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In the topologically massive BF model (TMBF) the photon becomes massive via coupling to an
antisymmetric tensor, without breaking the U (1) gauge symmetry. There is no need of a Higgs field.
The TMBF model is dual to a first-order (in derivatives) formulation of the Maxwell–Proca theory where
the antisymmetric field plays the role of an auxiliary field. Since the Maxwell–Proca theory also admits
a first-order version which makes use of an auxiliary symmetric tensor, we investigate here a possible
generalization of the TMBF model where the photon acquires mass via coupling to a symmetric tensor.
We show that it is indeed possible to build up dual models to the Maxwell–Proca theory where the
U (1) gauge symmetry is manifest without Higgs field, but after a local field redefinition the vector field
eats up the trace of the symmetric tensor and becomes massive. So the explicit U (1) symmetry can be
removed unlike the TMBF model.

© 2011 Elsevier B.V. Open access under the Elsevier OA license.
1. Introduction

In the usual description of massive spin-1 particles via a
Maxwell–Proca (MP) action the gauge symmetry is explicitly bro-
ken. It is of interest to search for alternatives to the Higgs mecha-
nism to preserve the gauge symmetry while generating a mass for
a spin-1 particle specially for the non-Abelian case. Here we ad-
dress this question in the simpler case of the Abelian U (1) gauge
symmetry. Dualization methods can help in investigating this prob-
lem. It is convenient for those methods to rewrite the Maxwell
action in a first-order form by using auxiliary fields. In D = 1 + 1
we can achieve that with help of a scalar field which interacts
with the vector field via a topological term φεμν∂μ Aν . By using
the master action approach of [1] as a dualization procedure it
can be shown [2] that the first-order MP theory in D = 1 + 1 is
dual to a local action with manifest U (1) gauge symmetry. It cor-
responds to the bosonized form of the Schwinger model whose
effective action, after elimination of the auxiliary scalar field, is
written down in our formula (15). Although non-local, the effec-
tive action is manifest U (1) invariant.

In D = 2+1 we replace the scalar field by a vector field Bμ and
the topological coupling term becomes εμνα Bμ∂ν Aα . After some
trivial field redefinition we end up, see master action in [3] with
equal masses, with a dual theory to MP which consists of a couple
of non-interacting Maxwell–Chern–Simons actions with the same
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mass but with opposite helicities. This theory is manifest U (1)

symmetric and represents one massive spin-1 particle with helici-
ties ±1 just like the MP theory in D = 2 + 1.

In D = 3 + 1 we can use an antisymmetric tensor with the
so-called topological BF coupling εμναβ Bμν∂α Aβ . The theory dual
to MP is the topologically massive BF model (TMBF), also named
Cremmer–Scherk model [4]. It can be obtained from the first-order
MP theory via both master action [5] and Noether gauge embed-
ment [6]. The TMBF model is unitary [7] and explicitly U (1) invari-
ant. Unfortunately, as shown in [8], a non-Abelian generalization
of the TMBF model without extra fields will necessarily lead to
power-counting non-renormalizable couplings as in [9], see how-
ever [10,11], where the extra field is non-propagating and [12] for
a recent suggestion which makes use of tensor gauge fields. In [13]
the geometrical origin of tensor gauge connections is investigated.
Thus, it is welcome to try alternatives to the TMBF model. Here
we follow this route for the Abelian U (1) case as a laboratory for
a possible non-Abelian generalization.

In fact, in [14] there appears a new first-order form of the
Maxwell action which makes use of a symmetric auxiliary field
Wμν = Wνμ . By adding the Proca mass term we build up a first-
order version of the MP theory, see [15]. Now we have the cou-
pling term Wμν∂μ Aν , though non-topological, this term by itself
has no particle content. In Section 2 we use this first-order formu-
lation of the MP theory as a starting point to obtain via master
action and Noether gauge embedment alternative dual theories to
the MP theory. In Section 3 we start with an Ansatz quadratic in
the fields Aμ and Wμν and second-order in derivatives. We ana-
lyze its particle content and the presence of U (1) gauge symmetry.
In Section 4 we draw our conclusions.
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2. Master action and Noether gauge embedment

In analogy with the derivation of the TMBF model via master
action as given in [5] we define here a master action depending
on four different fields1:

SM [A, Ã, W , W̃ ]
=

∫
dD x

[
W μν Wμν − W 2

D − 1
+ 2W μν∂(μ Aν) − m2

2
Aμ Aμ

− 2
(
W μν − W̃ μν

)
(∂(μ Aν) − ∂(μ Ãν))

]
. (1)

The first four terms of (1) correspond to a first-order form of the
Maxwell–Proca theory, see [14,15], while the last term mixes the
(A, W ) fields with the duals ( Ã, W̃ ). After the shift Ãμ → Ãμ +
Aμ and W̃μν → W̃μν + Wμν the last term of (1) decouples and
becomes L Ã,W̃ = −2W̃ μν∂(μ Ãν) . Thus, the particle content of the
master action (1) corresponds to one massive spin-1 particle plus
the content of L Ã,W̃ . Minimizing the action2 S A,W = ∫

dD x L A,W

we have the equations of motion:

∂μ Aν + ∂ν Aν = 0, (2)

∂μWμν = 0. (3)

It is easy to convince oneself, assuming vanishing fields at infin-
ity, that the solution of (2) is trivial Aμ = 0 while (3) is solved
[16] by Wμν = ∂α∂β Rμαβν where Rμαβν is a tensor with the in-
dex symmetries of the Riemann curvature tensor but otherwise
arbitrary. However, since the action S A,W is itself invariant under
δΛWμν = ∂α∂βΛμαβν where Λμαβν has the same properties of
Rμαβν we can say that the general solution of (3) is pure gauge.
Therefore, the last term of (1) has no particle content and the
whole master action (1) contains only one massive spin-1 parti-
cle in the spectrum. Following the master action approach, if we
Gaussian integrate over the fields (A, W ) we have the dual action
to the first-order Maxwell–Proca model:

S∗
MP(I) =

∫
dD x

[
−1

4
F 2
μν( Ã) + 2

m2

(
∂αW̃ ν

α

)2 − 2W̃ μν∂(μ Ãν)

]
.

(4)

The action S∗
MP(I) is invariant under the gauge transformations

δΛW̃μν = ∂α∂βΛμαβν with δΛ Ãμ = 0. The equations of motion of
(4) are:

∂μq̃ν + ∂ν q̃μ = 0, (5)

�θμν Ãν − m2 Ãμ + m2q̃μ = 0 (6)

where q̃μ = Ãμ + 2∂α W̃αμ/m2 is gauge invariant. As in (2), due to
the boundary conditions at infinity, we have the solution q̃μ = 0
of (5) which allows us to eliminate W̃μν in terms of Ãμ up to
gauge transformations, i.e., ∂α W̃αβ = −m2 Ãβ/2. Back in (6) we re-
cover the Maxwell–Proca equation confirming that S∗

MP(I) contains
only one massive particle of spin-1 in the spectrum but contrary
to the TMBF model it has no U (1) gauge symmetry. The key point
is that the mixing term (BF term) in the master action of [5] car-
ries U (1) gauge symmetry differently from the mixing term of the
master action (1). So, the master action approach is only partially
successful.

1 In this work we use mostly plus D-dimensional signature ημν = (−,+, . . . ,+)
2 We quit the tildes for while.
Another way of obtaining the TMBF model from the Maxwell–
Proca theory is by means of a Lagrangian Noether gauge embed-
ding (NGE) procedure as in [6,17], see also [18] for a Hamiltonian
embedding. Let us apply the same Lagrangian procedure here. The
first four terms of (1) define the first-order Maxwell–Proca theory:

S(0) =
∫

dD x

[
W μν Wμν − W 2

D − 1
+ 2W μν∂(μ Aν)

− m2

2
Aμ Aμ

]
. (7)

The first three terms of (7) are invariant under the U (1) gauge
transformations:

δφ Aμ = ∂μφ; δφ Wμν = �θμνφ. (8)

Where we define the projection operators:

θαβ = (ηαβ − ωαβ), ωαβ = ∂α∂β� . (9)

In order to preserve the U (1) symmetry broken by the mass term
in (7) we modify the action S(0) through an iterative procedure
with help of auxiliary fields Bμ and Cμν which transform as
δφ Bμ = −δφ Aμ and δφCμν = −δφ Wμν . We end up with the gauge
invariant action:

S(2) = S(0) +
∫

dD x

(
KμBμ − m2 BμBμ

2
+ Cμν Mμν

)
(10)

where the Euler tensors are given by

Kμ = δS(0)

δAμ
= −m2 Aμ − 2∂ν Wμν, (11)

Mμν = δS(0)

δW μν
= 2

[
∂(μ Aν) + Wμν − ημν

W

D − 1

]
. (12)

After a functional integral over the auxiliary fields we end up with
the Podolsky [19] action

S P = 1

4

∫
dD x Fμν

(
1 − �

m2

)
F μν. (13)

Besides the massive spin-1 physical particle, as expected from
the embedding procedure, the Podolsky theory contains also one
massless ghost which violates unitarity. This is also not totally sur-
prisingly from the point of view of the NGE procedure as explained
in [20].

In summary, the master action and the NGE procedures, which
give a systematic derivation of the TMBF model from the Maxwell–
Proca theory, have led us to different results in the case of the
symmetric tensor Wμν and none of them is satisfactory. There is
either lack of explicit U (1) symmetry or lack of unitarity. In Sec-
tion 3 we use another approach for a broader investigation of this
question.

3. A general Ansatz

Another way of figuring out the particle content of the TMBF
model is to integrate in the two form field Bμν in the path integral
and obtain an effective action for the vector field Aμ . One ends
up, see [21], with a four-dimensional version of the well-known
Schwinger model which appears in D = 1 + 1 dimensions due to
the non-conservation of the axial current, namely:

expi Seff [A] =
∫

D Bμν expi STMBF [A,B] (14)

where



D. Dalmazi, E.L. Mendonça / Physics Letters B 707 (2012) 409–414 411
Seff [A] = SSchw = −1

4

∫
d4x Fμν

(� − m2)

� F μν. (15)

The Schwinger model is of course U (1) gauge invariant and a care-
ful analysis of the analytic properties of the propagator reveals
that we have only one massive (spin-1) particle in the spectrum
as in the initial TMBF model. In what follows we start with a more
general (second-order in derivatives) Ansatz for a local quadratic
action containing the fields (Aμ, Wμν) and integrate over Wμν in
order to deduce a D-dimensional effective action for the vector
field.

Let us start with the Ansatz:

S[A, W ] =
∫

dD x
[
a(∂ · A)2 + b(∂(μ Aν))

2 + c1
(
∂ν Wμν

)2

+ c2∂
ν W ∂μWμν + c3∂

μW ∂μW

+ c4∂
αWμν∂αW μν + dWμν W μν + eW 2

+ f Wμν∂μ Aν + gW ∂ · A
]

(16)

where (a,b, ci, e, f , g) are so far unknown real constants. We can
rewrite the Ansatz as:

S[A, W ] =
∫

dD x
[
a(∂ · A)2 + b(∂(μ Aν))

2

+ Wμν Gμν
αβ W αβ + Wαβ T αβ

]
(17)

where

T αβ = f ∂(α Aβ) + gηαβ∂ · A, (18)

Gμν
αβ =

{
(d − c4�)P (2)

S S +
(

d − c1�
2

− c4�
)

P (1)
S S

+ [
d + e − (c1 + c2 + c3 + c4)

]
P (0)

W W

+ [
d − c4� + (e − c3�)(D − 1)

]
P (0)

S S

+ √
D − 1

(
e − c3� − c2�

2

)(
T (0)

SW + T (0)
W S

)}μν

αβ

(19)

where the projection operators P (s)
I J of spin-s and the transition

operators T (0)
SW , T (0)

W S are defined as:

(
P (2)

S S

)λμ
αβ = 1

2

(
θλ

αθμ
β + θμ

αθλ
β

) − θλμθαβ

D − 1
, (20)

(
P (1)

S S

)λμ
αβ = 1

2

(
θλ

αωμ
β + θμ

αωλ
β + θλ

βωμ
α + θμ

βωλ
α

)
,

(21)
(

P (0)
S S

)λμ
αβ = 1

D − 1
θλμθαβ,

(
P (0)

W W

)λμ
αβ = ωλμωαβ, (22)

