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a b s t r a c t

Both climate and land use changes can influence water quality and quantity in different ways. Thus, for
predicting future water quality and quantity trends, simulations should ideally account for both pro-
jected climate and land use changes. In this paper, land use projections and climate change scenarios
were integrated with a hydrological model to estimate the relative impact of climate and land use
projections on a suite of water quality and quantity endpoints for a Canadian watershed. Climatic time
series representing SRES change scenario A2 were generated by downscaling the outputs of the Canadian
Regional Climate Model (version 4.1.1) using a combination of quantileequantile transformation and
nearest neighbor search. The SWAT (Soil and Water Assessment Tool) model was used to simulate
streamflow, nitrogen and phosphorus loading under different climate and land use scenarios. Results
showed that a) climate change will drive up maximum monthly streamflow, nitrate loads, and organic
phosphorus loads, while decreasing organic nitrogen and nitrite loads; and b) land use changes were
found to drive the same water quality/quantity variables in the same direction as climate change, except
for organic nitrogen loads, for which the effects of the two stressors had a reverse impact on loading.
© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Studies that address the combined effects of climate change and
land use changes in tandem on water quantity and/or quality have
been documented variably in literature (Liu et al., 2000; Barlage
et al., 2002; Legesse et al., 2003; Tu, 2009; Wilson and Weng,
2011; Dunn et al., 2012; Felzer, 2012; Sample et al., 2012; Tong
et al., 2012; Seung-Hwan et al., 2013; Kim et al., 2013). Each of
these studies involves numerical experiments whereby a calibrated
hydrological model is forced with climatic inputs representing one
or several global warming scenarios, and using current and/or
projected land use maps.

Differences in these studies lie in the location of the study area,
the hydrological model, the type of water quantity and quality
variable under scrutiny, and the way climate change and land use
scenarios are generated. Hydrological models range from very
simple water balance models (Liu et al., 2000; Sample et al., 2012)
Ltd. This is an open access article u
to sophisticated watershed models, such as the Annualized Agri-
cultural Non-Point Source model (AnnAGNPS: Bingner et al., 2007)
and the Soil Water Assessment Tool (SWAT: Wilson and Weng,
2011; Kim et al., 2013) which are capable of simulating loads and
concentrations of a variety of water quality targets. The approaches
used to evaluate climate change vary as well: Liu et al. (2000),
Legesse et al. (2003), and Tong et al. (2012) utilized the Delta-
change method which consist of adding arbitrarily chosen varia-
tions to historical data sets to represent global warming. Others
used the outputs of global and regional climatemodels without any
processing (Tu, 2009; Kim et al., 2013), or in combination with a
statistical downscaling approach such as the Delta-change method
(e.g. Dunn et al., 2012; Sample et al., 2012; Tong et al., 2012), bias
correction (Wilson and Weng, 2011; Felzer, 2012), weather gener-
ators (Dunn et al., 2012; Seung-Hwan et al., 2013), or regression-
based downscaling (e.g. Seung-Hwan et al., 2013).

However, Delta-change downscalingmethod and bias-corrected
global climate model output generation may be too simplistic to
characterize climate trends. Raw global climate outputs suffer from
distortion even after bias removal, and the Delta-change method is
often unable to capture changes in climate variability important for
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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use as input to regional hydrological simulations. Dibike and
Coulibaly (2005), Chiew et al. (2010) and Chen et al. (2012) for
instance, have shown that streamflow simulated by forcing hy-
drological models using climate data obtained using different
downscaling techniques can vary or even give conflicting trends.
Burger et al. (2012, 2013) have shown that downscaling techniques
have very unequal performance in reproducing climate extremes.
Burger et al. (2013) showed that downscaled climate extremes
were more sensitive to the choice of the downscaling technique
than the emission scenario, the climate model, and the geographic
location. Given that extreme climatic events are linked to variability
and climate variable distributions, and that hydrological processes
can be very sensitive to extreme events, consequently the choice of
downscaling technique is crucial for representing more realistic
future hydrological scenarios.

