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Abstract

We present hidden verification as a means to make the power of computational logic available to
users of computer algebra systems while shielding themfrom its complexity. We have implemented
in PVS alibrary of facts about elementary and transcendental functions, and automatic procedures to
attempt proofs of continuity, convergence and differentiability for functions in this class. These are
called directly from Maple by a simple pipe-lined interface. Hence we are able to support the analysis
of differential equations in Maple by direct calls to PVS for: result refinement and verification,
discharge of verification conditions, harnesses to ensure more reliable differential equation solvers,
and verifiable look-up tables.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

We present recent work on hidden automated verification for symbolic computation.
Symbolic computation systems such as Maple are widely used, though they can produce
unexpected or wrong answers. Theorem provers like PVS guarantee correctness and
provide checkable formal proofs of every result they produce, but are hard for non-
experts and little used in applications. Our aim was to use computational logic to

∗ Corresponding author. Tel.: +44 1334 463247; fax: +44 1334 463278.
E-mail address:tom@dcs.st-and.ac.uk (T. Kelsey).

0747-7171/$ - see front matter © 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jsc.2004.12.005

http://www.elsevier.com/locate/jsc


540 H. Gottliebsen et al. / Journal of Symbolic Computation 39 (2005) 539–567

provide increased assurance and functionality to those using computer algebra systems
to investigate differential equations, while shielding them from the technicalities of formal
proof. We implemented in PVS a number of analytic tests, supported by a library for the
real elementary functions, which could be called as automatic external procedures from
Maple. We used these to provide pre-condition and result refinement and verification for
Maple procedures. While this may seem a modest step in comparison with the dream
of fully formal development of mathematical routines in a computational logic engine,
it nonetheless has proved useful in the practical application of computer algebra to the
investigation of differential equations.

The work is part of an ongoing project (Martin, 1998; Dunstan et al., 1998; Adams et al.,
1999b) concerning the use of computational logic to support working mathematicians and
users of mathematics. This article complements and extends earlier papers which focussed
on the Maple–PVS interface (Dunstan et al., 2001; Adams et al., 2001), and is intended in
particular to motivate and make this work accessible to potential users of Maple–PVS.

While there has been a long tradition in computational logic of formal developments of
mathematical theories, our goal is to provide systems which are grounded in the application
domain and match the mathematical and software needs, understanding and expectation
of our target user community. While such hidden automated verification is novel for
computational mathematics it is similar in approach to Rushby’s notion of “disappearing
formal methods” (Rushby, 2000) and that adopted by the Prosper project in using HOL as
a back-end to CASE tools (Dennis et al., 2000).

The weaknesses in computer algebra support for differential equations, stem from the
undecidability of equality over elementary functions, the need for tests for analytic pre-
and side conditions, and the way in which computer algebra systems handle analytic
properties such as continuity. To address this we extended the theorem prover PVS to
handle real-valued elementary functions withparameters, that is to say functions built
up from products, quotients, exponentiation, modulus, trigonometric functions and logs:
we have added many standard lemmas, from which PVS’s powerful built-in automation
then allows us to prove many identities over this class. We have also implemented in PVS
automated tests for continuity, convergence and differentiability in an interval. The tests
consist of a strategy for breaking down a function into simpler ones, augmented with a rich
knowledge base about the components. This knowledge base comprises a collection of
lemmas, being standard facts about continuity, differentiability and elementary functions,
for examplethat cos(x) is continuous everywhere and positive in the open interval(0, π/2).
These lemmas in turn are proven from first principles in theorem prover, usingε − δ

arguments, power series and the like. Thus, by contrast with the computer algebra system,
for any assertion that is verified in the theorem prover we have a proof from first principles
that it is correct.

For example wecan prove that the function

ex2+|1−x| (1)

is continuous everywhere, or that

−π − 1 + π ∗ e1−cos(x) (2)
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has alimit at the point

arccos

(
1 − log

(
1 + π

π

))
. (3)

Such properties arisein many practical applications concerned with calculus, for example
as conditions for solvability of differential equations.

Such tests can be problematic for computer algebra systems like Maple, which has
three-valued tests returning “true”, “false” or “FAIL”. As described inSection 7, Maple
will occasionally return “true”when the correct result is “false”. This is due to the model
of symbolic computation underlying computer algebra systems, which is algebraic, based
on differential rings, rather than analytic. A key aim of this paper is to add analytic proofs
to Maple tests, so that “true” and “false” mean provably true and false, and “FAIL” means
that Maple–PVS can not decidethe property in question.

From an analytic viewpoint, continuity and the other conditions we study are
undecidable for this class of functions, and so the best we can hope for in any correct test
justified using a theorem prover is that it halts with “true” when a function is continuous,
and either halts with “fail”, or fails to terminate, when it is not. If our Maple–PVS test
returns “true” then we have available to us a full formal proof in classical analysis of the
required property, and we can be certain it holds.

Benchmarks and test-suites in the field are in their infancy, though such problems
might form a suitable extension to test-suites such as TPTP. It is alsodifficult to provide
a complexity analysis comparing such heuristic methods with traditional algorithms for
related problems, such as cylindrical algebraic decomposition. However the distinctive
characteristics of our method can be identified as

• it requires a significant amount of work in establishing the initial infrastructure in the
computational logic engine of choice

• results obtained with it are sound in the underlying logic of the theorem prover
• it can be optimised, refined or extended to new classes of functions or properties, by

adding to the lemma database.

We have experimented in using the tests for greater assurance and functionality in
four main ways. The first is straightforward verification of continuity, convergence or
differentiability at a point or in an interval, as in the examples above. Computer algebra
systems such as Maple currently have tests for suchconditions based on using numeric
or symbolic root-finding algorithms to find possible points of failure of the required
property. Our methods may fail if the lemma database does not contain an appropriate
result: however if they report success this will always be justified by a proof, rather than
by, for example, failure of a root finding algorithm.

The second application involves verifying pre-conditions for procedures to be correct,
for example the continuity conditions for existence of solutions of differential equations or
initial value problems in an interval. This is in the spirit of our earlier work on light formal
methods for computational mathematics (Dunstan et al., 1998), which aims to document
code with interface specifications in the form of pre- and post-conditions for modules: these
can then be used to generate verification conditions corresponding to the pre-conditions.
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As we see below failure to test such pre-conditions is a common reason for unexpected
output from computer algebra systems.

The third class of applications involvesthe verification or refinement of computer
algebra results, treating the computer algebra system as an “oracle” to the theorem prover.
For exampleMaple’s fdiscont is a numeric algorithm which returns real intervals in
which a function is expected to be continuous, but may be fooled in cases where too
large a mesh size has been chosen. Our testscan verify continuity in those intervals.
We might suppose that if we could test pre-conditions we had no need to test results.
However computer algebra systems are well known for producing results in a variety of
representations which may not obviously have the properties required of them. In addition
for classical programming applications weare accustomed to a well-defined “weakest
pre-condition” which allows generation of verification conditions in a fairly elegant way.
This is typically not the case for computational mathematics applications: for example, in
numerics applications, computing the precondition as a function of the mesh size may be as
hard as running the algorithm, or a solution method may happen to give the right answer on
an input wheref is not continuous in the required interval, but has the required property
“accidentally” by virtue of fortuitous cancellation. In a further example we compute the
solution of a generalised Riccati equation and show that it has only removable poles, as
predicted by the theory.

The fourth class of applications involves verified table look-up, a topic explored in
Adams et al.(1999b), where we presented verifiable look-up tables for standard integrals,
and documented here in a generalised and uniform framework. The motivation is that
computer algebra systems often use look-up tables, sometimes in a somewhat ad hoc way.
Verified look-up tables, for example for an integral involving a parameter, generally give
the answer in the form of a large number of cases corresponding to different constraints
on the parameter which together cover all possible values. A query tothe table consists in
using a highly automated call to a theorem prover to verify which of the possible constraints
are satisfied, hence revealing the answer.

