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Abstract

An n × n complex matrix P is said to be a generalized reflection matrix if PH = P and
P 2 = I . An n × n complex matrix A is said to be a reflexive (or anti-reflexive) matrix with
respect to the generalized reflection matrix P if A = PAP (or A = −PAP ). This paper es-
tablishes the necessary and sufficient conditions for the existence of and the expressions for
the reflexive and anti-reflexive with respect to a generalized reflection matrix P solutions of
the matrix equation AX = B. In addition, in corresponding solution set of the equation, the
explicit expression of the nearest matrix to a given matrix in the Frobenius norm have been
provided.
© 2003 Elsevier Inc. All rights reserved.

AMS classification: 65F30; 65H15

Keywords: Reflexive matrix; Anti-reflexive matrix; Matrix equation; Matrix nearness problem

1. Introduction

Throughout, Cn denotes the complex n-vector space, Cm×n denotes the set of
m × n complex matrices. AH , A+ and ‖A‖F stand for the conjugate transpose, the
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Moore–Penrose generalized inverse and the Frobenius norm of a complex matrix A,
respectively. In represents the identity matrix of size n. On Cm×n we define inner
product, 〈A, B〉 = trace(BTA) for all A, B ∈ Cm×n, then Cm×n is a Hilbert inner
product space and the norm of a matrix generated by this inner product is Frobenius
norm.

Chen and Chen [2], Chen [3,4], and Chen and Sameh [5] introduce the following
two special classes of subspaces in Cm×n

Cn×n
r (P ) = {A ∈ Cn×n|A = PAP } and

Cn×n
a (P ) = {A ∈ Cn×n|A = −PAP },

where P of size n is generalized reflection matrix. By a generalized reflection matrix,
say P , one mean that P satisfies the following two conditions: P H = P and P 2 = I .
In other words, a generalized reflection matrix is an involutory Hermitian matrix. The
matrices A in Cn×n

r (P ) and B in Cn×n
a (P ) are, respectively, said to be a reflexive

and anti-reflexive matrices with respect to the generalized reflection matrix P .
The reflexive and anti-reflexive matrices with respect to a generalized reflection

matrix P have many special properties and widely used in engineering and scientific
computations (see, for instance, Refs. [2–5]).

In this paper, we consider the reflexive and anti-reflexive with respect to a gener-
alized reflection matrix P solutions of the matrix equation

AX = B, (1)

where A and B are given matrices in Cm×n. We also consider the matrix nearness
problem

min
X∈SX

‖X − X∗‖F, (2)

where X∗ is a given matrix in Cn×n and SX is the solution set of Eq. (1).
The well-known equation (1) with the unknown matrix X being symmetric,

anti-symmetric, symmetric positive semidefinite and re-positive definite were stud-
ied (see, for instance, Vetter [14], Magnus and Neudecker [12,13], Don [10], Chu
[7,8], Dai [9], and Wu [15]). All in these paper, the necessary and sufficient condi-
tions for the existence of and the expressions for the solution of the equation were
given by using the structure properties of matrices in required subset in Cm×n and the
singular value decomposition of the matrix. The reflexive and anti-reflexive matrices
with respect to a generalized reflection matrix P are two classes of important matri-
ces and have engineering and scientific applications. The reflexive and anti-reflexive
with respect to a generalized reflection matrix P solution of the matrix equation (1),
however, has not been considered yet. In this paper, we will discuss this problem.

The matrix nearness problem (2), that is, finding the nearest matrix in the solu-
tion set of Eq. (1) to a given matrix in Frobenius norm, is initially proposed in the
processes of test or recovery of linear systems due to incomplete dates or revising
given dates. A preliminary estimate X∗ of the unknown matrix X can be obtained by
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the experimental observation values and the information of statical distribution. The
other form of the matrix nearness problem (2),

min
A

‖A − A∗‖F,

subject to

AX = B,

where X and B are given n×m matrices, A∗ is a given n×n matrix and A is an n×n

symmetric, bisymmetric or symmetric positive semidefinite matrix, were discussed
(see, for instance, Xie et al. [16], Zhou and Dai [17] and references therein).

The paper is organized as follows: in Section 2, the structure properties of the
generalized reflection matrix P and the matrices in Cn×n

r (P ) or Cn×n
a (P ) will be in-

troduced. Using these properties, together with Moore–Penrose generalized inverse,
the necessary and sufficient conditions for the existence of and the expressions for the
reflexive and anti-reflexive with respect to a generalized reflection matrix P solutions
of Eq. (1) will be derived. In Section 3, the expression of the solution of the matrix
nearness problem (2) will be provided.

