then that
we can use Proposition 8 to construct a model for EG from a model for EFvc(B)G.

Example 14. Another example of a strictly descending HNN-extension (in disguise) is the standard wreath product A ≀ Z of
an arbitrary group A by Z which is defined as follows. Let Ak be a copy of A for each k ∈ Z. Let B be the coproduct of all these
Ak and let Z act on B via ϕ which maps Ak identically onto Ak+1 for all k ∈ Z. Then

A ≀ Z := B o Z.

Since each Ak is normal in B the above definition of ϕ forces the action of Z on the set of conjugacy classes of non-trivial
elements of B to be free. Therefore we can apply Proposition 8 in this case, too.
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6. Dimensions

Given a family F of subgroups of G, a model for EFG is only defined uniquely up to G-homotopy. Consider a model for
EFG. One particular invariant of the group G is called the geometric dimension of G with respect to the family F, and this is
defined as being the least possible dimension of a model for EFG. It is denoted by gdF G and may be infinite. In the case that
F = {1} we recover the classical geometric dimension of the group G. In the case that F = Fvc(G) we denote the geometric
dimension by gdG.

Theorem 15. Let G = B o Z and assume that Z acts freely via conjugation on the conjugacy classes of non-trivial elements of B.
Then

gd B ≤ gdG ≤ gd B + 1.

Proof. Since (in general) amodel for EG is always amodel for EB via restriction,wehave that the second inequality is the only
non-trivial one. If X is an n-dimensional model for EB, then the join construction in Section 4 gives an (n + 1)-dimensional
model for EFvc(B)G.

SinceZ acts freely via conjugation on the conjugacy classes of non-trivial elements of B it follows that B cannot be virtually
cyclic. Thus n + 1 ≥ 2 and attaching cells of dimension at most 2 does not increase the dimension of the resulting space.
Hence Proposition 8 yields an (n + 1)-dimensional model for EG and this concludes the proof. �

Corollary 16. Let G = B0∗ϕ is a descending HNN-extension as in Section 5. If G = B o Z satisfies the conditions of the previous
theorem then

gd B0 ≤ gdG ≤ gd B0 + 2.

Proof. As exploited previously, since B0 is a subgroup ofG, the second inequality is the only non-trivial part of the statement.
The group B is the countable direct union of the conjugates of B0 in G. Therefore an n-dimensional model for EB0 gives rise
to an (n + 1)-dimensional model for EB by a construction of Lück and Weiermann [12, Section 4]. Now the claim follows
from the previous theorem. �

Example 17. Let G = B0∗ϕ be a descending HNN-extension with B0 a free group. If B0 has rank 1, then G is a soluble
Baumslag–Solitar group and this case is treated below in Theorem 20. Thus we may assume that B0 has rank at least 2.
Free groups are torsion free and act freely on a tree which is therefore a 1-dimensional model for EB0. Free groups are word
hyperbolic and therefore Proposition 9 in [5] states the existence of a 2-dimensional model for EB0. On the other hand by
Remark 16 in [5] there cannot exist amodel for EB0 less than 2. Therefore gd B0 = 2. Now the direct union B of all conjugates

of B0 in G is locally free and therefore does not contain a subgroup of isomorphic to Z2. Then Lemma 1 states that we can
apply Corollary 16 if and only if G does not contain a subgroup isomorphic to Z2. Therefore we get in this case the estimation
2 ≤ gdG ≤ 4.

Example 18. Consider the wreath product G = A ≀ Z where A is a countable locally finite group. Then

B :=


k∈Z

A

is also a countable locally finite group. Then B is a countable colimit of its finite subgroups Bλ and Theorem 4.3 in [12] gives
the estimate gd B ≤ sup{gd Bλ} + 1. Since gd Bλ = 0 for every λ and we get gd B ≤ 1. On the other hand B is not virtually
cyclic and therefore gd B ≠ 0, that is gd B = 1. We have seen that G does satisfy the requirements of Theorem 15. Therefore
we get the estimate 1 ≤ gd(A ≀ Z) ≤ 2. Note that A ≀ Z is not locally virtually cyclic. Therefore we can furthermore exclude
the possibility gd(A ≀ Z) = 1 using the next proposition. Thus we have altogether

gd(A ≀ Z) = 2.

Note that the smallest concrete example of a group of this type is the lamplighter group L = Z2 ≀ Z where Z2 is the cyclic
group of the integers modulo 2.

Proposition 19. Let G be a group with gdG = 1. Then G is a locally virtually cyclic and not finitely generated.

Proof. The assumption gdG = 1 implies that G has a tree T as a model for EG. If G is finitely generated then Corollary 3

to Proposition 26 in [16, p. 64] states that TG
≠ ∅ which implies that G is virtually cyclic. But this means gdG = 0 which

contradicts the assumption that gdG = 1. Therefore G is not finitely generated.
Let H be a finitely generated subgroup of G. Since H is a subgroup of Gwe have gdH ≤ gdG. However, since H is finitely

generated the case gdH ≠ 1 cannot occur. Therefore gdH = 0 which implies that H is virtually cyclic. Hence G is locally
virtually cyclic. �
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We conclude this article with a complete answer to the geometric dimension of the soluble Baumslag–Solitar groups
with respect to the family of virtually cyclic subgroups. These groups belong to a class of two-generator and one-relator
groups introduced by Baumslag and Solitar in [1]. Their class consists of the groups

BS(p, q) = ⟨x, t | t−1xpt = xq⟩

where p and q are non-zero integers. The soluble Baumslag–Solitar groups are precisely those groups which are isomorphic
to BS(1,m) for somem ≠ 0. These groups can also be written as

BS(1,m) = Z[1/m] o Z,

where Z[1/m] is the subgroup of the rational numbers Q generated by all powers of 1/m and where Z acts on Z[1/m] by
multiplication bym. The group BS(1, 1) is Z2 and BS(1, −1) is the Klein bottle group ZoZ. If |m| ≥ 2, then BS(1,m) belongs
to the case described in Example 12, as well as to the case described in Example 13.