Land use projection methods used in the above papers range
from generalized assumptions about future conversions (e.g.
Legesse et al., 2003; Tu, 2009; Dunn et al., 2012; Sample et al., 2012)
to detailed land use allocation modeling platforms based on
geographic and socio-economic drivers (e.g. Kim et al., 2013;
Seung-Hwan et al., 2013). The choice of the land use model and
its ability to produce realistic projections will impact modeling
outputs in a potentially profound way in many situations where
land use conversions play a significant role in watercourse
impairment. Such situations are not uncommon as recent studies
even suggest that the consequences of future land use changes on
the water cycle may outweigh those from associated with climate
change (e.g. Sala, 2000).

The objective of this study was to estimate the tandem im-
pacts of climate change and land use changes on streamflow and
nitrogen and phosphorus loads for a Canadian river basin under
mixed, but predominately agricultural, land use activities (Fig. 1).
Fig. 1. Location of the South Nation
Hydrological simulations were run using the SWAT eco-
hydrological model, for a variety of future climatic and land use
configurations. The climatic data sets and the land use configu-
ration sets contained both present and future (predicted) con-
ditions. The impact of global warming (climate scenarios) and
land use change scenarios on prediction endpoints, was analyzed
to characterize the relative importance of these drivers on future
changes of the hydrological regime. From a local water resources
manager or stakeholder perspective, results from this study
could support watershed stewardship initiatives within a climate
and land use change adaptation perspective. For example, find-
ings from studies such as this could be used to help: sustain
protection of natural habitat (eg., wooded areas and wetlands),
define plans for long term land use zoning that is protective of
water quality, and define long term impacts on ecological targets,
such as algal growth, in surface water systems.

The current study differs from previous works dealing with the
combined impacts of climate and land use changes on hydrological
variables in the following ways:

1. The number and nature of water quality and quantity variables
assessed.

2. The projected land use changes were generated with a detailed
land use projection model that has been successfully modified
and validated for the study area (El-Khoury et al., 2014). The
model projected a large increase in cropland areas (from 62% in
2011 to 76% in 2050) and urban areas (0.2% in 2011 to 1% in
2050) and a decrease in forested areas (from 33% in 2011 to 19%
in 2050). It also projected a relatively rapid urbanization in the
areas close to the Ottawa/Gatineau metropolitan area and the
disappearance of small forested areas and their replacement
with croplands throughout the watershed.
watershed in Ontario, Canada.
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3. The climate change scenarios were derived from the outputs of a
Regional Climate Model (RCM), and downscaled with tech-
niques that allow for a change in precipitation and temperature
variability in the future. This is an improvement over the Delta-
change method which does not allow for a change of variability
in the future. It also provides more realistic data sets than
downscaling techniques such as those implemented in SDSM
(Semenov and Barrow, 2002) and LARS-WG (Wilby et al., 2002).
SDSM and LARS-WG are typically used by independently
downscaling the data at each climate station in the study area.
As a result, the inter-station correlation structure is lost after the
downscaling. Given that hydrological extremes are caused by
wet or dry conditions recorded at most stations in the model,
using LARS-WG or SDSM would potentially lead to an under-
estimation of the frequency of extreme events. The outputs of
the proposed downscaling method will inherit the spatial and
temporal correlation structure of the RCM outputs, and there-
fore is more realistic than the results of downscaling techniques
applied on a station by station or variable by variable basis.
2. Methods and materials

2.1. The SWAT model

The SWAT model (Arnold et al., 1998) is a process-based hy-
drology and water quality model, designed to estimate impacts of
land management practices on water quantity and quality in
complex watersheds. It consists of eight major components: agri-
cultural management, crop growth, hydrology, nutrients, pesti-
cides, sedimentation, soil temperature, and weather. It is a semi-
distributed physically-based and computationally efficient model
developed for long-term continuous simulations. The setup of the
SWAT model and its calibration are described in the next
subsections.
2.1.1. Model setup

1. Hydrometeorological Data: Daily (1971e2008) precipitation
(PCP), maximum temperature (TMAX), minimum temperature
(TMIN), and wind speed (WND) data were acquired from the
online database of the National Climate Data and Information
Archive (Environment Canada, 2008). Net solar radiation (SLR)
and relative humidity (HMD) time series were extracted from
the National Centers for Environmental Prediction/National
Center for Atmospheric Research (NCEP/NCAR) reanalysis
archive (Kalnay et al., 1996). Maximum temperature, minimum
temperature, precipitation and wind speed were interpolated
over the delineated subwatersheds using the Thiessen Polygon
method. Given that a climate variable may not be available on a
given day in the study period, the number of stations involved in
the interpollation is different for each day. Only the closest
NCEP/NCAR reanalysis grid point was used given that the
watershed is small compared to the spatial resolution of the
NCEP/NCAR reanalysis grid. The 1971e2008 measured stream-
flow, total N, total P, and sediment loads were obtained from the
Provincial Water Quality Monitoring Network (Ministry of the
Environment, 2009). These observed water quantity and qual-
ity data were used for model calibration and validation.