Our symbolic and numeric experiments used the computer algebra system Maple,
calling PVS through a simple pipe-lined interface. Maple (Char, 1991) is a commercial
computer algebra system (CAS), consisting of a kernel library of numeric, symbolic, and
graphics routines, togetherwith packages aimed at specific areas such as linear algebra,
differential equations, and number theory.

PVS (Owre et al., 1999) supports formal specification and verification and consists
of a specification language, various predefined theories and a theorem prover which
supports a high level of automation. The specification language is based on classical, typed
higher-order logic and supportspredicate and dependent sub-typing. We also utilise recent
extensions to PVS (Gottliebsen, 2000; Adams et al., 1999a) which allow reasoning in the
theory of real analysis.

2. Verification and differential equations

In this section we give a summary of differential equations and dynamical systems to
scope our discussion of user needs in applications.
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Suppose we wish to model the motion of a particle in terms of the time (x) anddistance
(y) from some initial point, and the acceleration

y′′ = y′′(x) = y(2)(x) = d2y/dx2.

The equation

y′′(x) + y(x) = 0 (4)

describes the motion at timex, any solution has the formφ(x) = A sin(x) + B cos(x)

where A and B are arbitrary constants, and a solution satisfying the initial conditions
y(0) = 1, y′(0) = 2 is given byφ(x) = 2 sin(x) + cos(x). A solution satisfying the
initial conditions can be evaluated at any value ofx, so that for our solutionφ at time
x = π/2 theposition will be given byφ(π/2) = 2. This equation has a solution expressible
in terms of well-known mathematical functions, but for many equations we may know
only of the existence of such solutions. Numerical solutions at particular points (subject to
the accuracy constraints of numerical computation) may be all that are available to us: in
any case we may be less interested in particular values than in the qualitative or limiting
behaviour of the solution, for example whether it decays over time.

More formally (following the standard textbook (Coddington, 1961)), let F be defined
for all real x in an intervalI , and for complex y1, y2, . . . , yn+1 in setsS1, S2, . . . , Sn+1
respectively. The problem of finding a functionφ on I , havingn derivatives there, and
such that for all x in I

(i) φ(k−1)(x) is in Sk (k = 1, . . . , n + 1)

(ii) F(x, φ(x), . . . , φ(n)(x)) = 0

is called anordinary differential equation of the nth order, and isdenoted by

F(x, y, y′, . . . , y(n)(x)) = 0. (5)

A functionφ on I , with n derivatives,satisfying (i) and (ii) above, is called asolution
of (5) on I . The problem of finding a solution subject to given values of theφ(k−1)(0)

(k = 1, . . . , n + 1) is called aninitial value problem.
The standard treatment continues by considering existence and uniqueness proofs for

solutions. For example:
Suppose that a and b are continuous functions on an interval I . Let A be a function

suchthatdA/dx = a(x). If C is any constant then

φ(x) = exp(−A(x))

(∫ x

x0

exp(A(t))b(t)dt + C

)
(6)

where x0 is in I, is a solution of y′(x) + a(x)y = b(x), and every solution has this form.
So far we have encountered the properties of continuity and differentiability: a function

f (x, y) defined on a subsetD of R2 is called Lipschitz if there exists a positive constant
L suchthat

| f (x, y0) − f (x, y1)| ≤ L|y0 − y1| (7)



544 H. Gottliebsen et al. / Journal of Symbolic Computation 39 (2005) 539–567

holds for every(x, y0) and(x, y1) ∈ D. We haveCoddington(1961).
Let

y′(x) = f (x, y), y(a) = η (8)

where y′ denotes the derivative of y(x) with respect to x. Let D denote the region
a ≤ x ≤ b and−∞ < y < ∞. Then Eq.(8) has a differentiable (and hence continuous)
solution, y(x), if f (x, y) is defined and continuous for all(x, y) ∈ D. Furthermore y(x)

is unique up to a constant if f is Lipschitz in D.
A particularly important class is that of linear systems: we haveCoddington(1961).

Let a1, . . . , an, b be continuous functions on an interval I containing the point x0, and let

L(y) = y(n) + a1(x)y(n−1) + · · · + an(x)y. (9)

If α1, . . . , αn are any n constants, then there is exactly one solutionφ of L(y) = b(x)

satisfyingφ(x0) = α1, . . . , φ(n−1)(x0) = αn.
The equationL(y) = b(x) is solved by integrating a function of theφi called the
Wronskian. Thus for example the solutions to the Euler equation

x2y′′(x) + axy′(x) + by(x) = 0 (10)

are given by

φ(x) = A|x|r + B|x|s γ > 0
A|x|t + B|x|t log(|x|) γ = 0
A|x|t cos(

√−γ log|x|) + B|x|t sin(
√−γ log|x|) γ < 0

(11)

whereγ = ((a − 1)2 − 4b)/4, t = (1 − a)/2, r = t − √
γ , s = t + √

γ . However, in
general the existence proofs are not constructive, and wedo not have explicit solutions in
recognisable closed forms.

This description of the solution may be further refined to include its qualitative
behaviour: for example for different values ofa, b the system may oscillate, or tend to
zero or infinity.

Current mathematical research emphasises dynamical systems, that is, roughly
speaking, solution spaces of systems of differential equations. Linear systems inn variables
can be expressed as a vector equationX′ = AX, whereA is ann × n matrix, and the
solutions are given in terms of eigenvalues ofA. This again allows us to predict the
limiting behaviour of such a system, and to identify fixed points (equilibrium points) where
X′ = 0, and behaviour near to them: for example, does a point near the equilibrium point
move towards it (a sink) or away from it (a source)? In many cases such behaviour can be
characterised algebraically asrelations between the entries ofA. Thegeneralisation of this
notion is called a phase plane analysis: in dimensions above two chaotic phenomena can
occur.

Thus problems a user may want to solve include:

• solving a differential equation subjectto initial values or boundary conditions:either
analytically or numerically;

• reachability analysis:determining if there is an analytic or numeric solution satisfying
a set of constraints, typically that it starts in one region and passes through another.
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Thus in example (4) thepoint(π/2, 2) is reachable from(0, 1), but(r, 3) is unreachable
for any value ofr ;

• identification of behaviour near a stationary point:for example by a phase plane
analysis;

• limiting behaviour over time:for example by an eigenvalue analysis as above;
• behaviour as some parameter varies:for example changes in the limiting behaviour of

Eq. (11) asa, b varies;
• more general reasoning about properties or requirements on the solution:for example

Dutertre (1996) gives examples of reasoning about upper bounds in an avionics
application.

Numerical methods are the standard, and almost universal, approach to computation
for dynamical systems. These are widely available through standard commercial libraries
such as NAG and Matlab which generate numeric or graphical output, from which
variousproperties of the system may be inferred. In addition such systems can readily
accommodate other inputs, for example from measurement devices, or other numerical
procedures, such as curve fitting. For many problems, for example the investigation of
chaotic phenomena, there are no alternative standard techniques. The main advantage of
numerical systems is that they will always give an answer, and with sufficient user expertise
are accepted as doing so sufficiently quickly andaccurately, with established protocols for
testing and error analysis.However theoutput, and properties derived from it, will be
always be numeric and not analytic, and support for investigating properties of the solution
or parametersmay belimited.

Symbolic techniques are rather less used, for reasons we explain below: as is usual in
contemporary mathematical culture almost no use is made of formal proof.

3. Symbolic computation for differential equations

Symbolic computation techniques, such as those embodied in Maple or Mathematica,
appear to offer a wide range of additional facilities. Thus thedsolvecommand in Maple,
or theDSolvecommand in Mathematica, can solve a wide variety of simple differential
equations, and the user can further interact with the system or write their own code, to
investigate their properties.