Theorem 20. Let G = BS(1,m) be a soluble Baumslag–Solitar group. Then

gdG =


3 if |m| = 1,
2 otherwise.

Proof. The case |m| = 1 has been answered in Example 3 and Remark 15 in [5].
Thus we assume that |m| ≥ 2. The group Z[1/m] is countable and locally virtually cyclic. Therefore gdZ[1/m] ≤ 1

by [12, Theorem 4.3]. The action of Z on the conjugacy classes of non-trivial elements of Z[1/m] is free and thus we can
apply Theorem 15 to obtain the estimate gdG ≤ 2. However, gdG cannot be zero as G is not virtually cyclic. Moreover G is
finitely generated and therefore gdG ≠ 1 by Proposition 19. Thus gdG = 2 is the only remaining possibility. �

We conclude this article with a model for EG for the soluble Baumslag–Solitar groups G = BS(1,m), |m| ≠ 1, which
is nicer than the one obtained from the general construction in Section 4 together with Proposition 8. The group G can be
realised as the fundamental group of a graph (G, Y ) of groups in the sense of [16] where Y is a loop and where the vertex
and edge groups are all infinite cyclic. Let T be the Bass–Serre tree associated with this graph of groups. It follows that T
is not only a model for EZ[1/m], but also a model for EFvc(Z[1/m])G. We can apply Proposition 8 and obtain a model X for
EG by attaching orbits of 0-, 1- and 2-cells to T indexed by the infinitely many conjugacy classes of maximal infinite cyclic
subgroups of Gwhich are not contained in the subgroup Z[1/m]. Furthermore, since Y = T/G, we obtain a model for BG by
attaching infinitely many 2-cells along the loop Y . That is, a model for BG is given by the quotient space (D2

× Z)/∼ where
the equivalence relation is given by (x, k) ∼ (x, l) for all x ∈ ∂D2

= S1 and all k, l ∈ Z.

References

[1] G. Baumslag, D. Solitar, Some two-generator one-relator non-Hopfian groups, Bull. Amer. Math. Soc. 68 (1962) 199–201.
[2] F. Connolly, B. Fehrman, M. Hartglass, On the dimension of the virtually cyclic classifying space of a crystallographic group. arXiv:math/0610387v1.
[3] D. Farley, Constructions of EVC and EF BC for groups acting on CAT(0) spaces, Algebr. Geom. Topol. 10 (4) (2010) 2229–2250.
[4] F.T. Farrell, L.E. Jones, Isomorphism conjectures in algebraic K -theory, J. Amer. Math. Soc. 6 (2) (1993) 249–297.
[5] D. Juan-Pineda, I.J. Leary, On classifying spaces for the family of virtually cyclic subgroups, in: Recent developments in algebraic topology, in: Contemp.

Math., vol. 407, Amer. Math. Soc., Providence, RI, 2006, pp. 135–145.
[6] D.H. Kochloukova, C. Martínez-Pérez, B.E.A. Nucinkis, Cohomological finiteness conditions in Bredon cohomology, B. Lond. Math. Soc. 43 (2011)

124–136.
[7] J.-F. Lafont, I.J. Ortiz, Relative hyperbolicity, classifying spaces, and lower algebraic K -theory, Topology 46 (6) (2007) 527–553.
[8] W. Lück, Transformation Groups and Algebraic K -Theory, in: Lecture Notes in Mathematics, vol. 1408, Springer-Verlag, Berlin, 1989. Mathematica

Gottingensis.
[9] W. Lück, The type of the classifying space for a family of subgroups, J. Pure Appl. Algebra 149 (2) (2000) 177–203.

[10] W. Lück, Survey on classifying spaces for families of subgroups, in: Infinite Groups: Geometric, Combinatorial and Dynamical Aspects, in: Progr. Math.,
vol. 248, Birkhäuser, Basel, 2005, pp. 269–322.

[11] W. Lück, On the classifying space of the family of virtually cyclic subgroups for CAT(0)-groups, Münster, J. Math. 2 (2009) 201–214.
[12] W. Lück, M. Weiermann, On the classifying space of the family of virtually cyclic subgroups, Pure Appl. Math. Q. 8 (2) (2012) 479–555.
[13] W. Magnus, A. Karrass, D. Solitar, Presentations of groups in terms of generators and relations, in: Combinatorial Group Theory, revised edition, Dover

Publications Inc., New York, 1976.
[14] A. Manion, L. Pham, J. Poelhuis, The virtually cyclic classifying space of the Heisenberg Group. arXiv:0812.2192v2.
[15] C. Martínez-Pérez, A spectral sequence in Bredon (co)homology, J. Pure Appl. Algebra 176 (2–3) (2002) 161–173.
[16] J.-P. Serre, Trees, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003. Corrected 2nd printing of the 1980 English translation.

http://arxiv.org/math/0610387v1
http://arxiv.org/0812.2192v2

	Classifying spaces with virtually cyclic stabilisers for certain infinite cyclic extensions
	Introduction
	Technical preparations
	Juan-Pineda and Leary's construction
	Constructing a model for EFG from a model for EFB
	Examples
	Dimensions
	References