2. Digital ElevationModel: a 90mDigital ElevationData (DEM)was
downloaded from theUnited States Geological Surveywebsite. It
was derived from the fourth version of Shuttle Radar Topography
Mission (SRTM) data set, which is a global coverage full resolu-
tion digital elevation in which gaps were filled (Reuter et al.,
2007). The DEM was used to delineate the watershed bound-
ary, along with 18 subwatersheds as presented on Figure 1.

3. Land use and Soil coverages: Soil parameters such as hydrologic
soil group, soil layer, soil texture, saturated hydraulic conduc-
tivity, and organic matter were derived from the Soil Landscapes
of Canada version 3.2 (Soil Landscapes of Canada Working
Group, 2010). Seven soil layers covering 0e1.3 m depth (20 cm
depth for the six first layers; 10 cm for the last one) were defined
and the properties of each layer were set to the average prop-
erties calculated from the SLC records. Spatial and temporal land
use data were obtained from the Eastern Ontario Water Re-
sources Management Study (CH2MHILL, 2001). A total of six
main land use classes were defined: cropland, forage land, for-
est, bare, urban, water, other (undefined land uses).

4. Dam operation: There are two dams (the Chesterville dam and
the Crysler Dam) as well as five water control weirs on the
rivers. Only the Chesterville dam is operated by the conservation
authorities to keep water level at a certain level without specific
periods of filling or emptying; the hydraulic structures on the
rivers are therefore not expected to affect monthly flows; they
were therefore not included in the SWAT model.

5. Sub-watersheds and Hydrological Response Units: At the end of
the process, a model with 18 subwatersheds was obtained
(Fig. 2). A total of 1067 hydrological response units (HRUs) were
obtained, 721 being agricultural HRUs. Crop rotations in the
HRUs were set following Que (2011). The characteristics of the
South Nation (SN) SWAT model are summarized in Table 1.
2.1.2. Calibration and validation
The calibration process was conducted using the SWAT-CUP

program (Abbaspour et al., 2007) using the SUFI2 (Sequential Un-
certainty Fitting) algorithm, and involved a total of 26 SWAT pa-
rameters that are listed in Table 2. Six water quantity and quality
variables were considered: streamflow (FLOW), nitrate-nitrogen
(NO3eN), nitrite-nitrogen (NO2eN), organic nitrogen (OrgN),
organic phosphorus (OrgP), and mineral phosphorus (MinP). The
objective functionwas the Nash-Suttcliffe coefficient at the oulet of
the watershed. The calibration and validation period for each of the
output parameters are presented in Table 3.

2.2. Downscaling/bias correction of the Canadian RCM outputs

The 1950e2011 gridded precipitation, wind speed, maximum
and minimum temperature data sets simulated over Eastern Can-
ada using the Canadian RCM under SRES scenario A2 were down-
loaded from the Environment Canada Data Access Interface
(Gachon et al., 2009). The time series of each variable was extracted
for each of the 18 subwatersheds in the SWAT simulation frame-
work. Given that the accuracy of simulated streamflow and water
quality parameters is very sensitive to the statistical distribution of
the climate variable, a quantileequantile transformation was
applied to the three extracted climate variables (precipitation,
minimum and maximum temperature). A nearest-neighbor
approach (described later in the section) was used to estimate
the two remaining variables (relative humidity and solar radiation).
Both the quantileequantile transformation and nearest-neighbor
search were conducted on a monthly basis.