(
T (0)

SW

)λμ
αβ = 1√

D − 1
θλμωαβ,

(
T (0)

W S

)λμ
αβ = 1√

D − 1
ωλμθαβ. (23)

From (17), integrating over the fields Wμν in the path integral we
obtain the effective action

Seff [A] =
∫

dD x

[
a(∂ · A)2 + b(∂(μ Aν))

2

− 1

4
Tμα(A)

(
G−1)μα

γ β T γ β(A)

]
, (24)

where, suppressing the indices for convenience, we have
G−1 = P (2)
S S

(d − c4�)
+ P (1)

S S

d − �(c4 + c1
2 )

+ [d − c4� + (e − c3�)(D − 1)]P (0)
W W

K

+ [d + e − (c1 + c2 + c3 + c4)�]P (0)
S S

K

+
√

D − 1

K

(
e − c3� − c2�

2

)(
T (0)

SW + T (0)
W S

)
(25)

with

K = [
d + e − (c1 + c2 + c3 + c4)�]
× [

d − c4� + (e − c3�)(D − 1)
]

− (D − 1)

(
e − c3� − c2�

2

)2

. (26)

Working out the expression (24) we have

Seff [A] =
∫

dD x

[
a(∂ · A)2 + b(∂(μ Aν))

2 + (∂ · A)H(�)(∂ · A)

− 1

16
Fμν

f 2

d − �(c4 + c1
2 )

F μν

]
(27)

where

H(�) = −1

4K

{
(D − 1)g2[d + e − (c1 + c2 + c3 + c4)�]

+ ( f + g)2[d − c4� + (e − c3�)(D − 1)
]

+ 2(D − 1)g( f + g)
[
(c3 + c2/2)� − e

]}
. (28)

In order to have U (1) gauge invariance in (27) the constants in our
Ansatz (16) must be such that

H(�) = −(a + b). (29)

Consequently we end up with the gauge invariant theory

Seff [A] = − 1

16

∫
dD x Fμν

4b[(c4 + c1
2 )� − d] + f 2

d − (c4 + c1
2 )� F μν. (30)

By adding a gauge fixing term we can obtain the propagator and
calculate the saturated two point amplitude in momentum space
A(k) from which we can read off the particle content of the theory.
Explicitly,

A(k) = J∗
μ(k)

〈
Aμ(−k)Aν(k)

〉
Jν(k) = − i

2
J∗
μ(k)

[
G−1(k)

]μν
Jν(k)

= − i

2

J∗(k) · J (k)[(c4 + c1
2 )k2 + d]

k2[4b(c4 + c1
2 )k2 + 4bd − f 2] . (31)

Note that the contribution of the gauge fixing term λ(∂ · A)2 drops
out from A(k) due to the transverse nature of the sources (k · J =
0) as required by gauge invariance.

We may have one or two poles in A(k). Since our aim is to ob-
tain only one physical massive particle in the spectrum we impose
henceforth:

d = 0; b

(
c4 + c1

2

)
�= 0; f �= 0. (32)

In this case:

A(k) = − i J∗ · J
2 2

(33)

8b(k + m )
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where

m2 = − f 2

4b(c4 + c1/2)
. (34)

The imaginary part of the residue of A(k) at the pole k2 = −m2 be-
comes − J∗(k) · J (k)/(8b) evaluated at k2 = −m2. In the rest frame
kμ = (m,0, . . . ,0), due to k · J (k) = 0, we must have J0(k) = 0. So
we can easily check that the frame independent quantity J∗(k) ·
J (k) is positive. Consequently, in order to have a physical particle
as required by unitarity (Im Res(A(k)) > 0) and be free of tachyons,
see (34), we must further assume that:

b < 0; c4 + c1

2
> 0. (35)

According to the above requirements the effective action (30) be-
comes exactly, fixing b = −1, the Schwinger model effective action
(15). Clearly, we have to inspect the restrictions imposed by the
gauge invariance condition (29). Namely,

(D − 1)e = 0, (36)

(a + b)
[
(D − 1)(c2 f − 2c1 g) − 2c4( f + Dg)

] = 0, (37)

(D − 1) f 2c3 = g(D − 1)(c2 f − c1 g) − c4
(

f 2 + 2 f g + Dg2).
(38)

