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SUMMARY
Elucidating the determinants of aggressiveness in lethal prostate cancer may stimulate therapeutic strate-
gies that improve clinical outcomes. We used experimental models and clinical databases to identify
GATA2 as a regulator of chemotherapy resistance and tumorigenicity in this context. Mechanistically, direct
upregulation of the growth hormone IGF2 emerged as a mediator of the aggressive properties regulated
by GATA2. IGF2 in turn activated IGF1R and INSR as well as a downstream polykinase program. The char-
acterization of this axis prompted a combination strategy whereby dual IGF1R/INSR inhibition restored
the efficacy of chemotherapy and improved survival in preclinical models. These studies reveal a GATA2-
IGF2 aggressiveness axis in lethal prostate cancer and identify a therapeutic opportunity in this challenging
disease.
INTRODUCTION

Prostate cancer is a common malignancy with nearly one million

annual diagnoses worldwide (Jemal et al., 2011). Among a

subset of patients, primary disease eventually progresses

to disseminated castration-resistant prostate cancer (CRPC).

In recent years, treatment modalities that improve survival in

CRPC have emerged including taxane chemotherapy (de Bono

et al., 2010; Petrylak et al., 2004; Tannock et al., 2004) and sec-

ond-generation androgen signaling inhibitors (Beer et al., 2014;

de Bono et al., 2011; Ryan et al., 2013; Scher et al., 2012), among

others. Indeed, today the first line chemotherapeutic docetaxel
Significance

Disseminated castration-resistant prostate cancer (CRPC) is a
the molecular genetics and mechanisms of therapeutic resis
mental and clinical data to identify GATA2 and an associated
in this context. This approach enabled the finding that insulin
chemotherapy resistance and tumorigenicity downstream of G
tate cancer and lay the groundwork for future clinical studies.

C

as well as the second line agent cabazitaxel are mainstays of

treatment (Bishr and Saad, 2013). However, CRPC inexorably

progresses to a chemotherapy-resistant state that ultimately

precedes lethality.

GATA2 is an evolutionarily conserved zinc finger transcription

factor that regulates development and differentiation in eukary-

otic organisms (Vicente et al., 2012a). Mutation and deregulated

expression of GATA2 are common and pathogenic in hemato-

poietic malignancy (Hahn et al., 2011; Vicente et al., 2012b;

Zhang et al., 2008). Interestingly, GATA2 is also required for

the survival of RAS-pathway-mutated non-small-cell lung cancer

(NSCLC) cells (Kumar et al., 2012). In prostate cancer, GATA2 is
common disease characterized by limited survival. However,
tance in this disease remain unclear. Here we used experi-
transcriptional program as determinants of aggressiveness
-like growth factor signaling is a targetable mechanism of
ATA2. These findings shed light on the biology of lethal pros-

ancer Cell 27, 223–239, February 9, 2015 ª2015 Elsevier Inc. 223

mailto:carlos.cordon-cardo@mssm.edu
mailto:josep.domingo-domenech@mssm.edu
http://dx.doi.org/10.1016/j.ccell.2014.11.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ccell.2014.11.013&domain=pdf


A

B

D

C

Figure 1. GATA2 Is Upregulated in Chemotherapy-Resistant Models and Lethal Prostate Cancer Tissues

(A) Venn diagram of docetaxel resistance signature genes that are differentially expressed (FDR < 0.05) during the progression from primary to lethal prostate

cancer in the indicated clinical transcriptome data sets.

(legend continued on next page)
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an established pioneer factor for androgen receptor (AR)-regu-

lated genes (Chen et al., 2013; Perez-Stable et al., 2000; Wang

et al., 2007; Wu et al., 2014). However, the functional attributes,

downstream mechanisms, and therapeutic significance of

GATA2 in prostate cancer remain unclear.

IGF2 is a growth hormone that is highly expressed during em-

bryonic development (Stylianopoulou et al., 1988). Moreover,

IGF2 is commonly overexpressed in cancer (Livingstone,

2013). Loss of imprinting is a well-described mechanism of over-

expression (Feinberg and Tycko, 2004), including in early pros-

tate cancer (Jarrard et al., 1995). In addition, IGF2 expression

may be deregulated by transcription factors (Lui and Baron,

2013; Tada et al., 2014). Functionally, IGF2 overexpression is

sufficient to initiate breast tumors (Bates et al., 1995; Pravtcheva

and Wise, 1998) as well as several other malignancies in genet-

ically engineered mouse models (Moorehead et al., 2003; Rogler

et al., 1994). Similarly, IGF2 modulates the penetrance of large T

antigen-induced islet cell tumors (Christofori et al., 1994) and

PTEN-deficient breast tumors (Church et al., 2012), and IGF2 is

indispensable for the formation of Ptch-deficient medulloblas-

toma and rhabdomyosarcoma (Hahn et al., 2000). Notably, while

IGF2 has been associated with steroidogenesis (Lubik et al.,

2013), the biology of IGF2 in prostate cancer is largely

uncharacterized.
RESULTS

GATA2 Is Upregulated during the Progression to Lethal
Prostate Cancer
We recently reported two models of docetaxel resistance using

the CRPC cell lines DU145 and 22Rv1 (Domingo-Domenech

et al., 2012). In addition to docetaxel resistance, the sublines

DU145-DR and 22Rv1-DR were characterized by potent tumori-

genicity and a developmental gene expression signature. To

interrogate this signature for clinically relevant determinants of

aggressiveness, we explored its representation in two recently

published (Grasso et al., 2012; Taylor et al., 2010) data sets

derived from human prostate cancer tissues. Specifically, we

investigated which genes among the signature were significantly

deregulated (false discovery rate [FDR] < 0.05) during the pro-

gression from primary disease to heavily treated lethal prostate

cancer in theGrassoet al. (2012) study anddisseminated chemo-

therapy-treated disease in the Taylor et al. (2010) study. We

thereby identified 13 genes that were consistently deregulated

in DU145-DR and 22Rv1-DR as well as during prostate cancer

progression in both clinical data sets (Figure 1A). Among these

candidates, GATA2 initially captured our attention as a known

transcription factor and regulator of developmental biology.