2.2.1. Quantileequantile transformation of RCMs precipitation,
wind speed and temperature

The quantileequantile transformation (Jakob Themeßl et al.,
2011; Maraun et al., 2010), also called quantile mapping or quan-
tile matching, aims to make the statistical distribution of a given
climate variable as close as possible to the statistical distribution of



Fig. 2. Delineated sub-watersheds, river reaches, climate stations and NCEP/NCAR reanalysis grid points.
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the observed variable in the historical period in question. The
transformation for a given month and a given variable is performed
as follows:

1. The historical data is split into a calibration period (1971e1980)
and a validation period (1981e2010). The daily time series of the
month are extracted for both periods from both observations
and RCM simulations

2. An empirical cumulative distribution function is developed us-
ing the observations on the calibration period. Another cumu-
lative distribution function is developed using the RCM outputs
on the calibration period

3. Corrected RCM simulations are generated on the validation
period and future periods using the following transformation

4. For all variables except precipitation, empirical probability dis-
tribution functions (PDF) of the observed, RCM-simulated and
corrected variable are plotted. The PDFs are then visually
compared on both the calibration and validation periods. The
probability mass function (PMF) of precipitation occurrence
(defined as intensity >1 mm/day) as well as the PDF of
Table 1
South Nation River SWAT model characteristics.

Watershed area 3858 km2

Number of sub-watersheds 18
Number of HRUs 1067
Length of climate time series 1971e2008
Percentage of cropland area 57.81%
Percentage of forested area 41.03%
precipitation intensity on rainy days are generated. If the PDF (or
PMF) of the corrected variable is closer to the PDF of the ob-
servations than the PDF (or PMF) of the non-corrected variable,
the quantileequantile transformation is applied to future RCM
simulations of that particular variable.

As explained at the end of the introduction, one advantage of
the above downscaling method is that the downscaled data sets
display a similar spatial and temporal correlation structure as the
RCM outputs. For example, if a high precipitation amount is
simulated at one station, it is probable that all surrounding stations
will have a high value of precipitation. Several existing downscaling
models such as LARS-WG (Semenov and Barrow, 2002) and SDSM
(Wilby et al., 2002) work on a station by station basis and fail to
reproduce that temporal and spatial coherence structure. It is well
known that simulations of extreme flow by a rainfall-runoff model
for instance, are directly linked to that temporal correlation:
extreme floods are usually due to large precipitation events
recorded at most stations used in the model. Given that the SWAT
model of the river basin contains several climate stations, using
LARS-WG or SDSM would lead to an unrealistic simulation of the
frequency of extreme events.
2.2.2. Nearest-neighbor search for relative humidity, net solar
radiation and wind speed

Future estimates of relative humidity and net solar radiation
were generated using a nearest-neighbor approach: for each day
d in the future period, a day d1 from the same month is selected



Table 2
Parameters used for calibration and validation.

No Variation Parameter Definition Fitted
value

1 Absolute CANMX Maximum canopy storage (mm) 216.25
2 Relative CN2 SCS curve number (condition II) 0.28
3 Absolute DEP_IMP Depth to the impervious layer (mm) 1300.00
4 Relative OV_N Manning coefficient for overland flow �1.00
5 Absolute GW_DELAY Groundwater delay (days) 30.00
6 Relative SOL_AWC Soil layer available water content (mm) 1.63
7 Relative SOL_K Soil hydraulic conductivity (cm/h) �0.50
8 Relative HRU_SLP HRU slope 0.27
9 Absolute CH_K2 Muskingum routing coefficient 1500.00
10 Relative CH_W2 Channel width coefficient 9.00
11 Relative NPERCO N percolation coefficient �0.75
12 Absolute SMFMX Maximum snowmelt rate coefficient 18.80
13 Absolute SMFMN Minimum snowmelt rate coefficient 1.80
14 Absolute ESCO Soil evaporation compensation coefficient 0.90
15 Absolute USLE_K Universal Soil Loss Equation coefficient 0.10
16 Absolute USLE_P Universal Soil Loss Equation coefficient 1.00
17 Absolute ERORGN Organic N enrichment ratio 0.02
18 Absolute ERORGP Organic P enrichment ratio 0.00
19 Absolute BC1 Rate constant for the oxidation of

ammonia at 20� C (1/day)
4.15

20 Absolute BC2 Rate constant for the oxidation of nitrite to
nitrate at 20� C (1/day)

1.50

21 Absolute BC3 Local rate constant for hydrolysis of
organic nitrogen to NHþ

4 at 20� C (1/day)
0.01

22 Absolute BC4 Local rate constant for phosphorus
mineralization at 20� C (1/day)

0.34

23 Relative PHOSKD Phosphorus soil partitioning coefficient
(m3/Mg)

5.00

24 Absolute PPERCO P percolation coefficient 500.00
25 Absolute DIS_STREAM Average distance to streams (km) 31.50
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from the historical period so that the absolute difference between
the average temperature of day d and the average temperature of
day d1 is minimum. The measured solar radiation and relative
humidity of day d1 is assigned to day d.