For future use we recall that in deducing (36), (37) and (38) we
have assumed d = 0, c4 �= 0, c4 + c1/2 �= 0 and that K �= 0 which
means, using e = 0 according to (36), that

K = �2
{
(c1 + c2 + c3 + c4)

[
(D − 1)c3 + c4

]

− (D − 1)

(
c3 + c2

2

)2}
�= 0. (39)

Although there are several solutions of (37) and (38) some of
them are related via trivial field redefinitions in our Ansatz (16).
Here we stick to a subset of solutions which is the simplest one.
Namely,

b = −a = −1; c2 = 0 = c4; c3 = −
(

g

f

)2

c1, (40)

which leads to the family of actions:

S I =
∫

dD x

{
−1

4
F 2
μν + f Wμν∂μ Aν + gW ∂ · A

+ c1

[(
∂μWμν

)2 − g2

f 2
∂μW ∂μW

]}
. (41)

We must have, see (32), (35) and (40), c1 > 0 and f �= 0 while g
is an arbitrary real constant. Since c4 = 0 and d = 0 too, see (32),
there will be a zero in the denominator of (25). This indicates the
appearance of a local symmetry not initially considered. Indeed,
the reader can check that S I is invariant under the local higher
derivative transformations:

δΛ Aμ = 0, δΛWμν = [�2 P (2)
S S

]
μν

αβΛαβ → δΛW = 0

(42)

where Λαβ = Λβα is an arbitrary symmetric tensor. Thus, in order
to integrate over Wμν we must add an appropriate gauge fixing
term to break (42). We can add to (41) for instance,

L(2) = λ2
(�2[P (2)] αβ Wαβ

)2
. (43)
GF S S μν
After integrating over Wμν now we obtain an effective action in-
dependent of λ2 which is of the Schwinger type (15). Thus, con-
firming that S I describes a massive spin-1 particle in a gauge
invariant way as originally desired. However, the U (1) symmetry
of S I is not the usual one but rather a higher derivative form of it,
i.e.,

δhd
φ Aμ = ∂μ�φ, (44)

δhd
φ Wμν = f

2c1(D − 1)g

[
( f + g D)∂μ∂νφ − ( f + g)ημν�φ

]
.

(45)

It is clear from (44) and (45) that f = −Dg is the most interesting
case. In this special case we can choose, recalling (34), without loss
of generality f = m2 = −Dg and c1 = m2/2. Back in (41) we have
our main result:

SII =
∫

dD x

[
−1

4
F 2
μν + m2

(
Wμν − W

D
ημν

)
∂μ Aν

+ m2

2

(
∂μWμν∂αWα

ν − 1

D2
∂μW ∂μW

)]
. (46)

The action SII is explicitly invariant under usual (first-order) U (1)

gauge transformations:

δφ Aμ = ∂μφ; δφ Wμν = ημνφ. (47)

As we have already mentioned, integrating over Wμν in the path
integral (with appropriate gauge fixing of the higher spin symme-
try (42)) we end up with the effective action of the Schwinger
type, see (15). Thus, SII is a new action which describes a massive
spin-1 particle with manifest usual U (1) symmetry.

Regarding the remaining case f �= −Dg with unusual U (1)

symmetry, it can be shown that the redefinition of the fields

Aμ = Ãμ − 2c1 g

f ( f + g D)
∂μW̃ , (48)

Wμν = W̃μν − g

f + g D
ημν W̃ (49)

is equivalent to set g = 0 in S I . The new vector field Ãμ is gauge
invariant. So, after the field redefinition we loose the manifest un-
usual U (1) gauge symmetry. The action S I (g = 0) corresponds,
with the normalization c1 = 2/m2 and f = −2, to the dual model
S∗

MP(I) obtained in Section 2 from the MP theory via master action,
see (4).