We first confirmed the upregulation of GATA2 mRNA and

protein in DU145-DR and 22Rv1-DR relative to their parental

counterparts (Figure 1B). Moreover, we generated a third model
(B) Quantitative RT-PCR (qRT-PCR) and immunoblot analyses of GATA2mRNA an

relative to their parental cell lines. Data represent the mean ± SD. *p < 0.05.

(C) Box plots of GATA2mRNA levels during disease progression in the indicated c

1.5 times interquartile range (IQR); dots, outliers. *p < 0.05.

(D) Representative immunohistochemistry images and quantifications of GATA

embedded prostate cancer tissues. Line, median; box, 25th to 75th percentiles; b

See also Figure S1.
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of docetaxel resistance using the CRPC cell line ARCaPM,

termed ARCaPM-DR (Figures S1A and S1B available online).

Notably, ARCaPM-DR exhibited increased tumorigenicity

(Figure S1C) as well as increased levels of GATA2 mRNA and

protein (Figure 1B). Interestingly, all three models of docetaxel

resistance exhibited varying degrees of cross-resistance to

cabazitaxel (Figures S1D–S1G), suggesting that the molecular

landscape of the docetaxel-resistant models also confers

resistance to this second line taxane. Finally, we confirmed

upregulation of GATA2 mRNA during disease progression in

the two clinical data sets (Figure 1C).

To further characterize the expression of GATA2 in clinical

prostate cancer, we performed an immunohistochemistry anal-

ysis in a series of 124 paraffin-embedded tissues. We observed

that GATA2 protein levels increased during the progression from

primary prostate cancer to disseminated CRPC, while the subset

of patients treated with taxane chemotherapy exhibited the

highest levels (Figure 1D).
GATA2 Regulates Chemotherapy Resistance
and Tumorigenicity
Our data supported a possible association between GATA2,

chemotherapy resistance, and tumorigenicity in CRPC. To

further investigate this association, we characterized two short

hairpin RNAs (shRNAs) that efficiently reduced the mRNA and

protein levels of GATA2 in the three chemotherapy-resistant cul-

tures (Figure 2A). Colony-formation assays revealed that GATA2

knockdown sensitized the three cultures to docetaxel and caba-

zitaxel (Figure 2B), and further experiments showed that sensiti-

zation was accompanied by increased induction of apoptosis

(Figures 2C and 2D). In addition, xenotransplantation studies

showed that GATA2 knockdown reduced the capacity of

CRPC cells to form tumors in vivo (Figure S2A). For example,

following implantation of 100 cells, GATA2 knockdown

completely abrogated the tumorigenicity of the chemotherapy-

resistant cultures (Figure 2E). Moreover, while infrequent tumors

formed at larger inoculums, they did so after long latencies and

likely as a result of escape fromGATA2 knockdown (Figure S2B).

To extend these findings to patient-derived xenograft models,

we collected circulating tumor cells from CRPC patients with

chemotherapy-resistant disease. We stably propagated two xe-

nografts termed lethal prostate cancer 1 (LPC1) and lethal pros-

tate cancer 2 (LPC2) in mice, and characterized their human

prostate cancer origin and genomic stability over serial passages

(Figures S2C–S2F). We also confirmed their castration- and tax-

ane-resistant properties in vivo (Figures S2G and S2H). More-

over, we developed an intratumoral small interfering RNA

(siRNA) protocol that enabled consistent GATA2mRNA and pro-

tein suppression in subcutaneous tumors (Figure S2I). We first

combined this protocol with a vehicle, docetaxel, or cabazitaxel

regimen over a period of 4 weeks. Tumor volume (Figure 2F) and
d protein levels, respectively, in DU145-DR, 22Rv1-DR, and ARCaPM-DR cells

linical transcriptome data sets. Line, median; box, 25th to 75th percentiles; bars,

2 protein levels during disease progression in a series of human paraffin-

ars, 1.5 times IQR; dots, outliers. n = 124. Scale bar, 100 mm. *p < 0.05.
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Figure 2. GATA2 Regulates Chemotherapy Resistance and Tumorigenicity in CRPC

(A) qRT-PCR and immunoblot analyses of GATA2mRNA and protein levels, respectively, in DU145-DR, 22Rv1-DR, and ARCaPM-DR cells stably expressing two

independent GATA2 shRNAs or a control shRNA. Data represent the mean ± SD.

(B) Representative colony-formation assays and quantifications of DU145-DR, 22Rv1-DR, and ARCaPM-DR cells stably expressing indicated control or GATA2

shRNAs and following 72 hr treatment with DMSO, docetaxel (125 nM), or cabazitaxel (DU145-DR and 22Rv1-DR, 25 nM; ARCaPM-DR, 5 nM). Scale bar, 100 mm.

Data represent the mean ± SD.

(C) Immunoblots of cleaved (Cl.) PARP levels in the same cells and following the same treatments described in (B).

(D) Flow cytometry detection of Annexin V and PI in the same cells and following the same treatments described in (B). Data represent the mean ± SD. *p < 0.05.

(E) Tumorigenicity of DU145-DR, 22Rv1-DR, and ARCaPM-DR cells stably expressing indicated control or GATA2 shRNAs.

(legend continued on next page)
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weight (Figure S2J) measurements showed that GATA2 regu-

lated chemotherapy resistance in the LPC models. In addition,

we serially transplanted xenograft cells following 2 weeks of

siRNA treatment without chemotherapy. These studies showed

that GATA2 suppression caused LPC1 and LPC2 cells to form

tumors with reduced incidence and increased latency in second-

ary recipients (Figures 2G and S2K). Therefore, our data collec-

tively suggest that GATA2 confers aggressiveness in CRPC by

regulating chemotherapy resistance and tumorigenicity.
GATA2 Regulates a Signature of Cancer-Progression-
Associated Genes
To elucidatemechanismswherebyGATA2 regulates these prop-

erties, we performed expression profiling and knowledge-based

computational studies comparing control and GATA2 knock-

down conditions. Prompted by the observation that GATA2

regulates similar properties in DU145-DR, 22Rv1-DR, and

ARCaPM-DR, we focused an initial series of studies on mecha-

nisms overlapping among the three models. RNA sequencing

followed by differential expression analysis (Padj < 0.05, fold

change [FC] R 1.5) resulted in the identification of a consensus

28-member signature of GATA2-regulated genes (Figures 3A

and 3B). In addition, gene ontology analysis showed that (1)

cancer, (2) cell death and survival, and (3) cellular growth and

proliferation were the most commonly deregulated biological

categories (Figure 3C). To assess the clinical relevance of the

consensus signature, we performed Pearson correlation coeffi-

cient calculations comparing the average expression of the

signature and the expression data of patients, as previously

described (Liu et al., 2007). These calculations revealed that

the 28-gene signature was remarkably enriched in the lethal

prostate cancer population from the large Grasso et al. (2012)

study (Figure 3D). Similarly, the signature was significantly en-

riched in the disseminated chemotherapy-treated population

from the Taylor et al. (2010) study (Figure 3D).