2. The solution of the matrix equation (1)

In this section we first introduce some structure properties of the generalized re-
flection matrix P and the subsets Cn×n

r (P ) and Cn×n
a (P ) of Cm×n. Then we give the

necessary and sufficient conditions for the existence of and the expressions for the
reflexive and anti-reflexive with respect to a generalized reflection matrix P solutions
of Eq. (1).

Lemma 1. Assume P is a generalized reflection matrix of size n. Let

P1 = 1
2 (In + P), P2 = 1

2 (In − P), (3)

then P1 and P2 are orthogonal projection matrices, and satisfied P1 + P2 = In,

P1P2 = 0.

Proof. Notices the definition of P, P1 and P2, only by a direct computation, we
have that the above results are held. �

Lemma 2. Assume P1 and P2 are defined as (3) and rank(P1) = r, then rank(P2) =
n−r, and there exist unit column orthogonal matrices U1 ∈ Cn×r and U2 ∈ Cn×(n−r)

such that

P1 = U1U
H
1 , P2 = U2U

H
2 , P = U1U

H
1 − U2U

H
2 , UH

1 U2 = 0.

Proof. Since P1, P2 are orthogonal projection matrices, and satisfied P1 + P2 = I,

P1P2 = 0, then the column spaceR(P2)of the matrixP2 is the orthogonal complement
of the column space R(P1) of the matrix P1, i.e., Cn = R(P1) ⊕ R(P2). Hence, if



150 Z.-y. Peng, X.-y. Hu / Linear Algebra and its Applications 375 (2003) 147–155

rank(P1) = r , then rank(P2) = n − r . On the other hand, if rank(P1) = r, rank(P2) =
n − r , and also notice that P1, P2 are orthogonal projection matrices, then there exist
unit column orthogonal matricesU1 ∈ Cn×r andU2 ∈ Cn×(n−r) such thatP1 = U1U

H
1 ,

P2 = U2U
H
2 . Using Cn = R(P1) ⊕ R(P2), we have UH

1 U2 = 0. Substituting P1 =
U1U

H
1 , P2 = U2U

H
2 into (3), we have P = U1U

H
1 − U2U

H
2 . �

Let U = (U1, U2). From Lemma 2, it is easy to verify that U is an unitary matrix
and the generalized reflection matrix P can be expressed as

P = U

(
Ir 0
0 −In−r

)
UH . (4)

Lemma 3. The matrix A ∈ Cn×n
r (P ) if and only if A can be expressed as

A = U

(
M 0
0 N

)
UH ,

where M ∈ Cr×r , N ∈ C(n−r)×(n−r) and U is the same as (4).

Proof. Assume A ∈ Cn×n
r (P ). By Lemma 2 and the definition of Cn×n

r (P ), we
have (

UH
1

UH
2

)
A(U1, U2) =

(
UH

1

−UH
2

)
A(U1, −U2),

which is equivalent to(
UH

1 AU1 UH
1 AU2

UH
2 AU1 UH

2 AU2

)
=
(

UH
1 AU1 −UH

1 AU2

−UH
2 AU1 UH

2 AU2

)
,

which implies that UH
1 AU2 = 0, UH

2 AU1 = 0. Let M = UH
1 AU1, N = UH

2 AU2,
then we have(

UH
1

UH
2

)
A(U1, U2) =

(
M 0
0 N

)
.

Hence,

A = U

(
M 0
0 N

)
UH .

Conversely, for any M ∈ Cr×r and N ∈ C(n−r)×(n−r), using the result (4), we have

PU

(
M 0
0 N

)
UH P = U

(
Ir 0
0 −In−r

)
UH U

(
M 0
0 N

)
UH U

(
Ir 0
0 −In−r

)
UH

= U

(
Ir 0
0 −In−r

)2 (
M 0
0 N

)
UH

= U

(
M 0
0 N

)
UH .
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This implies that A = U

(
M 0
0 N

)
UH ∈ Cn×n

r (P ). �

Similar to the proof of Lemma 3, we can prove the following lemma.