There is continuing lively debate over the respective merits of symbolic and numeric
computation, and active research on the best way to combine the two approaches.
By contrast with numerical techniques, users often find symbolic computation systems
frustrating and hard to use: seeWester(1999) for a survey. They may fail to produce an
“obvious” answer, or produce unexpected or wrong answers, and their performance can be
very unpredictable, varying widely on apparently similar inputs.

We considerthree examples:

• Consider the Maple input

dsolve(diff(y(x), x)− y(x)/(arctan(a ∗ x) + arctan(1/(a ∗ x))) = 0,
y(−1) = exp(−2/Pi), y(x));
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that is, solve

y′(x) − y

arctan(a ∗ x) + arctan(1/a ∗ x)
= 0 (12)

subject to the initial conditiony(−1) = exp(−2/π). Maple returns a constant multiple
of exp(2 ∗ x/π), which is defined throughout the real line, but a solution only for
a ∗ x > 0, that is for x > 0 if a > 0, andx < 0 if a < 0. We explain what is
going wrong below.

• Consider the equation

y′(x) + y/(2
√

x − a) = ln(b − x) exp(−√
x − a)

for which Maple returns

y(x) = exp(−√
x − a)((x − b)(ln(b − x) − 1) + C).

This supposed solution is only defined atx if
√

x − a and ln(b−x) are defined, that is if
x > a andx < b, so that ifb < a it is notdefined anywhere on the real line. Maple has
produced this solution becausedsolve is not checking the pre-condition which requires
that the given functions exist and are continuous on the intervalI .

• Asked to solve

x2y′′(x) + xy′ − y/4 = 0, y(−1) = 0, y(1) = 2

Maple returns

y(x) = (x + 1)/
√

x

which is undefined forx < 0, and hence at the given boundary condition forx = −1.
This is a result of using a version of the look-up for the Euler equation (11) which is
only valid for non-negativex.

A full explanation for these unexpected results and how to avoid them is outside the
scope of this paper: they are consequences of implementation compromises for what is,
as we have seen, complex and subtle mathematics. Important aspects are discussed in
Stoutemeyer(1991) andWester(1999).

A fundamental problem is that of testing equality (Davenport, 2002). Elementary
functions have no normal form theorem, and indeed the question of whether
two elementary functions are equal is undecidable, the so-called zero-constant
problem (Richardson, 1968). In addition computer algebra systems often use internal
transformations which can unexpectedly turn a syntactically simple expression into a more
complicated one, and so even apparently simple calculations can require a complicated
equality proof. Unexpected complex numbers are a particular source of difficulty: computer
algebra systems do not in general handle branch-cuts (the conventions for choosing a single
value for a multivalued complex function like the complex exponential) well.

Another pervasive issue in computer algebra systems is that of checking preconditions
and side conditions of results: such checks would have eliminated the errors above.
However they are often omitted for the practical reason that they are often hard to discharge
(for example if they involve equality reasoning), and so propagate in unwieldy way
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through calculations. Systems like AXIOM (Jenks and Sutor, 1992), which enforce a type
discipline to cover matters such as possible division by zero, are hard to use and have not
been popular.

A more fundamental problem involves the handling of functions over the reals and the
blurring of computer algebra and computer analysis. Formally computer algebra systems
compute indefinite integrals and solve differential equations within the algebraic frame-
work of the theory of differential fields (Bronstein, 1997): fields with an operator satisfy-
ing d( f.g) = (d f ).g + f.(dg). So a CAS computes the antiderivative of a fieldelement
f , that is an elementg such that d(g) = f , whereln andarctanand so on are defined as
the appropriate antiderivative.Calculating an indefinite integral according to the standard
Risch algorithm canbe viewed as a purely algebraic calculation in a field of fractions, and
hence concerns about the domains of definition of the integrand and integral are irrelevant.
When using an indefinite integral as part of an analytic calculation, for example solving a
differential equation, the answers obtained algebraically may differ significantly from what
is expected. For example, viewedalgebraically, the derivative of

f (x) = arctan(ax) + arctan(1/ax)

is zero, so using the conventions of differential algebraf (x) is a constant, whereas viewed
analytically it is a step function with the value−π/2 for x < 0 andπ/2 for x > 0,
undefined atx = 0. Thus the unexpected answer to (12) is correct within the theory of
differential fields, but incorrect in the usualanalytic framework for differential equations
we havepresented above.

While full algorithms for symbolic solution of differential equations over differential
fields exist in principle (Bronstein, 1997), these involve the computation and analysis
of the Galois group of a differential equation and have not been fully implemented:
Maple and Mathematica do not yet even support the mathematical infrastructure, like
computational group theory, that they need. Thegeneral problem of designing a differential
equation solver which is sound analytically is unsolved, calls upon many issues in the
foundation of analysis and algebra, and involves both calculation (for example the algebraic
factorisation and simplification required in the Risch algorithm for integration) and proof
(to verify continuity for example). Hence computer algebra implementations of differential
equation solvers are a compromise (Wester, 1999), combining look-up tables where the
systems recognises the form of a given solution, such as the Euler equation (10), and
implementations of algorithms such as those indicated above.

4. Combining computer algebra and computational logic

Our strategy is to combine computer algebra and computational logic in a master–slave
relationship where users use the familiar rich environment of a computational mathematics
system, with external calls when required to a computational logic system which supports
reasoning about identities over elementary functions and tests for analytic conditions such
as continuity.

This section gives further background to our choice.
A long term goal of computational logic research is to create a computational engine

in which both calculation and property testing are justified by formal proof: this is the
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motivation of projects like Coq’s verified arithmetic (Boulmé et al., 1999; Boulmé, 2000).
While parts of mathematics arealready amenable to this treatment, as we have seen it is
somewhat premature to hope to treat differential equations this way: algebraic solvers have
been described but they are currently unimplementable even in a computer algebra system,
and in any case such a formal development would involve formalising a daunting amount
of modern analysis and algebra.

Approaches to the combination of computer algebra and automated theorem proving are
discussed and classified inCalmetand Homann(1996). One solution is the sub-package
approach, in which communication issues are side-stepped by building a CAS inside a
theorem prover (for exampleBoulmé, 2000) or vice versa. Examples of thelatter include
Analytica (Bauer et al., 1998), REDLOG (Dolzmann and Sturm, 1997), the Theorema
project (Buchberger, 1996; Buchberger et al., 1997), and a logical extension to the type
system of the AXIOM CAS (Jenks and Sutor, 1992; Poll and Thompson, 1998). While this
may give the user added reassurance thereremains the underlying problem of soundness:
for example simplification errors or undetected division by zero could propagate logical
errors.

A long-term solution is the adoption of a standard for mathematical information that
can, in principle, be understood by any mathematical computation system. Examples of this
common knowledge approach include the OpenMath project (Abbott et al., 1995; Dewar,
2000), and protocols for the exchange of information between generic CAS and theorem
provers (Bertoli et al., 1998; Gray et al., 1994). While this is gaining support, it depends on
wholesale acceptance of the protocols by both the CAS and Automated Theorem Proving
(ATP) communities.

Another approach involves the choice of preferred CAS and ATP environments, and
the construction of a specific interface for communication between them. In systems like
Maple-HOL (Harrison and Théry, 1993), Maple-Isabelle (Ballarin et al., 1995), and Weyl-
NuPrl (Jackson, 1995), the theorem prover uses the computer algebra system as an oracle,
providing answers that can then be checked by the prover.

By contrast the motivation for our work is to support the users of computer algebra
systems by giving them the facility to make external calls to the theorem prover, completely
automatically in some cases. The project is in approach similar to the Prosper toolkit
(Dennis et al., 2000), which provides systems designers using CAD and CASE tools with
access to mechanised verification. The Prosper paradigm involves the CAD/CASE system
as the master, with a slave proof engine running in the background. Our target, however, is
the community of CAS users in engineering, science and mathematics.