To further distill the consensus signature to its clinically salient

components, we focused on genes that exhibited the most

robust differential expression pattern consistent with regulation

by GATA2 in patient-derived data sets. We thereby identified a

core subset of seven genes that demonstrated both uniform

deregulation by GATA2 knockdown in the three chemo-

therapy-resistant cultures (Figure 3E) as well as complementary

(FDR < 0.1) expression patterns during disease progression in

theGrasso et al. (2012) andTaylor et al. (2010) studies (Figure 3F).

Interestingly, all seven genes exhibited corresponding expres-

sion patterns in the chemotherapy-resistant cultures relative to

their parental counterparts (Figure S3A), suggesting possible

roles in chemotherapy resistance, tumorigenicity, or both. To

functionally characterize these genes, we performed RNA

interference (genes repressed by GATA2 knockdown) and over-

expression (genes derepressed by GATA2 knockdown) studies

using the three chemotherapy-resistant cultures (Figure S3B).
(F) Volumes of LPC1 and LPC2 subcutaneous xenografts during 28 days of comb

(10 mg/kg i.p. weekly) as well as indicated control or GATA2 intratumoral siRNA

(G) Tumor incidence and latency of LPC1 and LPC2 cells following 14 days of t

*p < 0.05.

See also Figure S2.

C

We monitored both chemotherapy resistance and soft agar

growth as a surrogate for in vivo tumorigenicity. Notably, five

of the seven genes consistently regulated chemotherapy resis-

tance (Figure 3G), soft agar growth (Figure 3H), or both. These

results suggest that GATA2 regulates a discrete network of

clinically and biologically significant genes during the progres-

sion to lethal prostate cancer.

Finally, mindful of previous reports establishing GATA2 as a

pioneer factor for AR-regulated genes, we focused a second se-

ries of studies on this association. Consistent with their parental

lines, DU145-DR and ARCaPM-DR lacked AR protein (Fig-

ure S3C), indicating that AR is dispensable for regulation of the

consensus 28-gene signature by GATA2. This observation was

further supported by the near complete failure of the 28-gene

signature to overlap with more than one thousand known AR-

regulated genes from two published (Sharma et al., 2013;

Wang et al., 2009) CRPC studies (Figure S3D). Moreover, the

core GATA2-regulated genes identified in our studies were unre-

sponsive to AR knockdown in the AR-expressing 22Rv1-DR cul-

ture (Figure S3E). Therefore, our data suggest that the

consensus GATA2 signature is unrelated to AR biology. None-

theless, we observed that subsets of AR-regulated genes from

the Sharma et al. (2013) and Wang et al. (2009) studies were

significantly deregulated by GATA2 knockdown in the AR-ex-

pressing 22Rv1-DR culture (Figure S3F). Notably, these

GATA2- and AR-regulated genes included the canonical AR tar-

gets KLK3 and TMPRSS2 (Figure S3G), corroborating previous

reports (Perez-Stable et al., 2000; Wang et al., 2007) that

GATA2 functions as a pioneer factor for AR at these loci. How-

ever, the GATA2- and AR-regulated signatures were not con-

sistently deregulated in 22Rv1-DR relative to its parental line

(Figure S3H), suggesting that they do not contribute to chemo-

therapy resistance or tumorigenicity. Complementing this hy-

pothesis, the GATA2- and AR-regulated signatures were poorly

correlated with progression to chemotherapy-treated disease

in clinical data sets (Figure S3I). Therefore, our data collectively

suggest that, in addition to its established pioneer function

at AR-regulated sites, GATA2 regulates clinically relevant AR-

independent genes (Figure 3B) that confer chemotherapy-resis-

tant and tumorigenic properties in lethal prostate cancer.
Direct Upregulation of IGF2 Contributes to the
Aggressive Properties Regulated by GATA2
We next investigated whether GATA2 regulates actionable tar-

gets with the potential to confer therapeutic benefit. Among

the functionally validated GATA2-regulated genes (Figures 3G

and 3H), IGF2 was distinctive through its strong and consistent

regulation of both chemotherapy resistance and soft agar

growth. Indeed, as a canonical activator of insulin-like growth

factor signaling, IGF2 promotes aggressive properties in a multi-

tude of malignancies (Livingstone, 2013). In addition, we noted

that several insulin-like growth factor pathway inhibitors are
ination treatment with vehicle, docetaxel (10 mg/kg i.p. weekly), or cabazitaxel

s. Data represent the mean ± SD. *p < 0.05.

reatment with indicated intratumoral siRNAs. Data represent the mean ± SD.
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Figure 3. GATA2 Regulates a Signature of Cancer-Progression-Associated Genes

(A) Venn diagram of differentially expressed genes (padj < 0.05 and FC R 1.5) identified by RNA sequencing after shRNA-mediated GATA2 knockdown in

DU145-DR, 22Rv1-DR, and ARCaPM-DR cells.

(B) Heatmap of the consensus 28-member signature of GATA2-regulated genes from (A).

(C) Ingenuity knowledge-based molecular and cellular functions analysis of GATA2-regulated genes in DU145-DR, 22Rv1-DR, and ARCaPM-DR cells from (A).

(D) Box plots of the Pearson coefficients for the correlation between the expression data of each patient in the indicated clinical transcriptome data sets and the

average expression of the GATA2 gene signature from (A) during prostate cancer progression. Line, median; box, 25th to 75th percentiles; bars, 1.5 times IQR;

dots, outliers.

(legend continued on next page)
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currently in advanced clinical development. Together, these ob-

servations credentialed IGF2 as a biologically and therapeuti-

cally meritorious candidate downstream of GATA2, and we

therefore selected it for more detailed analysis.