One might ask whether it is also possible to redefine fields and
hide the explicit usual U (1) symmetry in the more interesting case
f = −Dg . In fact, since δφ W = Dφ we can always change variables
to a gauge invariant vector field Aμ → Aμ − ∂μW /D and loose the
manifest U (1) symmetry. The action SII after this field redefinition
becomes:

S∗
MP(II) =

∫
dD x

[
−1

4
F 2
μν + m2

(
Wμν − W

D
ημν

)
∂μ Aν

+ m2

2

(
∂μWμν − ∂ν W

D

)2]
. (50)

One can say that the initial massless vector field Aμ has eaten
up the trace W and became massive as in the usual Stuckelberg
mechanism. Notice also that in S∗

MP(II) only the traceless piece of
Wμν effectively appears contrary to (46). The action S∗

MP(II) is in-
variant under the spin-2 local transformations (42) and under Weyl
transformations δφ Wμν = ημνφ. After convenient gauge fixing of
those symmetries by adding a gauge fixing term like (43) and an-
other one for the Weyl symmetry, like for instance
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L(0)
GF = λ0

[�2(P (0)
W W

)
αβ

μν Wμν

]2
, (51)

we can integrate over Wμν and obtain an effective action for the
vector field, independent of λ2 and λ0, which becomes exactly the
Maxwell–Proca theory:

Leff [A] = LMP = −1

4
F 2
μν − m2

2
Aμ Aμ. (52)

Therefore in both cases f �= −Dg and f = −Dg we can redefine
the fields, get rid of the explicit U (1) symmetry and deduce new
dual models to the Maxwell–Proca theory which correspond re-
spectively to S∗

MP(I) and S∗
MP(II) . We have found interesting to check

the equations of motion of (50) which can be written as

�θμν Aν − m2 vμ = 0; ∂μqν + ∂νqμ = 2

D
ημν∂ · q (53)

where

vμ = ∂αWαμ − ∂μW

D
; qμ = Aμ − vμ. (54)

Note that the vectors Aμ , vμ and consequently qμ are U (1) gauge
invariant. General coordinate transformations in a flat space–time
changes the metric tensor according to δξ gμν = ∂μξν + ∂νξμ . Con-
formal transformations require that δξ gμν = φgμν whose trace im-
plies φ = 2(∂ · ξ)/D . Therefore, the general solution to the second
equation of (53) corresponds exactly to conformal transformations

qμ = Aμ − vμ = aμ + Λμνxν + λxμ + 2xμ(x · c) − x2cμ, (55)

where the antisymmetric matrix Λμν and aμ , cμ , λ are constant
parameters. Since the fields must vanish at infinity, all those con-
stant parameters must vanish. So qμ = vμ − Aμ = 0 allows us to
replace vμ by Aμ in the first equation of (53) which becomes,
as expected from the effective action, the Maxwell–Proca equation�θμν Aν − m2 Aμ = 0.

After eliminating vμ in terms of Aμ we are still left with de-
grees of freedom in Wμν which are not present in the combination
vμ however, those are exactly the pure gauge degrees of freedom
related to the symmetries of (50). So the duality between (50) and
the Maxwell–Proca theory is also established at classical level as
expected.

In summary, there is an important difference between our new
U (1) invariant model SII describing a massive spin-1 particle and
the TMBF model. Namely, in the former case it is always possible
to get rid of the explicit U (1) symmetry by a local field redefinition
unlike the TMBF model. Technically, this is possible by combining
the vector fields Aμ and ∂μW and defining a gauge invariant vec-
tor field.

One might blame the choice of parameters (40) for the exis-
tence of a U (1) gauge invariant vector field. Next we give a sym-
metry argument to show that even for the general Ansatz (16) it
is always possible to define a gauge invariant vector field. Namely,
the U (1) gauge transformation which leaves the Ansatz (16) in-
variant must be of the general form

δφ Aμ = ∂μφ; δφ Wμν = rφημν + s�φημν + t∂μ∂νφ (56)

where (r, s, t) are real constants. The variation of the Ansatz in-
cludes the following independent terms:

δS =
∫

dD x
[
2r(De + d)W φ + r( f + Dg)∂μ Aμφ

+ ( f − 2rc1 − Drc2 + 2dt)∂μ∂ν Wμνφ + · · ·]. (57)

Therefore, among other constraints, we have the following ones
r(De + d) = 0, (58)

r( f + Dg) = 0, (59)

r(2c1 + Dc2) − 2dt = f . (60)