At the end of the process, future values of all the six climate
variables (precipitation, minimum and maximum temperature,
wind speed, relative humidity and solar radiation) required to run a
SWAT model were generated for each of the 18 subwatersheds.

2.3. Numerical experiments

The following experiments were performed in order to assess
how the six selected water quality/quantity targets responded to
changes in climate and land use:

Experiment 1: Simulation using observed 2005 land use and
observed 1985e2010 climate data
Table 3
SWAT calibration and validation result for each hydrological and water quality
parameter.

Variable Period Nash R2

Streamflow (m3 s�1) Calibration (1973/1e1994/6) 0.73 0.78
Validation (1994/7e2008/12) 0.68 0.7

Nitrate-nitrogen (kg N month�1) Calibration (1988/1e1995/11) 0.53 0.57
Validation (1996/5e2001/10) 0.56 0.61

Nitrite-nitrogen (kg N month�1) Calibration (1987/10e1996/6) 0.24 0.35
Validation (1996/7e2001/9) �0.13 0.83

Organic Nitrogen (kg N month�1) Calibration (1987/10e1996/6) 0.52 0.59
Validation (1996/7e2001/9) 0.65 0.77

Organic Phosphorus (kg P month�1) Calibration (1973/1e1996/1) 0.28 0.35
Validation (1996/2e2001/9) 0.44 0.54

Mineral Phosphorus (kg P month�1) Calibration (1973/1e1996/1) 0.25 0.42
Validation (1996/2e2001/9) 0.63 0.64
Experiment 2: Simulation using the observed 2005 land use and
the projected 2025e2050 climate change data
Experiment 3: Simulation using the observed 1985e2010
climate data, and 2025e2050 land use projection data. Since
both the climate and land use are changing in this scenario, the
climate of year (1984 þ i) is simulated with the land use of year
(2024 þ i) where i varies from 1 to 26.
Experiment 4: Simulation using the projected 2025e2050 land
use and the projected 2025e2050 climate change data

The impacts of climate change alone can be estimated by
comparing the simulated water quantity and quality parameters of
experiments 1 and 2; the impacts of land use change can be esti-
mated by comparing experiments 1 and 3; finally, the combined
impacts of climate change and land use changes can be estimated
by comparing experiments 1 and 4. Average monthly loads as well
as boxplots of the monthly and annual load of each parameter were
generated.

3. Results and discussion

3.1. Hydrological model calibration and validation

Observed and simulated time series of the selected parameters
are presented in Fig. 3 (Q, NO2eN and NO3eN) and Fig. 4 (OrgN,
OrgP andMinP). The calibration and validation performance indices
are listed in Table 3. The calibration Nash Suttcliffe coefficient
ranged from 0.73 for streamflow to 0.24 for nitrite, while the co-
efficient of determination ranged from 0.78 for streamflow to 0.35
for nitrite and organic phosphorus. The validation Nash Sutcliffe
coefficients ranged from 0.44 to 0.68, except for nitrite, where it is
negative. The low values for nitrite were expected given that it is
known to be a very transient chemical (Philips et al., 2002). The
routines implemented in SWAT will likely capture only a few of the
processes affecting the nitrite balance. The overall performance of
the model with respect to six different water quality and quantity
parameters suggest that the model reasonably captured the most
important hydrological processes in the basin. It can therefore be
used with a reasonable degree of confidence in the planned nu-
merical experiments.

3.2. Downscaling results

The application of the quantileequantile transformation
significantly improved the distribution of RCM precipitation, wind
and air temperature. A few examples of improved distributions are
presented in Fig. 5 (probability of precipitation >1 mm/day on
subwatershed 1), Fig. 6 (wet day precipitation intensity) and Fig. 7
(minimum air temperature distribution on subwatershed 1). In
each of these figures, the Probability Density Function (PDF) or the
Probability Mass Function (PMF) of the climate variable is plotted
for each month for both the calibration and validation periods. It
can be visually assessed that the distribution of the corrected RCM
data is almost identical to the distribution of the observations for
the calibration period; it is always closer to the distribution of the
observations than the distribution of the uncorrected RCM data. For
instance, the minimum air temperature in subwatershed 1 was
systematically underestimated by the RCM (Fig. 7), but the quan-
tileequantile transformation scaled it back to the right magnitude.
In terms of magnitude, results show an increase of 1.21� of mini-
mum temperature (from 11.37� to 12.58�) and 1.55� in maximum
temperatures (from 1.59� to 3.15�) between the 1985e2010 and
2025e2050 periods. Precipitation increased by 3.5% from
992mmy�1 to 1027mmy�1Wind speeds did not vary significantly
between the current and future period (�0.7%).