We performed a series of studies to clearly establish IGF2 as a

functional mediator of GATA2 biology. First, two independent

shRNAs efficiently reduced the mRNA and protein levels of

IGF2 in the three chemotherapy-resistant cultures (Figure S4A).

Colony-formation (Figure 4A) and xenotransplantation (Fig-

ure 4B) studies showed that IGF2 knockdown reduced the

chemotherapy-resistant and tumorigenic properties of these

cells, respectively. Moreover, IGF2 was abundantly secreted

into the medium of the chemotherapy-resistant cultures (Fig-

ure S4B), and addition of a neutralizing anti-IGF2 immunoglob-

ulin reduced their taxane resistance (Figure 4C) and soft agar

growth (Figure 4D). Next, we transduced control and GATA2

knockdown cells with a control or IGF2 expression vector (Fig-

ure S4C). Notably, colony-formation (Figure 4E) and xenotrans-

plantation (Figure 4F) studies showed that IGF2 expression

significantly rescued the biological defects instigated by

GATA2 knockdown in the chemotherapy-resistant cultures.

Moreover, addition of recombinant IGF2 to the medium of the

chemotherapy-resistant cultures rescued the defects instigated

by GATA2 on taxane resistance (Figure S4D) and soft agar

growth (Figure S4E). Collectively, these results suggest that

IGF2 substantially mediates the chemotherapy-resistant and

tumorigenic properties of CRPC cells downstream of GATA2.

We previously observed that IGF2 mRNA levels are strongly

upregulated (Figure S3A) and responsive to GATA2 knockdown

(Figure 3E) in the three chemotherapy-resistant cultures. We

first confirmed these observations at the protein level (Figures

5A and 5B). In addition, GATA2 overexpression (Figure S5A)

in the parental cell lines increased their taxane resistance (Fig-

ures S5B and S5C) and tumorigenicity (Figure S5D) as well as

the mRNA (Figure 5C) and protein (Figure 5D) levels of IGF2.

Therefore, we next investigated the mechanism whereby

GATA2 regulates IGF2 expression. The human IGF2 gene is

transcribed from at least four promoters termed P1 through

P4 (Livingstone, 2013). Interestingly, probing the TRANSFAC

database with these promoter sequences indicated that P4

contains two predicted GATA2-binding elements (GBEs), which

we termed GBE1 and GBE2 (Figure S5E). Indeed, chromatin

immunoprecipitation followed by qPCR (ChIP-qPCR) studies

revealed that GATA2 occupies the GBEs in the three chemo-

therapy-resistant cultures but not adjacent control regions (Fig-

ure 5E). In addition, cotransfection assays showed that GATA2

expression could activate luciferase transcription from a P4

reporter in the three parental cell lines, while mutation of the

GBEs reversed this effect (Figure 5F). Moreover, these obser-
(E) qRT-PCR of mRNA levels of a subset of cancer-progression-associated gene

control or GATA2 shRNAs. Data represent the mean ± SD.

(F) Z scores of mRNA levels of genes from (D) in the indicated clinical transcripto

(G) Colony-formation assay quantifications of DU145-DR, 22Rv1-DR, and ARCaP

following 72 hr treatment with DMSO, docetaxel (125 nM), or cabazitaxel (DU145-

*p < 0.05.

(H) Soft agar colony-formation assay quantifications of DU145-DR, 22Rv1-DR, an

Data represent the mean ± SD. *p < 0.05.

See also Figure S3.

C

vations were independently validated in embryonic fibroblast

cells (Figure 5G). Thus, we observed that GATA2 may occupy

predicted binding elements in the P4 sequence and thereby

activate IGF2 transcription.

Finally, a corollary of our hypothesis that GATA2 transcription-

ally upregulates IGF2 is that these genes are coexpressed in

clinical prostate cancer tissues. Indeed, we previously observed

that IGF2 is upregulated during disease progression in the

Grasso et al. (2012) and Taylor et al. (2010) studies (Figure 3E).

To confirm and extend this finding, we performed an immuno-

histochemistry analysis with our cohort of human paraffin-

embedded prostate cancer tissues. We observed that IGF2

protein expression increases during the progression from pri-

mary prostate cancer to disseminated CRPC, while the subset

of patients treated with taxane chemotherapy exhibited the high-

est levels (Figure 5H). Moreover, among a subset of dissemi-

nated CRPC tissues without previous chemotherapy, levels of

both GATA2 and IGF2 were associated with response to subse-

quent docetaxel treatment (Figure S5F).

IGF2 Activates a Polykinase Program Downstream
of GATA2
We next investigated possible downstream mechanisms under-

lying the GATA2-IGF2 axis. IGF2 exhibits homology with insulin,

and IGF2 ligand bindingmay activate both the insulin-like growth

factor 1 receptor (IGF1R) and insulin receptor (INSR) tyrosine

kinases (Livingstone, 2013). The receptors phosphorylate scaf-

folding intermediates including IRS and SHC, which, in turn, acti-

vate phosphoinositide 3 kinase (PI3K) and mitogen-activated

protein kinase (MAPK) signaling, respectively. Accordingly, the

downstream effectors of insulin-like growth factor pathway

signaling principally include AKT, JNK, ERK1/2, and p38 and

are context dependent.

Immunoprecipitation studies revealed that IGF2 knockdown in

the chemotherapy-resistant cultures resulted in dephosphoryla-

tion of both the IGF1R and INSR tyrosine kinases (Figure 6A). We

also noted dephosphorylation of both IRS and SHC scaffolding

intermediaries, suggesting that IGF2 may activate both the

PI3K and MAPK pathways, respectively (Figure 6B). Indeed,

further studies revealed that IGF2 knockdown consistently re-

sulted in dephosphorylation of AKT and JNK, but not p38, in

the three chemotherapy-resistant cultures. In addition, ERK1/2

was dephosphorylated in DU145-DR, but not 22Rv1-DR or AR-

CaPM-DR. Concordantly, this kinase phosphorylation pattern

was specifically increased in the chemotherapy-resistant cul-

tures relative to their parental counterparts (Figure S6A). More-

over, GATA2 knockdown in the chemotherapy-resistant cell lines

also recapitulated the phosphorylation pattern, while an IGF2

expression vector resulted in a complete rescue (Figure 6C).
s in DU145-DR, 22Rv1-DR, and ARCaPM-DR cells stably expressing indicated

me data sets. Line, median; box, 25th to 75th percentiles; bars, 1.5 times IQR.