5. Integrating Maple and PVS

The overall view of our system is one in which the user interacts with the CAS, posing
questions and performing computations. Some of these computations may require ATP
technology, either to obtain a solution or to validate answers obtained by existing computer
algebra algorithms. In such cases the CAS will present the theorem prover with a number
of conjectures and request it to make some proof attempts. The results of these attempts,
whether successfulor otherwise, will guide the rest of the computation within the CAS:
the theorem prover acts as a slave to the CAS.
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We have written seven Maple procedures which pass external calls written in PVS
syntax. When placed inside suitable Maple wrappers they allow the user to treat PVS as
a black box; however the system also runs a Tcl/TK window through which the user can
interact with the PVS session.

Although Maple provides its own programming language, it was necessary to make
use of the Maple interface to external functions written in C to handle the creation and
management of new processes, low-level PVS interactions and other support facilities.
Versions 6 and above of Maple incorporate such adefine_external procedure, designed
to access the NAG numerics library, hence obviating the need for large scale numerics
development within Maple. Ourdefine_external procedures start and end PVS sub-
processes, and send and receive strings to and from each process. These procedures form
a basis for a Maple package,PVS, accessed from Maple in the usual manner:

> with(PVS);

[PvsProve, PvsProveTrivial, PvsQEDfind,
PvsEnd, PvsStart, PvsTCfind, PvsTypecheck]

To start a PVS sub-process we enter the following Maple command:
> pvs := PvsStart("/path/pvslib");

pvs:= 138903232
All define_external calls return an integer. We now have an active PVS sub-process

with the identifierpvs. WhenPvsStart is called within a Maple–PVS session, the library
(here/path/pvslib) is automatically type checked by PVS. This can take a minute or
two, and gives the interface a significant initial operational cost. However, type checking
ensures that no type mismatches havebeen introduced into the library. Thepvslib
directory contains the real analysis library for PVS. We can prove a simple result:

> PvsProve(pvs,"g:LEMMA 2+2=4","","");

table[lines= arr, totlines= 149];
PvsProve takes a sub-process identifier, a result to be checked, a library of lemmas and

a proof strategy, and returns a table. WithinPVS, the proof attempt proceeds in accordance
with the steps set out in the supplied strategy. The proof attempt might stop due to the proof
tree reaching a pre-set maximum depth (in which case the result may still be true, but PVS
has failed to find a proof quickly enough), or might output a list of properties to be checked
before a proof can be obtained (in this case the PVS user can input new proof commands,
abandon the proof, or accept that the inputlemma was false). If PVS stops with outputQED,
then the result has been proved. We check for this from Maple by using thePvsQEDfind
procedure which returnstrue or false.

PvsTypecheck and andPvsTCfind operate in a similar manner, but only typecheck an
expression with respect to a PVS library, and hence do not take a strategy as an argument.

The identifier for the PVS real analysis library described inSection 6is top_analysis.
The proof strategies available areconv-check, deriv andcts, as well as the built-in
proof commands and strategies of PVS. The default proof strategy is the PVSassert
command, which will only succeed for elementary lemmas.

The session is ended using thePvsEnd command. Multiple sessions are possible, and a
Tcl/Tk tool for analysing inter-process communications and interacting directly with PVS
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Fig. 1. Tcl/Tk window for the Maple–PVS interface.

processes is available. We stress that the Maple procedures developed to address specific
property checks treat PVS as a black box. Once the PVS package is loaded and a sub-
process has been initialised, the Maple user need know nothing about PVS syntax, libraries
or proof commands: all calls to PVS are hidden within Maple procedures. Thus for example
our continuity tester described below iscalled from Maple as

> PVSiscont(pvs, 1/(x+2), x=0..1);
In terms of our basic commands this represents

> PvsProve(pvs,"g:LEMMA forall (y:I[0,1]):
> continuous(lambda(x:I[0,1]):1/(x+2),y))",
> "top_analysis","cts":

We now provide straightforward examples of the use of the interface. Neither of the
examples involves our PVS real analysis library; they demonstrate only the mechanics of
the interface, and illustrate the master/slave relationship between Maple and PVS.

> ex1 := PvsProve(pvs, "g: LEMMA 2 + 2 = 4", "", ""):
ThePvsProve command takes

1. a PVS session identifier,
2. a formula in PVS syntax,
3. a PVS library — the default is the prelude,
4. a PVS proof command — the default isASSERT.

The result of this command is shown inFig. 1.
We confirm in Maple that the proof was successful using thePvsQEDfind command:

> PvsQEDfind(ex1);
true
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The second elementary example involves passing across a more elaborate fragment of
PVS code: it is a lemma from which it follows that if 0< a < b then 1/(x − a) is not
continuous in[0, b], implying that a corresponding definite integral is undefined for certain
values ofthe parametersa, b. We prove this using the command:

> ex2 := PvsProve(pvs, "g: LEMMA FORALL (a,b:posreal) :
> b > a IMPLIES EXISTS (x:real) : 0 <= x AND x <= b AND
> not(member[real](x,({z:real|z /=a})))",
> "", "then (skosimp*)(then (inst 1 \"a!1\")(grind))");

For this example the proof argument toPvsProve is rather more complicated, and
represents a single statement of the sequential PVS proof by repeated Skolemisation and
flattening, explicit instantiation, and use of thegrind tactic. This lemma forms part of
the theory used to construct the specialist proof strategies described inSection 6.4; our
operational paradigm does not require that the user be able to construct detailed PVS
proofs.

The above examples show that the Maple user controls the interface using Maple
commands in a Maple session. The user cancheck that proof attempts have succeeded
without needing to interact with (or even view) the Tcl/Tk window. This is present only
as a gateway to PVS, used when proof attempts fail, or when a record of the logical steps
used in a proof is needed.

6. The reals in PVS

PVS is a system for specification and verification with a rich higher-order type system
supporting overloading of operators, subtypes and dependent types, and mechanisms for
parametric specifications. The PVS prover is based on sequent calculus: a collection
of powerful primitive inference mechanisms are provided including propositional and
quantifier rules, induction, rewriting, and decision procedures for linear arithmetic. The
implementations of these mechanisms are optimised for large proofs: there is support
for proof strategies (similar to HOL tactics and tacticals) and a powerful brute force
mechanism called grind.

6.1. Real analysis in PVS

The PVS prelude provides a basic theory of the reals: the axiomatisation is via the
least upper bound principle, every non-empty set of reals bounded above has a least
upper bound.Dutertre(1996) extended this and developed a library for real analysis in
PVS, including definitions and basic properties of convergence,limits, continuity and
differentiation. In Adams et al.(1999a) Adams etal. described work on an integral table
look-up, which required the proof of a large number of routine results to discharge side
conditions, and how this had led to an implementation of a lemma database of elementary
facts about rational functions in PVS to improve efficiency. Further development of real
analysis in PVS is described inGottliebsen(2000). Loosely speakingDutertre (1996)
developed the theory in the chapters of the textbook:Gottliebsen(2000) developed the
useful short cuts for doing the exercises at the end.
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We have since made some changes to the basic analysis library as some definitions
were discovered to be unsuitable. This particularly concerns the definition of convergence
of functions. Dutertre’s definition of convergence was unusual in that it coincided with the
definition of continuity. This is seen by the “theorem” in Dutertre’s development:

continuity_def2 : THEOREM
continuous(f, x0) IFF convergent(f, x0).

We changed the definition of convergence of functions to the more usual one, so that the
above is no longer a theorem. Dutertre’s definition of convergence did not take into account
that the function may converge to a value different from the function value at the point
inspected. Thus the equivalence between continuity and convergence. A more common
equivalence is described by our theorem:

continuity_def3: THEOREM
not_isolated_point(x0, ((fullset[T]))) AND continuous(f, x0)

IMPLIES convergent(f, x0).