Fig. 3. Simulated (dashed green line) and observed (continuous blue line) time series, streamflow, nitrate (NO3eN) and nitrite (NO2eN). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Simulated (dashed green line) and observed (continuous blue line) time series, organic N, organic P and mineral P. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

A. El-Khoury et al. / Journal of Environmental Management 151 (2015) 76e86 81



Fig. 5. Empirical PDF of observed (blue bars), RCM-simulated (green bars) and corrected (red bars) precipitation occurrence. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 6. Empirical PDF of observed (continuous blue line), RCM-simulated (dashed green line) and corrected (dashed red line) precipitation density.

A. El-Khoury et al. / Journal of Environmental Management 151 (2015) 76e8682



Fig. 7. Empirical PDF of observed (continuous blue line), RCM-simulated (dashed green line) and corrected (dashed red line) minimum temperature on sub-watershed 1.

Table 4
Climate and land use change impacts on water quantity and quality parameters.

Variable Experiment Maximum monthly
load

Annual load

Average Variation
(%)

Average Variation
(%)
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3.3. River discharge and P and N loads for different climate/land use
scenarios

Figs. 8e13 show average monthly load (upper panel) and box-
plots of the maximum average monthly load (bottom left panel)
and the annual load (bottom right panel) for all selected parame-
ters, and for all experiments. The percentages of variation in the
annual load and the monthly maximum load of each variable are
listed in Table 4. Results show that the average hydrograph of
Fig. 8. Climate and land use change impacts on streamflow. Upper panel: average
monthly streamflow under current climate and land use (continuous blue line), under
future land use and climate (continuous green line), under current land use and future
climate (red line with star dots) and under future land use and current climate (cyan
line with circular dots); Lower-left panel: boxplot of the maximum monthly load;
Lower-right panel: boxplot of the annual load; CC: accounting for climate change; LU:
accounting for land use changes. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Streamflow (m3/s) 1985e2010 152 e 22 e

2025e2050
(CC þ LU)

169 11.0 25 12.3

2025e2050 (CC) 165 8.5 24 11.2
2025e2050 (LU) 156 2.6 22 1.2

Nitrate
(kg month�1)

1985e2010 202,257 e 64,621 e

2025e2050
(CC þ LU)

226,047 11.7 74,638 15.5

2025e2050 (CC) 205,238 1.4 64,568 �0.1
2025e2050 (LU) 223,700 10.6 73,718 14.0

Nitrite
(kg month�1)

1985e2010 182,938 e 2078 e

2025e2050
(CC þ LU)

147,198 �19.6 2140 2.9

2025e2050 (CC) 155,465 �15.1 1884 �9.4
2025e2050 (LU) 183,111 0.0 2326 11.9

Organic N
(kg month�1)

1985e2010 2,947,230 e 270,050 e

2025e2050
(CC þ LU)

2 308 500 �21.7 224,272 �17

2025e2050 (CC) 2,381,800 �19.2 205,189 �24.1
2025e2050 (LU) 2,981,423 1.1 301,765 11.7

Organic P
(kg month�1)

1985e2010 753,573 e 94,087 e

2025e2050
(CC þ LU)

1,200,161 59.2 154,950 64.6

2025e2050 (CC) 963,538 27.8 114,282 21.4
2025e2050 (LU) 905,373 20.1 121,745 29.3

Mineral P
(kg month�1)

1985e2010 227,579 e 26,693 e

2025e2050
(CC þ LU)

523,044 129.8 60,436 126.4

2025e2050 (CC) 346,803 52.3 39,818 49.1
2025e2050 (LU) 330,409 45.1 39,380 47.5

CC ¼ climate change; LU ¼ land use change.