M-DR cells transfected with indicated siRNAs or stable expression vectors and

DR and 22Rv1-DR, 25 nM; ARCaPM-DR, 5 nM). Data represent the mean ± SD.

d ARCaPM-DR transfected with indicated siRNAs or stable expression vectors.
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Figure 4. IGF2 Contributes to the Aggressive Properties Regulated by GATA2

(A) Representative colony-formation assays and quantifications of DU145-DR, 22Rv1-DR, and ARCaPM-DR cells stably expressing indicated control or IGF2

shRNAs and following 72 hr treatment with DMSO, docetaxel, or cabazitaxel. Scale bar, 100 mm. Data represent the mean ± SD.

(B) Tumor incidence and latency of DU145-DR, 22Rv1-DR, and ARCaPM-DR cells stably expressing indicated control or IGF2 shRNAs. Data represent the

mean ± SD. *p < 0.05.

(C) Representative colony-formation assays and quantifications of DU145-DR, 22Rv1-DR, and ARCaPM-DR cells following 72 hr treatment with isotype control

or anti-IGF2 immunoglobulin (10 mg/ml) as well as DMSO, docetaxel, or cabazitaxel. Scale bar, 100 mm. Data represent the mean ± SD. *p < 0.05.

(D) Representative soft agar colony-formation assays and quantifications of DU145-DR, 22Rv1-DR, and ARCaPM-DR cells treated continuously with isotype

control or anti-IGF2 immunoglobulin (10 mg/ml). Scale bar, 100 mm. Data represent the mean ± SD. *p < 0.05.

(legend continued on next page)
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A

C

E

F

H

G

D

B Figure 5. GATA2 Directly Regulates IGF2

Expression

(A) Immunoblots of IGF2 protein levels in DU145-

DR, 22Rv1-DR, and ARCaPM-DR cells relative to

their parental cell lines.

(B) Immunoblots of IGF2 protein levels in DU145-

DR, 22Rv1-DR, and ARCaPM-DR cells stably ex-

pressing indicated control or GATA2 shRNAs.

(C) qRT-PCR of IGF2 mRNA levels in DU145,

22Rv1, and ARCaPM cells stably expressing a

control or GATA2 expression vector. Data repre-

sent the mean ± SD. *p < 0.05.

(D) Immunoblots of IGF2 protein levels in cells

from (C).

(E) ChIP-qPCR of GATA2 occupancy at GBE1,

GBE2, and flanking control regions in DU145-DR,

22Rv1-DR, and ARCaPM-DR cells. Data represent

the mean ± SD. *p < 0.05.

(F) Luciferase luminescence of parental CRPC cells

following cotransfection with a control or GATA2

expression vector, a P4 luciferase reporter (wild-

type [WT], mutated GBE1 [mutGBE1], or mutated

GBE2 [mutGBE2]), and a renilla transfection

efficiency control. Data represent the mean ± SD.

*p < 0.05. **p < 0.05 relative to control vector.

(G) Luciferase luminescence of NIH 3T3 cells

following same experimental conditions as in (F).

Data represent themean ± SD. *p < 0.05. **p < 0.05

relative to control vector.

(H) Representative immunohistochemistry images

and quantifications of IGF2 protein levels during

disease progression in a series of human paraffin-

embedded prostate cancer tissues. Line, median;

box, 25th to 75th percentiles; bars, 1.5 times IQR;

dots, outliers. n = 124. Scale bar, 100 mm. *p < 0.05.

See also Figure S5.
These results suggested that GATA2 regulates a context-depen-

dent polykinase program through upregulation of IGF2. Indeed,

GATA2 suppression in the LPC xenografts (Figure S2H) resulted

in reduced IGF2 protein levels as well as dephosphorylation of

AKT, JNK, and ERK1/2 in a context-dependent manner (Fig-
(E) Representative colony-formation assays and quantifications of DU145-DR, 22Rv1-DR, and ARCaPM-DR

shRNAs as well as a control or IGF2 expression vector and following 72 hr treatment with DMSO, docetaxe

the mean ± SD.

(F) Tumor incidence and latency of DU145-DR, 22Rv1-DR, and ARCaPM-DR cells stably expressing indicat

IGF2 expression vector. Data represent the mean ± SD.

See also Figure S4.
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ure S6B), and IGF2 suppression yielded

similar results (Figure S6C).

We next examined whether the poly-

kinase program regulated by GATA2

and IGF2 is functionally significant.

To this end, we evaluated the effect

of two independent combinations of

well-characterized chemical inhibitors of

PI3K/AKT (LY294002 and MK2206), JNK

(SP600125 and AS601245), and MEK

(U0126 and PD98059) on chemotherapy

resistance and soft agar growth as a sur-

rogate for tumorigenicity in our three
in vitro models. We observed that combined inhibition of PI3K/

AKT and JNK signaling strongly diminished the chemotherapy

resistance (Figures 6D and S6D) and soft agar growth (Figures

6E and S6E) of the three models. Moreover, as predicted by

our immunoblot results (Figures 6B and 6C), MEK/ERK signaling
cells stably expressing indicated control or GATA2

l, or cabazitaxel. Scale bar, 100 mm. Data represent

ed control or GATA2 shRNAs as well as a control or

, February 9, 2015 ª2015 Elsevier Inc. 231
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Figure 6. IGF2 Activates a Polykinase Program Downstream of GATA2 that Regulates Chemotherapy Resistance and Soft Agar Growth

(A) Immunoblots of phospho-tyrosine (pTyr) levels following immunoprecipitation of IGF1R or INSR in DU145-DR, 22Rv1-DR, and ARCaPM-DR cells stably

expressing two independent IGF2 shRNAs or a control shRNA in serum-free conditions.

(B) Immunoblots of relevant insulin-like growth factor signaling protein levels in DU145-DR, 22Rv1-DR, and ARCaPM-DR cells stably expressing indicated control

or IGF2 shRNAs in serum-free conditions.