This states that if a point is not isolated in the function domain and the function is
continuous at that point, then the function has a limit at the point too. Following these
changes to some basic definitions, minor necessary changes were made throughout the real
analysis library.

6.2. Transcendental functions in PVS

It will be obvious from the account above of differential equations that for this project
we needed to extend Dutertre’s work to elementary functions. There are two ways to do
this: axiomatically orby defining the functions in terms of power series. We chose the latter
hoping that hard work at the beginning would pay off in a framework that makes further
developments easier, and further development of the theory of differential equations will
in any case need a theory of power series. We have again constructed on top of the basic
definitions a large lemma database of routine results about elementary functions. Typical
entries are:

sin
(π

2

)
= 1 cos(π) = −1

sin(x) = cos
(π

2
− x

) d

dx
(sin(x)) = cos(x).

We developed a basic group of results directly from the power-series expansions: these,
together with theorems that gave us good estimates forπ ande, were then used to prove
the remainder.

The PVS library of transcendental functions is described inGottliebsen(2000) and
consists of around 2600 lines of specifications (including empty lines and comments)
on top of Bruno Dutertre’s analysis library. The specifications are in 16 theories which
contain a total of about 730 theorems, including 183 type correctnessconditions (TCCs).
The development time can be estimated at around 9 man months.
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6.3. Continuity checking and definedness

Given a function f over the reals and a closed interval I we may want to attempt to
prove that f is defined throughoutI , that is thatI is contained in the domain off , and that
f is continuous1 at all points inI .

Logically the checking of definedness and continuity off in I are distinct, but for
thepurposes of our prototype they are considered as one call to PVS, since any proof of
continuity of f in I generates the TCC that corresponds toI being contained in the domain
of f .

Wehave written a continuity checker that takes as input a function and a closed interval,
and attempts to prove that the function is continuous in the interval. Our checker relies on
Dutertre’s implementation of a text-book development of continuity (sums of continuous
functions are continuous and so on) augmented with our database and a collection of
standard results about the continuity of elementary functions.

The method used forcontinuity checkingis what one might call the high school method.
It is based on the theorems that the constant functions and the identity function are
continuous everywhere, and that well-founded combinations using the following operators
are also continuous: addition, subtraction, multiplication, division, absolute value and
function composition. Also, the functions exp, cos, sin and tan are continuous everywhere
in theirdomains,2 which means that we can prove that functions such as (13) are continuous
on the whole of their domain. The continuity checker is invoked by using the strategycts,
which performs all the necessary theory instantiations. Thus for example PVS real analysis
library contains the (formally proven) lemmas

• cos(x) and 2 are continuously differentiable overR,
• a sum of continuous functions is continuous,
• |cos(x)| ≤ 1 ∀x ∈ R
• 1

f (x)
is continuous if f (x) is continuous and non-zero.

The latter lemma places conditions on the value of the functionf as well as on continuity
of the functions. The reason for this is that the function1f (x)

is undefined at any point
where f (x) is zero.

Thects strategyuses these lemmas to prove that|cos(x) + 2| > 0, and hence that its
reciprocal is continuous everywhere. The checker can be used to check the continuity of
functions such as

ex2+|1−x|. (13)

Of course as continuity is undecidable (Cherlin, 1980), this will not always work,
however for many examples it is sufficient. Note also that if a proof fails using the checker
we can always go back and prove the result from first principles and add it to the database.

1 The floor function is an example of a function that is defined for all real numbers but only continuous on
intervals[a, b] with n ≤ a ≤ b < n + 1 for someintegern.

2 Notethat the domain of tan excludes all points with value of the form(2n + 1)π/2 and that it is continuous
everywhere else.



554 H. Gottliebsen et al. / Journal of Symbolic Computation 39 (2005) 539–567

6.4. Specialist proof strategies

A particular focus of our development of analysis of transcendental functions
in PVS is supporting automation, thus based on the development of transcendental
functions (Section 6.2) we implemented various PVS strategies supporting continuity and
convergence checking.

There are two ways of automating proofs in theorem provers: writing purpose-built
strategies; or using pre-defined widely applicable strategies. The latter method (such as
blast-tac in Isabelle (Paulson, 2001) or grind in PVS) is the one we have primarily
used, although we have also written some special purpose strategies. Application of the
PVS generic tacticgrind can be quite difficult. In order to improve the performance of
grind (both in terms of speed of the proofs and in the number of conjectures it will prove
automatically) we have introduced various type judgements (Owre et al., 1999) into our
development. Type judgements in PVS are type assertions which are proven using the
full strength of the prover and then used by PVS during typechecking and matching, thus
extending the capabilities of the typechecker in a local manner. For example, the type
judgements

exp_pos: JUDGEMENT exp(x: real) HAS_TYPE posreal

minus_posreal_is_negreal: JUDGEMENT -(px: posreal) HAS_TYPE negreal

tells PVS that for all realsx, ex is positive(of type posreal) and thatthe negation of a
positive number is negative, i.e. of typenegreal. Sincenegreal is a subtype ofnzreal
(the non-zero reals), PVS knows that dividing by−ex is valid for all realsx. Without
the type judgements, PVS would not automatically apply theorems which relies on e.g.
ex being positive, however with judgements such as the ones above in place, PVS can
automatically discharge those TCCs, and thus automatic application of more theorems are
possible.

The use of type judgements greatly enhances the applicability of the automation in
PVS, in our case by allowinggrind to apply generic theorems to our specific tasks,
effectively by giving hints to the matching algorithm searching for appropriate theorems in
the development.

By adding judgements specific to the transcendental functions, we have extended the
range of functions that the continuity checker can recognise. In particular, it is now possible
to check functions such as 1/(cos(x) + 2) for continuity. This has been implemented
using judgements to assert that cos and sin are always within[−1; 1] and that adding (or
subtracting) something strictly greater than 2 will return a non-zero real value. We added
about 180 judgements to the PVS library to facilitate matching.

As well as a continuity checker we also havea convergence checker; this will check if
a certain function has a limit at some point (or indeed everywhere in its domain). We can
prove, for example, that the function

−π − 1 + π ∗ e1−cos(x) (14)
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has alimit at the point

arccos

(
1 − log

(
1 + π

π

))
. (15)

The convergence checker is implemented in the strategyconv-check, and it works in the
same syntax directed way as the continuity checker, and so has similar capabilities and
limitations.

Furthermore, we have implementedderiv, a strategy which is used to check if a
function is differentiable. It is syntax directed just likects andconv-check, and asserts
the property of differentiability rather than actually calculating the derivative of a function.
The main reason for this limitation is as follows: Consider the functionf (x) = 7x + 5. If
we want to apply the high school method to differentiatef we firstnote that it is a sum,
then consider each component in turn:

deriv_sum : LEMMA
derivable(f1, x) AND derivable(f2, x) IMPLIES

deriv(f1 + f2, x) = deriv(f1, x) + deriv(f2, x)

However, in PVS we are concerned with proving thatddx (7x + 5) = 7 rather thanactually
finding the derivative. But there is no obvious way for PVS to guess that 7 should be viewed
as 7+0 when matching the formula to the theorem. This is something which could possibly
be helped by a theorem covering the special case where one component is constant, or even
by a special purpose strategy. However, we have not implemented that.

7. Applications

In this section we show how we can use our new PVS routines for the purposes presented
in the introduction: direct calls from Maple, result refinement and verification, discharge
of verification conditions, harnesses to ensure more reliable differential equation solvers,
and verifiable look-up tables.