For only one massive particle in the spectrum we must have d = 0
and f �= 0, therefore r �= 0 so we can rescale r → 1. It also follows
that e = 0 and f = −Dg which is in agreement with our previous
results S I and SII since we have demanded usual (first-order) U (1)

transformations for the vector field.
On the other hand, the field redefinition

Wμν = W̃μν + sημν∂ · A + t∂(μ Aν) (61)

will absorb the t and s factors such that δφ W̃μν = ημνφ, i.e., we
can set s = 0 = t in (56). Therefore, we conclude that we are al-
ways able to make a field redefinition Aμ = Ãμ + ∂μW̃ /D to a
gauge invariant vector field δφ Ãμ = 0 which jeopardizes the man-
ifest U (1) symmetry.

In practice we have checked for other choices different from
(40) that is always possible to redefine the fields and end up with-
out manifest U (1) symmetry.

4. Conclusion

In the topologically massive BF model (TMBF), also named
Cremmer–Scherk model, the photon acquires mass without need
of a Higgs field while keeping the U (1) gauge symmetry mani-
fest in the action. It is not possible in this case to remove the
U (1) symmetry from the action by any local field redefinition. In
this model the vector field is coupled to an antisymmetric ten-
sor. Motivated by the TMBF model we have investigated here the
possibility of generating mass for the photon, in a U (1) invariant
way, by coupling the vector field to a symmetric rank-2 tensor
instead. Since the TMBF model can be obtained via dualization
methods like master action and Noether gauge embedment (NGE)
from the Maxwell–Proca theory, we have applied in Section 2 the
same techniques to a first-order form of the Maxell–Proca theory,
see [14], where a symmetric rank-two tensor replaces the totally
antisymmetric tensor of the TMBF model. The NGE procedure has
led us to a non-unitary theory while the master action approach
has furnished the model (4) which is in fact dual to the Maxwell–
Proca theory in arbitrary D dimensions without however, manifest
U (1) gauge symmetry.

In Section 3 we have applied a more general procedure which
starts from a rather complete second-order (in derivatives) Ansatz,
see (16), involving quadratic terms in the vector and tensor fields.
We have integrated in the path integral over the tensor field and
obtained an effective action for the vector field. Requiring that the
effective vector theory be U (1) invariant and contain only one
massive spin-1 particle in the spectrum we have deduced a set
of constraints on the couplings. In particular, the constraints solu-
tion given in (40) has led us to the family of U (1) invariant actions
S I given in (41). However, it turns out that in the general case the
U (1) transformations are not the usual ones, see (44) and (45).
A further restriction on the parameters space ( f = −Dg) is re-
quired to recover the usual (first order) U (1) transformations. In
this case we obtain the gauge invariant description of a massive
spin-1 particle given in (46) which is our main result.

It turns out both for f �= −Dg and f = −Dg that after a lo-
cal redefinition of the fields involving the trace W = W μ

μ , the
manifest U (1) symmetry can be removed very much like in the
usual Stückelberg formalism although our action is rather differ-
ent from the usual Stückelberg form of the Maxwell–Proca theory.
In our case the trace W is eaten up by the vector field which be-
comes massive. After those field redefinitions we obtain new dual
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theories to the Maxwell–Proca model given in (4) and (50). We
have also tried other solutions of the constraint equations but it
turns out that it is always possible to eat up the trace and end up
without explicit U (1) symmetry. We have given a symmetry argu-
ment explaining that point. Clearly, one might try to include higher
derivative (above second-order) terms in the Ansatz but they are
expected to jeopardize unitarity.

In the TMBF model it is not possible to remove the U (1) sym-
metry by any local field redefinition. The key difference seems to
be that the U (1) gauge symmetry of the vector field does not need
to be compensated by any transformation of the auxiliary two-
form field unlike the case investigated here where the symmetric
rank-2 tensor must transform nontrivially.

We are currently investigating a non-Abelian extension of our
results. Moreover, in [22] the coupling of higher spin particles to
the electromagnetic field has been studied leading to some ap-
parently universal conclusions. In [22] the usual Stückelberg for-
malism has been employed. It is desirable to check the univer-
sality of their results via an alternative gauge invariant formu-
lation for massive particles as given here. We are working on
a generalization of our approach to higher spin charged parti-
cles.
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