(legend continued on next page)
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inhibition in the DU145-DR model further attenuated these

properties. Therefore, our data collectively suggest that GATA2

confers aggressive properties in part through a network of

kinases downstream of IGF2.

Insulin-like growth factor signaling is known to broadly confer

survival properties through PI3K/AKT and MAPK signaling

(Vincent and Feldman, 2002). Interestingly, we observed that

increased expression of IGF2 (Figures S3A and 5A) and activa-

tion of the polykinase program (Figure S6A) in the chemo-

therapy-resistant cultures were associated with increased resis-

tance to additional apoptotic stimuli. For example, exposure of

the chemotherapy-resistant cultures to both radiation and oxida-

tive stress resulted in reduced levels of apoptosis relative to

their parental counterparts (Figure S6F). Moreover, these obser-

vations were reverted upon IGF2 knockdown (Figure S6G), sug-

gesting that insulin-like growth factor signaling confers broad

survival properties in our chemotherapy-resistant models.

Finally, we explored the relationship between the GATA2-IGF2

axis in our chemotherapy-resistant models and our previous

report of Notch- and Hedgehog-dependent tumor-initiating cells

(T-ICs) in the parental cell lines (Domingo-Domenech et al.,

2012). Following both GATA2 knockdown in the chemo-

therapy-resistant sublines (Figures S7A and S7B) and over-

expression in the parental cell lines (Figures S7C and S7D), we

observed no effect on the expression of low molecular weight

cytokeratins or human leukocyte class I antigens, suggesting

that GATA2 does not mediate its biological effects through

phenotypic modulation of the T-IC pool. Moreover, our gene

expression analysis indicated that GATA2 does not regulate

the Notch and Hedgehog signaling pathways (Figures 3A and

3B). To investigate the reciprocal hypothesis, we usedRNA inter-

ference to knock down NOTCH2 and SMO in the chemotherapy-

resistant cultures (Figure S7E). We observed that NOTCH2

knockdown reduced the mRNA levels of HES1 (Figure S7E)

and GATA2 (Figure 7A), while SMO knockdown reduced the

mRNA levels of GLI1 and GLI2 (Figure S7E) but not GATA2 (Fig-

ure S7F). Interestingly, a recent report found that AKT regulates

the mRNA and protein levels of GATA2 (Wang et al., 2012). In

conjunction with our previous finding that NOTCH2 regulates

AKT activation in our models, this report led us to speculate

that Notch signaling may regulate GATA2 expression through

AKT. Indeed, NOTCH2 knockdown reduced the activation of

AKT aswell as the protein levels of GATA2 (Figure 7B).Moreover,

myristoylated AKT (myrAKT) increased the mRNA (Figure 7C)

and protein (Figure 7D) levels of GATA2 in parental cells, while

the AKT inhibitor MK2206 reduced them in chemotherapy-resis-

tant cells (Figures 7E and 7F). Therefore, our models exhibited

crosstalk between Notch signaling and GATA2 through AKT. In

addition, our data support a positive feedback loop whereby

activated AKT partially regulates GATA2 expression.
(C) Immunoblots of relevant insulin-like growth factor signaling protein levels in DU

or GATA2 shRNAs as well as a control or IGF2 expression vector in serum-free c

(D) Representative colony formations and quantifications of DU145-DR, 22Rv1-D

10 mM), JNK (SP00125, 10 mM), and MEK/ERK (U0126, 1 mM) pathway inhibit

(DU145-DR and 22Rv1-DR, 25 nM; ARCaPM-DR, 5 nM). Scale bar, 100 mm. Dat

(E) Representative soft agar colony-formation assays and quantifications of DU145

inhibitor conditions described in (D). Scale bar, 100 mm. Data represent the mea

See also Figure S6.
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Dual IGF1R/INSR Inhibition Restores the Efficacy of
Chemotherapy and Improves Survival in Preclinical
Models
Having implicated a GATA2-IGF2 axis in the aggressiveness of

lethal prostate cancer, we next examined it for possible thera-

peutic opportunities (Figure 7G). We studied dual inhibitors of

IGF1R and INSR because these kinases operate at the apex of

the signaling axis and agents are currently in advanced clinical

development. In particular, we focused on OSI-906, a potent,

selective, and orally bioavailable dual IGF1R/INSR inhibitor,

which is currently in a phase III trial for refractory adrenocortical

carcinoma (Mulvihill et al., 2009).

We performed colony-formation, immunoblot, and flow cy-

tometry experiments with the chemotherapy-resistant cultures

in vitro. Monotherapy with OSI-906 or two other well-character-

ized dual IGF1R/INSR inhibitors exhibited negligible activity,

while the inhibitors potently sensitized the three chemo-

therapy-resistant cultures to both docetaxel and cabazitaxel

(Figures 8A, S8A, and S8B). For in vivo studies, we established

subcutaneous tumors using the patient-derived LPC models as

well as the xenograft-derived (Sramkoski et al., 1999) 22Rv1-

DR culture. Consistent with our in vitro data and an ongoing

phase II clinical trial (ClinicalTrials.gov, NCT01533246), OSI-

906 exhibited modest activity as a single agent (Figure S8C).

This observation suggested that insulin-like growth factor

signaling inhibition alone is insufficient to significantly constrain

the growth of established CRPC tumors in vivo. In contrast,

OSI-906 strongly restored the efficacy of both docetaxel and

cabazitaxel, as evidenced by tumor volume, weight, and cleaved

caspase expression following 4 weeks of combination therapy

(Figures 8B, 8C, and S8D). Moreover, pharmacodynamic studies

confirmed that OSI-906 reduced phosphorylation of the IGF1R

and INSR tyrosine kinases in these studies (Figure S8E).

To extend the therapeutic benefit of combination therapy to

preclinical models of disseminated chemotherapy-resistant dis-

ease, we performed intracardiac (IC) injections of 22Rv1-DR,

LPC1, and LPC2 cells as well as toxicity profiles and survival

analyses. Similar to a previous report (Drake et al., 2005), IC

injection of 22Rv1-DR cells resulted in metastatic colonization

of bone, liver, and other organs, recapitulating disseminated

human disease in vivo (data not shown). In the LPC models,

we observed metastatic colonization of bone, liver, and, less

frequently, other organs (Figure S8F). We also exploited the

in vitro nature of the 22Rv1-DR model to generate a luciferase-

labeled subline suitable for in vivo bioluminescent imaging. Our

studies showed that addition of OSI-906 to standard chemo-

therapy confers therapeutic benefit, as evidenced by reduced

photon flux in 22Rv1-DR (Figure 8D) and improved overall sur-

vival in all three independent preclinical models (Figure 8E).