7.1. Replacing the Mapleiscont procedure

Maple provides a putative semi decision procedure,iscont, for the continuity of real
valued expressions. The user inputs an expression and an interval of the real number line,
and is returned eithertrue, false, or FAIL. Sinceiscont does not use formal proof
procedures, the user might expecttrue to be returned for expressions that are easily seen
to be continuous (such as sin(x)), false to be returned for expressions having an obvious
discontinuity (such as tan(x) for x ∈ [0, 2π]), andFAIL for any other expression.

Unfortunately, the existing implementation ofiscont can return incorrect results. For
example, in Maple 6:

> iscont(1/(cos(x) + 2),x=0..infinity);

false
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In this instance Maple has failed to check that the denominator of the rational expression

1

cos(x) + 2

is never equal to zero, and hence that the expression is continuous over the entire real
number line. Later versions of Maple returnFAIL for this input; this is not incorrect, but
not as useful as the resulttrue.

We replaceiscont with the improved Maple continuity checker,PVSiscont. The
inputs toPVSiscont are a PVS sub-process identifier, an algebraic expression, a real
range, and a symbol used to denote open or closed intervals. The procedure first produces
the correct question to ask PVS by defining the input interval in terms of constructs such
asnnreal, downfrom andabove. These are subsets of the reals: non-negatives,(∞, a]
and (a,∞) respectively. PVS is then asked to typecheck the input function and range.
Typechecking fails for typographically incorrect input, and whenever unevaluated symbols
are present. For example:

> PVSiscont(pvs, 1/(x+a), x=0..1);

Error, (in PVSiscont) typecheck failure

In this case the usermust instantiatea, since PVS can not rule out the possibility that
a = −x. If the typecheck succeeds, PVS is asked to provethe continuity of the expression
over the range; a successful proof halts the procedure with outputtrue. An unsuccessful
PVS proof attempt leads tofalse being returned if either

• the input range is infinite anddiscont returns a non-empty set, or
• the input range is finite andfdiscont returns a non-empty list.

PVSiscont returnsFAIL in all other cases. The procedure is given inFig. 2.
This revised procedure now acts in the same way asiscont in the sense that they accept

the same expressions as input, use open intervals by default, and rearrange intervals such as
(5, 0) into the more standard form(0, 5). Thedifference is thatPVSiscont returnstrue
only if a formal proof of continuity is obtained. It is still possible that the procedure will
returnFAIL for continuous input, due to the undecidability of continuity in general.

7.2. Refining thefdiscont procedure

The numericfdiscont procedure attempts to find the discontinuities of a function
over the reals. More accurately, the procedure returns a list of numeric ranges in which
discontinuities may occur. The numeric resolution,res of the procedure is set by the
user, with a default value of 10−3. This value is adequate for many input functions, and
is suitable for use with thenewton = true option tofdiscont, which utilises an inverse
secant method (Gerald, 1999) to find discontinuities. However the resolution may need to
be finer in certain cases. The Maple documentation contains the following warning:

. . .fdiscont can be fooled by dense oscillatory functions (such as sin(500x) on
0 . . . π) — if features are found that are not expected, the resolution,res, should be
made smaller. . .
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PVSiscont:= proc(pvs, f ::algebraic, arange::(name= range))

local rs, ls, thm, var, tctest, fs, vars;
fs := convert( f, string) ; var := lhs(arange) ;
ls, rs := op(rhs(arange)) ; vars := convert(var, string) ;
if ls = −∞ and rs = ∞ then
thm := cat(“∀(y : R) : continuous(λ(vars : R) : fs, y)”)
elif
..
.

other cases for the range, each giving athm

.

..

end if
tctest:= PvsTypecheck(pvs, thm, “top_analysis”) ;
if not PvsTCfind(tctest) then error “typecheck failure”
elifPvsQEDfind(PvsProve(pvs, cat(“g:FORMULA ” , thm, “” ),

“top_analysis”, “cts”))then return true

elif (nops(fdiscont( f, arange, newton= true)) �= 0)

or not (discont( f, var) = emptyset) then return false

else return FAIL
end if

end proc

Fig. 2. ThePVSiscont procedure.

We see thatfdiscont provides a choice between superlinear methods with coarse
resolution, and more expensive methods with fine resolution, with the user deciding on
the most appropriate method for the current input.

The Maple–PVS interface can be used to formally prove the continuity of dense
oscillatory functions over small intervals. This motivates the design of a new procedure,
PVSfdiscont (Fig. 3), which obviates the need for higher resolution checks, and, in the
event that the input is not proved to be continuous, returns the result obtained byfdiscont
using coarse resolution (10−2) and the inverse secant method.

The input toPVSfdiscont is a PVS sub-process identifier, a function, and a finite
interval inR. Theprocedure fails for infinite, semi-infinite and empty intervals, in the same
way asfdiscont does. If the input is suitable we construct a string in PVS syntax, which
contains the function, the variable name, and the endpoints of the interval. This string is
typechecked by PVS, and, if typechecking succeeds, PVS is asked to prove continuity of
the function over the (closed) interval. If the proof attempt succeeds we return the empty
list, denoting an absence of discontinuities. If no proof is obtained we return the result given
byfdiscont using the inverse secant method with default resolution. The following output
demonstrates thatPVSfdiscont performs correctly for input that confusesfdiscont:

> PVSfdiscont(pvs,sin(750*x), x=0..Pi/2);

[ ]
> fdiscont(sin(750*x), x=0..Pi/2);

[.939969669603023528...940875175375470940]
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PVSfdiscont:= proc(pvs, f ::algebraic, arange::(name= range))

local rs, ls, thm, var, tctest, fs, lss, rss, vars;
fs := convert( f, string) ; var := lhs(arange) ;
ls, rs := op(rhs(arange)) ; lss := convert(ls, string) ;
rss := convert(rs, string) ; vars := convert(var, string) ;
if rs = ∞ or ls = −∞ then

error “ endpoint of range does not evaluate to numeric”
else

thm := cat(“∀(y : [lss, rss]) : continuous(λ(vars : [lss, rss]) : fs, y)”)
end if;
tctest:= PvsTypecheck(pvs, thm, “top_analysis”) ;
if not PvsTCfind(tctest) then

error “formula fails to typecheck in PVS”
elifPvsQEDfind(PvsProve(pvs, cat(“g:FORMULA ” , thm, “” ),

“top_analysis”, “cts”))then return [ ]
else fdiscont( f, var = ls..rs, 1/100, newton= true)
end if

end proc

Fig. 3. ThePVSfdiscont procedure.

The inverse secant method often converges fast enough to allow Maple to return a
numeric range smaller than the number of digits of precision being used; in effect, returning
a single point. Hence allowingnewton = true to be the default (for discontinuous input)
gives the added benefit of more usefuloutput. To illustrate this, suppose that

f (x) = 1

x − 1
+ 1

x − 3
+ 1

x − 985
1000

.

Comparing the two procedures gives:

> PVSfdiscont(pvs, f, x=0..4);

[.984999999999999987, 1., 3.]
> fdiscont(f, x=0..4);

[.984750296083091837...985663557502026722,
.999690267968566970..1.00057168219480253,
2.99965320342283404..3.00062701888158800]

We see that the PVS-enhanced procedure returns exact results for the poles at 1 and 3,
whereas the standard Maple result supplies an interval which contains these poles.

7.3. Thediscont procedure

Maple provides thediscont procedure for finding discontinuities in symbolic
expressions over the whole real number line. The user inputs a function and a variable,
and receives a set of possible discontinuities, identified by a combination of look-up and
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PVSdiscont:= proc(pvs, f ::algebraic, var)

local thm, tctest, fs, vars;
fs := convert( f, string) ;
vars := convert(var, string) ;
thm := cat(“∀(y : R) : continuous(λ(vars : R) : fs, y)”)
tctest:= PvsTypecheck(pvs, thm, “top_analysis”) ;
if not PvsTCfind(tctest) then

error “formula fails to typecheck in PVS”
elifPvsQEDfind(PvsProve(pvs, cat(“g:FORMULA ” , thm, “” ),

“top_analysis”, “cts”))then return {}
else discont( f, var)
end if

end proc

Fig. 4. ThePVSdiscont procedure.

computing zeros of the reciprocal of the input. Thus the discontinuities for tan(x) are given
as {

Zπ + 1

2
π

}

whereZ can take any integer value: the Maple 8 implementation also returns some possible
discontinuities of the continuous function

1

cos(x) + 2
.