Fig. 9. Climate and land use changes impacts on Nitrate. Upper panel: average
monthly nitrate load under current climate and land use (continuous blue line), under
future land use and climate (continuous green line), under current land use and future
climate (red line with star dots) and under future land use and current climate (cyan
line with circular dots); Lower-left panel: boxplot of the maximum monthly load;
Lower-right panel: boxplot of the annual load; CC: accounting for climate change; LU:
accounting for land use changes. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 11. Climate and land use changes impacts on Organic Nitrogen. Upper panel:
average monthly organic N load under current climate and land use (continuous blue
line), under future land use and climate (continuous green line), under current land
use and future climate (red line with star dots) and under future land use and current
climate (cyan line with circular dots); Lower-left panel: boxplot of the maximum
monthly load; Lower-right panel: boxplot of the annual load; CC: accounting for
climate change; LU: accounting for land use changes. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this
article.)
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experiment 1 (current conditions) and experiment 4 (current
climate and projected land use) are almost similar (Fig. 8, upper
panel); similarly, the average hydrograph of experiments 2 (pro-
jected climate and land use) is almost similar to the one of
Fig. 10. Climate and land use changes impacts on nitrite. Upper panel: average nitrite
N load under current climate and land use (continuous blue line), under future land
use and climate (continuous green line), under current land use and future climate (red
line with star dots) and under future land use and current climate (cyan line with
circular dots); Lower-left panel: boxplot of the maximum monthly load; Lower-right
panel: boxplot of the annual load; CC: accounting for climate change; LU: account-
ing for land use. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
experiment 3 (projected climate, current land use), suggesting that
land use changes will have very little influence on streamflow in
the SN River basin. It can be seen in Table 4 for instance that climate
change causes an 11.2% increase in mean flow and an 8.5% increase
Fig. 12. Climate and land use changes impacts on Organic Phosphorus. Upper panel:
average monthly organic P load under current climate and land use (continuous blue
line), under future land use and climate (continuous green line), under current land
use and future climate (red line with star dots) and under future land use and current
climate (cyan line with circular dots); Lower-left panel: boxplot of the maximum
monthly load; Lower-right panel: boxplot of the annual load; CC: accounting for
climate change; LU: accounting for land use changes. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this
article.)



Fig. 13. Climate and land use changes impacts on Mineral Phosphorus. Upper panel:
average monthly mineral P load under current climate and land use (continuous blue
line), under future land use and climate (continuous green line), under current land
use and future climate (red line with star dots) and under future land use and current
climate (cyan line with circular dots); Lower-left panel: boxplot of the maximum
monthly load; Lower-right panel: boxplot of the annual load; CC: accounting for
climate change; LU: accounting for land use changes. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this
article.)
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in themaximummonthly flow; projected changes in land use alone
would lead to only 2.6% and 1.2% increases of the maximum
monthly flows and mean flow respectively. The combined effect of
land use and climate change is not additive and leads to 11.0% and
12.3% increase in maximum monthly flows and mean flow
respectively. These variations are however within the inter-annual
variability of both maximummonthly flow (Fig. 8, lower left panel)
and annual flow (Fig. 8, lower right panel). The magnitudes of the
impacts on streamflow obtained in this study differ significantly
from those of Tong et al. (2012) and Liu et al. (2000), where the
impacts of land use changes are significant when compared to
those of climate change, but are in line with what is projected in
some parts of Scotland (Sample et al., 2012).

The impact of climate change on nitrate was found to be
negligible since experiments 1 and 3 (and similarly experiments 2
and 4) load had almost the same average monthly nitrate load
(Fig. 9, upper panel). Climate change alone leads to a 0.1% decrease
in the annual nitrate load and a 1.4% increase of the maximum
monthly nitrate load (Table 4). The same table shows that projected
land use changes account for 10.6% increase of the maximum
monthly nitrate load and a 14.0% increase of the annual nitrate load.
The combined effect is an 11.7% increase of the maximum monthly
load and 15.5% increase of the annual load. Climate change de-
creases nitrite loads at the annual scale (9.4%) while land use
changes drive it up by 11.9% (Fig. 10, Table 4). The combined effect is
an increase of 2.9%. A similar pattern can be observed for organic
nitrogen (Fig. 11, Table 4), suggesting that land use changes will
drive changes in nitrogen species in the SN River, as might be ex-
pected since nitrogen is a primary source of fertilizer for crops
grown in this agriculturally dominated river basin. Tong et al.
(2012) and Liu et al. (2000) found similar effects of climate
change and land use change on nitrogen loading in Ohio Rivers that
had agricultural influence. Both land use and climate change will
lead to an increase in organic phosphorus (Fig. 12, Table 4) and
mineral phosphorus (Fig. 13, Table 4) in the SN River. Their
respective contributions are roughly equal, with climate change
contributing marginally more than land use to the increase of the
maximummonthly loads. At the annual time scale, land use change
will lead to a slightly lower increase in mineral phosphorus load
(þ49.1%) relative to climate change (þ47.5%).