Notably, combining OSI-906 with weekly taxane chemotherapy
145-DR, 22Rv1-DR, and ARCaPM-DR cells stably expressing indicated control

onditions.

R, and ARCaPM-DR cells following 72 hr treatment with PI3K/AKT (LY294002,

ors alone or in combination with DMSO, docetaxel (125 nM), or cabazitaxel

a represent the mean ± SD. *p < 0.05.

-DR, 22Rv1-DR, and ARCaPM-DR cells treated continuously with the pathway

n ± SD. *p < 0.05.
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Figure 7. NOTCH2 Regulates GATA2 Expression through AKT Activation

(A) qRT-PCR of GATA2 mRNA levels in DU145-DR, 22Rv1-DR, and ARCaPM-DR cells transfected with control or NOTCH2 siRNAs. Data represent the

mean ± SD. *p < 0.05.

(B) Immunoblots of indicated protein levels in cells from (A).

(C) qRT-PCR of GATA2mRNA levels in DU145, 22Rv1, and ARCaPM cells stably expressing a control or myrAKT vector. Data represent themean ± SD. *p < 0.05.

(legend continued on next page)
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did not instigate a significant increase in general drug toxicity

(Figure S8G).

DISCUSSION

Lethal prostate cancer is a widespread disease that merits

continued investigation. We used experimental models and

clinical databases to identify GATA2 as a determinant of

aggressiveness in this context. Mechanistically, IGF2 emerged

as an effector of GATA2 and a compelling therapeutic target.

These results have implications for cancer biology and clinical

oncology.

GATA2 Confers Aggressiveness in Lethal Prostate
Cancer
The role of GATA2 in malignancy has been characterized in leu-

kemia and NSCLC. In leukemia, both loss-of-function and gain-

of-function events promote tumorigenesis and progression

(Hahn et al., 2011; Zhang et al., 2008). In contrast, our data

from CRPC as well as a detailed study of NSCLC (Kumar et al.,

2012) suggest that GATA2 deficiency is strongly detrimental to

the development and progression of solid tumors. In NSCLC,

GATA2 regulates the proteasome as well as IL1/NF-kB and

RHO signaling (Kumar et al., 2012). Our studies in CRPC now

suggest that GATA2 additionally regulates insulin-like growth

factor signaling. Moreover, our studies both corroborate the

dependency on GATA2 for in vivo growth in NSCLC (Kumar

et al., 2012) and reveal a role in chemotherapy resistance. There-

fore, our results suggest that GATA2 biology is both vital and

heterogeneous in solid tumors.

In prostate cancer, GATA2 is an established pioneer factor

for AR-regulated genes (Chen et al., 2013; Perez-Stable

et al., 2000; Wang et al., 2007; Wu et al., 2014), although its

functional significance, downstream effectors, and therapeutic

merits have been unclear. Our studies reveal a GATA2 depen-

dency of prostate cancer for both chemotherapy resistance

and in vivo growth. Regarding the pioneer function of GATA2,

our data from the AR-expressing 22Rv1-DR culture corrobo-

rate this role. In addition, functional and transcriptome studies

from the AR-negative DU145-DR and ARCaPM-DR models

revealed an unexpected AR-independent role for GATA2. Inter-

estingly, this finding is consistent with a recent report conduct-

ed with the androgen-dependent LNCaP cell line, wherein the

majority of genome-wide GATA2 binding sites did not overlap

with those of AR (Wu et al., 2014). Moreover, we found that

GATA2 regulates a core subset of clinically and biologically

validated genes that comprise a rich molecular network of

aggressiveness in prostate cancer. Through a focused genetic

screen, we both confirmed the significance of known prostate

cancer-progression-associated genes and identified others

without previously well-characterized roles in this disease.

Finally, our data from clinical data sets and paraffin-embedded
(D) Immunoblots of indicated protein levels in cells from (C).

(E) qRT-PCR of GATA2 mRNA levels in DU145-DR, 22Rv1-DR, and ARCaPM-DR

Data represent the mean ± SD. *p < 0.05.

(F) Immunoblots of indicated protein levels in cells from (E).

(G) Schematic representation of the polykinase program activated by the GATA2

See also Figure S7.
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tissues suggest that GATA2 may play additional roles in meta-

static progression and castration resistance. Intriguingly, recent

reports that GATA2 regulates cellular motility (Chiang et al.,

2014) as well as the AR-dependent cell cycle gene UBE2C

(Wang et al., 2009) suggest that these associations merit

further investigation. Therefore, our results endorse an increas-

ingly central and complex role for GATA2 in prostate cancer

biology.

IGF2 Is an Effector of GATA2 and a Therapeutic Target
IGF2 regulated chemotherapy resistance and tumorigenicity

downstream of GATA2 in our models, and IGF2 expression

increased during prostate cancer progression in clinical data-

bases. Further studies showed that IGF2 regulates the survival

properties of CRPC cells, a finding consistent with a large liter-

ature supporting the association between insulin-like growth

factor signaling and these properties (Vincent and Feldman,

2002). The survival functions of IGF2 were further credentialed

by the finding that IGF2 activates a network of canonical

kinases. Indeed, AKT and ERK are widely characterized regula-

tors of cancer cell survival, and JNK signaling may also regulate

this property (Vivas-Mejia et al., 2010; Yang et al., 2003). It is

important to note, however, that the regulation of AKT by

IGF2 may be reduced in the setting of PTEN inactivation, a

frequent event in prostate cancer (Grasso et al., 2012; Taylor

et al., 2010). Moreover, in prostate cancer, the PI3K/AKT and

MAPK pathways are undoubtedly activated by a range of

regulatory factors including, for example, the epidermal growth

factor receptor family (Chen et al., 2011; Gan et al., 2010; Qiu

et al., 1998).