Thus as before we presentPVSdiscont, which refinesdiscont by a call to Maple–
PVS. The followingoutput is now analytically correct:

> PVSdiscont(pvs,1/(cos(x) + 2), x);

{ }
To the user,PVSdiscont works in the same way asdiscont, except that

• the user inputs a PVS sub-process identifier, and
• the empty set is returned if PVS proves that the input function is continuous.

7.4. Applications to differential equations

In this section we illustratepre-condition and result verification for differential
equations, proving continuity and convergence with calls to PVS from Maple using
the PvsProve command withtop_analysis as the library, and with eithercts or
conv-check as the proof strategy.

For example, consider the initial value problem (IVP) above (8),

y′(x) = f (x, y), y(a) = η, (16)

where y′ denotes the derivative ofy(x) with respect tox. Let D denote the region
a ≤ x ≤ b and −∞ < y < ∞. Then Eq. (8) has a differentiable solution,y(x),
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if f (x, y) is defined and continuous for all(x, y) ∈ D, and under further conditions onf ,
for exampleif f satisfies a Lipschitz condition onD, this solution is unique.

As an example of pre-condition verification consider the IVP

y′(x) = f (x, y) = 1

eπ−|6 cos(x)| , y(a) = η. (17)

We can show thatf (x, y) is defined and continuous on the real number line using
PVSiscont, whichuses thects strategy in the form:

> PvsProve(pvs, "g: LEMMA FORALL (y:real) :
> continuous(lambda (x:real) :
> 1/exp(pi - abs(6*cos(x))),y)",
> "top_analysis", "cts")
> ;

For an exampleof result verification consider the IVP

y′(x) = sin(x)y(x) + sin(x)y(x)2, y(0) = π. (18)

We can obtain a proposed closed form solution using the Mapledsolve procedure:

y(x) = −π e(−cos(x)+1)

−1 − π + π e(−cos(x)+1)
. (19)

Since the IVP is of generalised Riccati type theory predicts that the unique solution should
have only removable poles (Murphy, 1960), that is, it should be convergent at those points
at which it is undefined. To verify this we must check that

πe1−cos(x) − π − 1 (20)

is convergent at

x = arccos

(
1 + log

(
1 − π

π

))
(21)

via theconv-check strategy:
> PvsProve(pvs, "g: LEMMA convergent(LAMBDA (x:real) :
> -pi-1+pi*exp(1-cos(x)),acs(1-ln((1+pi)/pi)))",
> "top_analysis", "conv-check");

We can also verify the solution in (19) can never be zero, using thegrind strategy:
> PvsProve(pvs, "g: FORMULA FORALL (x:real) :
> -pi*exp(-cos(x)+1)/= 0", "top_analysis", "grind :defs NIL");

These examples demonstrate the inference capability and expressivity of the interface
augmented with a library of analytic proof strategies. The results cannot be proved within
Maple, and are not easy to prove by hand.

7.5. A Generic application to IVPs

As we indicated in the introduction we can put all this together in validating and
improving Maple procedures for solving differential equations. Consider for example an
IVP of the form

y′(x) = r (x) − q(x)y(x), y(a) = η, x ∈ [a, b]. (22)
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Pre-condition verification will throw up proof obligations of the following form (bearing
in mind that each input can be a complicated symbolic expression involving parameters):

1. r (x) andq(x) are continuous over[a, b];
2. r (x) − q(x)y(x) is continuous, Lipschitz, and/or differentiable over[a, b].
Answers to thesequestions provide a formal check on the existence and uniqueness of
solutions for thegiven finite range.

Once a proposed solution,y(x), has been obtained using Maple’s built in procedures,
result verification throws up further proof obligations, for example:

1. y′(x) − f (x, y) = 0, where f (x, y) is the candidate solution;
2. y(a) = η;
3. y(x) has removable poles, non-removable branch points and/or is itself continuous.

The following Maple procedure is a harness to the inbuilt Mapledsolve
procedure for obtainingy(x): it takes r (x), q(x), a, η and b as arguments
and generates calls to Maple–PVS addressing some of these proof obligations:

qsolve:= proc(r, q, a, η, b)

local pvs, z1, z2, z3, z4, z5, z6, sol, diffsol;
pvs:= PvsStart( “ ../pvslib”) ;
z1 := PvsProve(pvs,

“g : FORMULA ∀(v : I [a, b]) : continuous(λ(x : I [a, b]) : r (x), v” ),
“top_analysis”, “cts”);

z2 := PvsProve(pvs,

“g : FORMULA ∀(v : I [a, b]) : continuous(λ(x : I [a, b]) : q(x), v”),
“top_analysis”, “cts”);

if not (PvsQEDfind(z1) and PvsQEDfind(z2)) then ERROR(‘ invalid input‘ )
else

sol := dsolve({diff(y(x), x) = r (x) − q(x)y(x), y(a) = η}, y(x)) ;
diffsol := diff(sol, x) ;
z3 := PvsProve(pvs,

“g: FORMULA FORALL (v:I[a,b]) : diffsol(v) = r(v) - q(v)*sol(v)” ,
“top_analysis”, “grind” );

z4 :=
PvsProve(pvs, “g: FORMULA sol(a) = eta”, “top_analysis”, “grind” );

z5 := PvsProve(pvs,

“g : FORMULA ∀(v : I [a, b]) : continuous(λ(x : I [a, b]) : sol(x), v”),
“top_analysis”, “cts”)

fi;
if not (PvsQEDfind(z4) and PvsQEDfind(z5) and PvsQEDfind(z6)) then

ERROR(‘ invalid solution‘ )
else sol
fi
end

The procedure first performs formal checks (z1 and z2) that the input functions are
continuous over the real interval in question.If these checks succeed, Maple provides a
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putative solution to the IVP. We then check thatthe derivative of this solution satisfies the
problem specification (z4), that y(a) = η (z5), and that the solution is also continuous
over therange (z6). If any of these properties do not hold, then the Maple result is not the
required solution.

Maple does have built in procedures for answering many of these questions, but, as
shown above, can fail to detect the continuity of a simple function. Using the interface helps
the user to validate both the input and output of problems, and hence leads to improved use
and understanding of the CAS.

Similar harnesses have been written for

• The method of (6) for first order equations with parametric coefficients
• The method of (9) for second order equations of the formy′′ + ay′ + by = c(x) where

a, b are parametric expressions constant inx.

7.6. Verifiable look-up tables

As we have seen existing implementations such asdsolverely in part on look-up tables
for solving well known differential equations, and large numbers of such solutions are
recorded in handbooks such asZwillinger (1992). As we indicate above tables can also
be used more generally, for example to record cases in a phase plane analysis. We saw
above how an incorrect answer was returned through use of an incorrect table entry. In
Adams et al.(1999b) we discussed the notion of a verifiable look-up table for definite
integration, where as in (11) the answer consists of a number of cases corresponding to
different constraints on a parameter:in this case whetherγ is positive, negative or zero.
Theorem proving support, in the form of a call to a large lemma database and PVS’s fast
built in procedures, allows usto reduce the number of cases by showing that some of the
constraints are unsatisfiable.