Lemma 4. The matrix A ∈ Cn×n
a (P ) if and only if A can be expressed as

A = U

(
0 M

N 0

)
UH ,

where M ∈ Cr×(n−r), N ∈ C(n−r)×r and U is the same as (4).

The following lemma is a well known result.

Lemma 5. The matrix equation AX = B with A ∈ Cp×m and B ∈ Cp×n has a
solution X ∈ Cm×n if and only if AA+B = B. In that case it has the general solution
X = A+B + (Im − A+A)G, where G ∈ Cm×n is arbitrary matrix.

Theorem 1. Given A, B ∈ Cm×n and a generalized reflection matrix P of size n.

Assume P can be expressed as (4), and AU and BU have the following partition
form

AU = (A1, A2), A1 ∈ Cm×r , A2 ∈ Cm×(n−r), (5)

BU = (B1, B2), B1 ∈ Cm×r , B2 ∈ Cm×(n−r), (6)

then Eq. (1) has a solution X ∈ Cn×n
r (P ) if and only if

A1A
+
1 B1 = B1, A2A

+
2 B2 = B2. (7)

In that case it has the general solution

X = U

(
A+

1 B1 + (Ir − A+
1 A1)G1 0

0 A+
2 B2 + (In−r − A+

2 A2)G2

)
UH , (8)

where G1 ∈ Cr×r and G2 ∈ C(n−r)×(n−r) are arbitrary matrices.

Proof. The necessity. Assume Eq. (1) has a solution X ∈ Cn×n
r (P ), we have from

Lemma 3 that X can be expressed as

X = U

(
X1 0
0 X2

)
UH , (9)

where X1 ∈ Cr×r , X2 ∈ C(n−r)×(n−r).
Note that U is a unitary matrix, and the definition of Ai, Bi(i = 1, 2), Eq. (1) is

equivalent to

A1X1 = B1, A2X2 = B2.
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It follows from Lemma 5 that

A1A
+
1 B1 = B1, A2A

+
2 B2 = B2,

and

X1 = A+
1 B1 + (Ir − A+

1 A1)G1, X2 = A+
2 B2 + (In−r − A+

2 A2)G2, (10)

where G1 ∈ Cr×r and G2 ∈ C(n−r)×(n−r) are arbitrary matrices.
Substituting (10) into (9), we know that the solution X ∈ Cn×n

r (P ) of Eq. (1) can
be expressed as (8).

The sufficiency. Assume A1A
+
1 B1 = B1 and A2A

+
2 B2 = B2, then we have from

Lemma 5 that there exist X1 ∈ Cr×r and X2 ∈ C(n−r)×(n−r) such that

A1X1 = B1, A2X2 = B2,

which is equivalent to

(A1, A2)

(
X1 0
0 X2

)
= (B1, B2).

It in turn is equivalent to

AU

(
X1 0
0 X2

)
UH = B.

This implies that X = U

(
X1 0
0 X2

)
UH ∈ Cn×n

r (P ) is the solution of Eq. (1).

Hence, Eq. (1) has a solution X in Cn×n
r (P ). �

Similar to the proof of Theorem 1, we can prove the following theorem.

Theorem 2. Given A, B ∈ Cm×n and a generalized reflection matrix P of size n.

Assume P can be expressed as (4), and AU and BU have the partition form of (5)

and (6), then Eq. (1) has a solution X ∈ Cn×n
a (P ) if and only if

A1A
+
1 B2 = B2, A2A

+
2 B1 = B1. (11)

In that case it has the general solution

X = U

(
0 A+

2 B1 + (In−r − A+
2 A2)G1

A+
1 B2 + (Ir − A+

1 A1)G2 0

)
UH , (12)

where G1 ∈ Cr×(n−r) and G2 ∈ C(n−r)×r are arbitrary matrices.

3. The solution of the matrix nearness problem (2)

To give the explicit expression of the solution of the matrix nearness problem (2),
we first verify the following lemma.

Lemma 6. Given matrices A ∈ Cp×m and B ∈ Cp×n, then the procrustes problem
(see Andersson and Elfving [1] and Higham [11])
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min
X∈Cm×n

‖(Im − A+A)X − B‖F (13)

has a solution which can be expressed as X = B + A+G, where G ∈ Cp×n is arbi-
trary matrix.