The fact that the direction and magnitude of the calculated
changes differ from those of other published studies is not sur-
prising because each watershed/basin has unique features that
contribute variable to sources of N and P. For instance, it was ex-
pected that streamflow would be sensitive to land use changes in
mainly urbanized areas such as the ones described in Liu et al.
(2008) and Felzer (2012). Given that the SN River basin will still
be predominately rural by 2050, the fact that water quantities are
projected to be less affected by land use changes is not surprising.
Another watershed in the same region with a different urban to
rural ratio, or a different land use change dynamic, will not
necessarily have the same variations or even the same direction of
change in water quality. Therefore, climate change and land use
impact estimates should be conducted on a case-by-case basis.
However, the methodology presented in this paper can be applied
to any watershed in the world, in order to help more holistically
define relative impacts of climate change and land use changes on
water quantity and quality. Since it is easier and faster to adjust land
use conversion trends than global warming trends, such studies
may help guide land use authorities on how to zone and develop in
the context of minimizing water pollution to downstream re-
ceptors. Knowledge of the direction and magnitude of the changes
attributable to land use projection and climate change is of the
greatest importance for the development of local water quality
improvement policies or zoning restrictions and regulations. In the
specific case of the SN River basin, the most durable solutions
should target one or several of the following aspects: a) the rate of
expansion of croplands; b) water management on croplands; c)
areas of cropland development; and d) areas of urban development.
An example of a potential adaptation strategy could be a restriction
of fertilizer application on croplands that are too close to the water
body (increasing fertilizer application set-backs or managing field
drainage), and/or imposing landmanagement practices that reduce
runoff from farmland and urban areas. Once an adaptationmeasure
targeting one of these aspects is defined, either the land use allo-
cation model or the hydrological model could be run to estimate its
added value in terms of water quality improvement potential.

It should be emphasized that the results presented here repre-
sent only one climate model (CRCM4.1.1) and one climate change
scenario (A2). Repeating the experiments with other climate
models and other climate change scenarios will help clarify how
sensitive the results are, and provide a range for the expected
changes in water quality and water quantity parameters for
different climate input scenarios.

4. Conclusions

Six water quality andwater quantity parameters were simulated
using the SWAT model of the South Nation river basin in eastern
Ontario Canada, using historical and projected 2025e2050 climate
and land use projection data as hydrological model input. The
future climate scenarios correspond to SRES scenario A2 which was
obtained by correcting the outputs of the Canadian RCM with a
combination of quantileequantile transformation and nearest-
neighbor search. Future land use maps were generated using a
land use allocation model in the companion paper El-Khoury et al.
(2014). Results show that climate change will be driving maximum
monthly streamflow, nitrate, and organic phosphorus loads up,
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while decreasing organic nitrogen and nitrite loads; land use
changes will drive the same variables in the same direction as
climate change, except for organic nitrogen, for which the effects of
the two stressors are opposite. The magnitudes of the impacts are
not the same and vary according to the water quality or quantity
parameter: changes in streamflowwill mainly be driven by climate
change, whereas changes in nitrogen species will mainly be driven
by land use changes. The contribution of climate change and land
use changes on the increase of organic and mineral phosphorus are
roughly equal. Furthermore, the effects of climate change and land
use change cannot be considered linearly cumulative as the com-
bined effects on water quality/quantity endpoints can be signifi-
cantly different from the sum of the effect of each stressor/driver.
The key finding in this study is that land use changes can have a
significant impact on the future hydrological cycle of the South
Nation River, and that failure to account for land use changes may
lead to improper or inaccurate assessment of adaptation strategies
that temper water pollution sources and drivers. From a global
perspective, the study illustrates the importance of simultaneously
accounting for climate and land use changes to estimate future
changes in water quality and quantity variables.
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