Our approach here is a straightforward extension ofAdams et al.(1999b) so we give
only a brief description. Atablecomprises a list of verifiedentriesof the form

Q(p1, . . . , pn) : K , C (23)

where Q(p1, . . . , pn) is the pattern, p1, . . . , pn are real-valued parameters andK is a
sequence ofcases, pairs ofthe form〈A, R〉. Informally A denotes the answer3 to Q under
the constraints R, andC records information to assist in verifying the table entry. More
preciselyR is a boolean combination of equalities and pure inequalities over{p1, . . . , pn}
and C is a certificate, a set of assertions for usein verifying the entry. The table entry
asserts that for all values of the parameterspi , and for each〈A, R〉 ∈ K we have

C ∧ (R �⇒ (Q(p1, . . . , pn) = A(p1, . . . , pn))).

A tableentry is said to be complete if it covers all possible values of the parameters, that is
to say{R 〈A, R〉 ∈ K } partitions the parameter space, whereR denotes the solutions of
R: we may force completeness by adding a final “[otherwise, unknown]” case.

3 Our framework allows for “undefined” and “unknown”.
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To use the table the user submits a query
(
Q(p′

1, . . . , p′
n), D

)
, where P′ =

{p′
1, . . . , p′

n} are real parameters andD is a boolean combination of equalities and pure
inequalities overP′. Thequery is matched against the pattern of one or more table entries
of the form (23) to obtain a match, or more generally a set of matches,Θ , and wededuce
that the solution set to our query is given by

L = {〈Aθ, Rθ ∧ D〉 〈A, R〉 ∈ K , θ ∈ Θ , (∃p′
i . Rθ ∧ Q)}.

However if we can prove that(∃p′
i . Rθ ∧ Q) is false for someR we can eliminate the case

corresponding toR from L. Wecall this process discharging side conditions. Thus it is ex-
actly what we described informally for the case of Euler’s equation in the previous section.

It follows from our discussion above that verifying the table entries is likely to be
reasonably complicated and not amenableto automation, unless each certificate is more
or less a proof outline drawn up by a domain expert. We envisage encapsulating many
kinds of information in tabular form. We now have in PVS the components for verifying
a tableentry which gives solutions for a differential equation in particular cases, such as
(11), in the following sense. We are able to show in PVS that each case is a solution
in the sense of (5), under the given constraints. This involves computing the appropriate
derivatives in PVS, showing they exist in the specified interval (which becomes a PVS
typecheck condition in our formulation) and substituting back into the equation to get zero.
Notice that as the solution is put in the table by the designer, rather than constructed by the
machine, we have some chance of reducing the difficulties adduced above: in any case we
are not yet anticipating automatic proofs here. We have not set up the machinery to prove
more general existence or uniqueness resultsfor differential equations, which is what we
would need to prove the more general statement that our entry covered all solutions to the
equation satisfying the constraints. To prove that our entry is complete requires us to show
that{R 〈A, R〉 ∈ K } partitions the parameter space, whereR denotes the set of solutions
of R. The PVS built in linear arithmetic package helps us here: the problem of verifying
such tables was addressed in general terms inOwre et al.(1997).

To useour tables we need to match a query against a table entry and discharge side
conditions. We discussed matching against table entries at length inAdams et al.(1999b),
and wrote a specialist front end in LISP for the purpose. For this work we currently rely on
the matcher in Maple: other methods are possible. Many theoretical results on general
matching and unification are known, but we are unaware of a matcher for elementary
functions written from this point of view: current practical implementations usually involve
complex preprocessing, hashing and so on.

To discharge the side conditions we pass them to PVS and use our lemma database. For
the examples we have discussed above the side conditions are in the form of quantifier
elimination problems, and fall to PVS built in quantifier elimination combined with
our database. Quantifier elimination is decidable for rational functions, but not so for
elementary functions: however as with continuity we can add extra lemmas to our database
when we encounter a troublesome case.

As well as the integral tables discussed at length inAdams et al.(1999b) we have
prototyped in Maple look-up tables for secondorder differential equations (including (11))
which generate side conditions that we pass to PVS.
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8. Conclusions and what next

The objective of this work is to provide practical support for the investigation of
differential equations using computer algebra and computational logic, bearing in mind the
needs and expectations of users and the current scope and limitations of both technologies.
Such users do not want to check computer algebra results using a computational logic
package; nor are they interested in the mechanics of a computer algebra system that uses
computational logic to check analytic properties. They are however interested in new or
improved techniques within their established frameworks.

Currently we have implemented in PVS:

• libraries for transcendental functions
• procedures for automatically checking continuity, convergence and differentiability.

These support the following within Maple, via our Maple–PVS interface: PVS runs in the
background, and the Maple user does not need to know any PVS syntax or methods to
obtain results.

• the automatic verification of routine properties of elementary functions
• the automatic verification of the above analytic properties
• result verification and refinement for symbolic and numeric computation, for example

to produce more accurate versions of the Maple proceduresdiscont, iscont andfdiscont
• pre-condition verification, for example ofthe conditions for a differential equation to

have a solution
• harnesses for differential equation solvers that generate verification conditions

corresponding to the necessary pre-condition and result verification
• support for discharging side conditions intable look-up, for example in tables of

integrals.

We have testedour system so far on a variety of examples, including those in the
paper and some taken fromWester(1999). We conclude that it provides safer answers
than current computer algebra systems alone, at little cost to the user. Furthermore our
framework is a general one, and we believe itto be easily extensible to further equations
and techniques. It relies for its success on our choice of primitives, such as continuity,
which are useful and comprehensible for the user, and the efficiency and high degree of
automation provided by PVS: our aim is that users should essentially be unaware of the
PVS calls.

While our motivation in this paper was computer algebra, our work, and other hidden
computational logic, could be deployed in other ways, for example as a component
of frameworks for communicating mathematical and logical software, such as Prosper
(Dennis et al., 2000) or MathWeb (Abbott et al., 1995), or as mathematical services on
the semantic web or semantic grid.

Other approaches to the combination of computer algebra and computational logic were
discussed inSection 4. The most immediate comparison we are aware of is Harrison’s
development of reals and floating point in HOL (Harrison, 1995), which also supports a
large basic library which is now being used to verify machine arithmetic at Intel.Fleuriot
(2000) has developed non-standard analysis in Isabelle as far as some elementary functions.
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There is also a large literature on hybrid systems, which combine discrete and continuous
elements in the investigation of control laws: most however involve discrete or numerical
techniques, or the simulation of one by the other.

Further issues to address include:

• Integration of computer algebra and theorem proving has become something of a hot
topic lately, but we have been cautious in ourapproach. In particular — in the light of
our remarks inSection 4— note that in our present framework the prover input, rather
than being general, is in very restricted formats determined by the proof obligations and
the cases of the tables.

• We indicated above a number of user requirements: we have so far addressed the
first, and most important, solving differential equations. Our techniques would extend
to a number of the others, for example look-up tables for phase-plane analysis,
and automated reasoning support for reachability analysis (Jirstrand(1997), applied
quantifier elimination to reachability, but our approach in principle allows one to apply
QE-like techniques to a wider class of function).

• An obvious generalisation of our work is to build the complex numbers into PVS,
including branch cuts. This would make possible many useful analytic tools in an area
where computer algebra systems are notorious for difficulties.

• Similar properties that could be treated in the same way, for application in our work
or elsewhere, include analyticity, the Lipschitz condition or the existence of a regular
singular point.

• An obvious question is how our methods would scale up to more complex equations
or systems of equations, and whether we could extend the scope of standard computer
algebra techniques.

• As we have indicated, the problems of doing computational analysis inside a computer
algebra system like Maple arise from fundamental difficulties and design decisions.
Our approach does not solve these, but merely allows us to bypass some of them. The
underlying problem is that we do not yet know how to do continuous mathematics
symbolically by analytic rather than algebraic means. Solving this problem would
indeed makepossible a new generation of useful computational tools.
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