Proof. Applying the properties of Moore–Penrose generalized inverse and the inner
product in space Cm×n, we have

‖(Im − A+A)X − B‖2
F

= 〈(Im − A+A)X − B, (Im − A+A)X − B〉
= 〈(Im − A+A)(X − B), (Im − A+A)(X − B)〉 + 〈A+AB, A+AB〉
= ‖(Im − A+A)(X − B)‖2

F + ‖A+AB‖2
F.

Hence,

min
X∈Cm×n

‖(Im − A+A)X − B‖F

if and only if

min
X∈Cm×n

‖(Im − A+A)(X − B)‖F.

It is clear that X = B + A+G, with G ∈ Cp×n be arbitrary, is the solution of the
above procrustes problem. So, the solution of the procrustes problem (13) can be
expressed as X = B + A+G. �

Theorem 3. Given a n × n matrix X∗. Assume the solution set SX ⊆ Cn×n
r (P ) of

Eq. (1) is nonempty, then the matrix nearness problem (2) has an unique solution X̂

in SX. Furthermore, let

UH X∗U =
(

X∗
11 X∗

12
X∗

21 X∗
22

)
, X∗

11 ∈ Cr×r , X∗
22 ∈ C(n−r)×(n−r), (14)

then X̂ can be expressed as

X̂=U

(
A+

1 B1+(I − A+
1 A1)(X

∗
11−A+

1 B1) 0
0 A+

2 B2+(I −A+
2 A2)(X

∗
22−A+

2 B2)

)
UH .

(15)

Proof. If the solution set SX ⊆ Cn×n
r (P ) of Eq. (1) is nonempty, then SX is a closed

convex cone in Hilbert space Cn×n with vertex at

X0 = U

(
A+

1 B1 0
0 A+

2 B2

)
UH .

Hence, it is certain that there exists an unique X̂ ∈ SX such that the matrix nearness
problem (2) holds (see Cheney [6]). Using the invariance of the Frobenius norm
under unitary transformations, we have from (8) and (14) that
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‖X − X∗‖2
F

=
∥∥∥∥
(

A+
1 B1 + (I − A+

1 A1)G1 0
0 A+

2 B2 + (I − A+
2 A2)G2

)
− UH X∗U

∥∥∥∥
2

F

= ‖(I − A+
1 A1)G1 − (X∗

11 − A+
1 B1)‖2

F + ‖X∗
12‖2

F

+ ‖(I − A+
2 A2)G2 − (X∗

22 − A+
2 B2)‖2

F + ‖X∗
21‖2

F.

Hence, there exists X̂ ∈ SX such that the matrix nearness problem (2) holds is equiv-
alent to exist G1 ∈ Cr×r and G2 ∈ C(n−r)×(n−r) such that

min
G1

‖(I − A+
1 A1)G1 − (X∗

11 − A+
1 B1)‖F,

min
G2

‖(I − A+
2 A2)G2 − (X∗

22 − A+
2 B2)‖F.

It follows from Lemma 6 that

G1 = X∗
11 − A+

1 B1 + A+
1 Y1, G2 = X∗

22 − A+
2 B2 + A+

2 Y2,

where Y1 ∈ Cr×r , Y2 ∈ C(n−r)×(n−r) are arbitrary. Taking G1 and G2 into (8), we
obtain that the solution of the matrix nearness problem (2) can be expressed as
(15). �

Similar to the proof of Theorem 3, we can prove the following theorem.

Theorem 4. Given a n × n matrix X∗. Assume the solution set SX ⊆ Cn×n
a (P ) of

Eq. (1) is nonempty, then the matrix nearness problem (2) has an unique solution X̂

in SX. Furthermore, assume UH X∗U have the partition form of (14), then X̂ can
be expressed as

X̂=U

(
0 A+

1 B2+(I −A+
1 A1)(X

∗
12−A+

1 B2)

A+
2 B1+(I −A+

1 A1)(X
∗
21−A+

2 B1) 0

)
UH .

(16)

4. Conclusions

In this paper, we considered the reflexive and anti-reflexive with respect to a
generalized reflection P solution of the matrix equation AX = B. We also consid-
ered, in corresponding solution set of the equation, finding the nearest matrix to a
given matrix in Frobenius norm. After providing some interesting structure charac-
terizations, i.e., Lemmas 1–4 of the generalized reflection matrix and the reflexive
(or anti-reflexive) matrix with respect to a generalized reflection matrix, the solv-
ability conditions and the explicit formula for the solutions of the equation are given.
Moore–Penrose generalized inverse is an important tool in this paper.
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