Finally, IGF2 may bind to both the IGF1R and INSR tyrosine

kinases, a property with significant therapeutic implications in

the setting of IGF2 overexpression. Indeed, IGF2 was upregu-

lated and signaled through both receptors in our models.

These observations favored dual IGF1R/INSR inhibition as

the most promising therapeutic strategy, and in vitro as well

as in vivo studies corroborated this approach. Interestingly,

addition of an IGF1R antibody to docetaxel chemotherapy

failed to confer therapeutic benefit in a recent phase II clinical

trial that included patients with CRPC (de Bono et al., 2014).

Our finding that IGF2 upregulation and INSR activation play

key roles in insulin-like growth factor pathway signaling in

CRPC predict that anti-IGF1R monotherapy is unlikely to be

effective and, therefore, may provide an explanation for the re-

sults from this trial. The observation that IGF2 expression and

INSR activation are robust mediators of IGF1R antibody resis-

tance in laboratory models further supports this hypothesis

(Buck et al., 2010). Therefore, in addition to their biological

merits, our results provide a framework to both interpret pre-

vious clinical studies as well as design future trials with a

more complete understanding of the relevant molecular

pathophysiology.
cells following 72 hr treatment with DMSO or the AKT inhibitor MK2206 (1 mM).

-IGF2 axis, crosstalk with NOTCH2, and possible therapeutic opportunities.
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Figure 8. Dual IGF1R/INSR Inhibition Improves the Efficacy of Chemotherapy and Survival in Preclinical Models of Lethal Prostate Cancer

(A) Representative colony-formation assays and quantifications of DU145-DR, 22Rv1-DR, and ARCaPM-DR cells following 72 hr treatment with DMSO,

docetaxel (125 nM), or cabazitaxel (DU145-DR and 22Rv1-DR, 25 nM; ARCaPM-DR, 5 nM) as well as the dual IGF1R/INSR inhibitors BMS-536924 (1 mM),

GSK-1904529A (1 mM), and OSI-906 (1 mM) or vehicle control. Data represent the mean ± SD.

(B) Volumes of subcutaneous 22Rv1-DR, LPC1, and LPC2 xenografts during 28 days of combination therapy with vehicle, docetaxel (10 mg/kg i.p. weekly), or

cabazitaxel (10 mg/kg i.p. weekly) as well as OSI-906 (25 mg/kg orally 4 days weekly) or vehicle control. Data represent the mean ± SD. *p < 0.05.

(C) Representative immunohistochemistry images and quantifications of cleaved caspase 3 levels in subcutaneous 22Rv1-DR, LPC1, and LPC2 xenografts

after 14 days of the combination therapy described in (B). Scale bar, 100 mm. Data represent the mean ± SD. *p < 0.05.

(legend continued on next page)
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EXPERIMENTAL PROCEDURES

Docetaxel-Resistant Prostate Cancer Cell Models

The sublines DU145-DR and 22Rv1-DR were described previously (Domi-

ngo-Domenech et al., 2012). ARCaPM cells were obtained and maintained

in prostate epithelial cell medium (both Novicure Biotechnology) supple-

mented with 10% fetal bovine serum. Cells were grown at 37�C in a humid-

ified atmosphere with 5% CO2. Resistant clones were selected by culturing

cells with docetaxel dissolved in DMSO for 72 hr. A dose-escalation strategy

was implemented for 7 months until a concentration of 1 mM was reached.

In parallel, parental ARCaPM cells were exposed to equal volumes of

DMSO.

Human Paraffin-Embedded Prostate Cancer Tissues

Human formalin-fixed paraffin-embedded primary (n = 56), metastatic CRPC

(n = 35), and taxane-treated metastatic CRPC (n = 33) tissue samples were

collected from the Mount Sinai Medical Center tumor biorepository under

an Institutional Review Board-approved protocol, and informed consent was

obtained from all subjects. All tissue sections were reviewed by a pathologist

to confirm prostate cancer origin.

In Vivo siRNA Knockdown

All protocols for mouse experiments were in accordance with institutional

guidelines and were approved by the Mount Sinai Medical Center Institutional

Animal Care and Use Committee. Two GATA2-targeting siRNA clones (s5596

and s5598), two IGF2-targeting siRNA clones (s7214 and s7215), and a non-

targeting control (all Life Technologies) were selected on the basis of their ac-

tivity in the chemotherapy-resistant cultures in vitro. High-performance liquid

chromatography-purified in vivo-ready siRNAs were diluted to a stock con-

centration of 3 mg/ml before being combined with complexation buffer and

Invivofectamine (both Invitrogen), in accordance with the manufacturer’s

instructions. The resulting solution was dialyzed in 1 l of 13 PBS for 1 hr using

8–10 kDa Float-A-Lyzer devices (Spectrum Laboratories), in accordance

with the manufacturer’s instructions. The dialyzed solutions were stored at

4�C for up to 2 weeks. For intratumoral administration, palpable tumors

were shaved and slowly injected with dialyzed siRNA solutions at a concentra-

tion of 50 mg/100 mm3 using 30.5 guage needles twice weekly.

In Vivo Bioluminescence Imaging

Imaging was performed using an IVIS Spectrum imager (Xenogen). Animals

were anesthetized using an isoflurane vaporizer and placed onto the warmed

stage inside the camera box. Animals next received intraperitoneal luciferin

(200 mg/kg) 5 min prior to imaging. For quantification, rectangular regions

of interest incorporating the entire animal were measured. The signal was

measured in photons per second using Living Image software.

Statistical Analyses

Statistical analysis was carried out with SPSS software unless otherwise spec-

ified. Experimental data expressed as mean ± SD were analyzed by Student’s

t test. All t tests were conducted at the two-sided 0.05 level of significance.

For genomic analyses, multiple testing significance was calculated using Sig-

nificance Analysis of Microarrays or Tuxedo software. For preclinical studies,

survival analyses were performed using the Kaplan-Meier method and curves

were compared by the log rank test.
ACCESSION NUMBERS

The Gene Expression Omnibus accession number for the RNA sequencing

data reported in this manuscript is GSE58966.
(D) Bioluminescence of IC-administered 22Rv1-DR luciferase-expressing cells d

mean ± SD. *p < 0.05.

(E) Kaplan-Meier survival analysis following IC administration of 22Rv1-DR, LPC

See also Figure S8.
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