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Abstract 

When a smooth curve is used to describe the path of a computer-controlled cutting machine, the path is usually 
approximated by many straight line segments. It is preferable to describe the cutting path as an arc spline, a tangent 
continuous piecewise curve made of circular arcs and straight line segments. This paper presents an algorithm for finding 
an arbitrarily close arc spline approximation of a smooth curve. 

Keywords: Arc spline; Accuracy of approximation 

1. Introduction 

The standard practice for cutting a smooth curve with a computer-controlled cutting machine is 
to cut a polygon that is very close to the smooth curve. This method gives a continuous path with 
a discontinuous unit tangent vector, which causes some problems [5]. Modern cutting machines 
are capable of cutting a tangent continuous path called an arc spline. An arc spline is formed from 
straight line segments and circular arcs [4, 6, 8]. In 1-5] a quadratic NURBS (nonuniform rational 
B-spline) curve is approximated by an arc spline. In this paper, the problem of approximating 
a segment of a more general smooth curve is discussed. A smooth curve will be taken to mean 
a curve with continuous third derivatives with respect to arc length. 

Here arc splines will be formed by joining biarcs. A biarc from a point A to a distinct point B is 
a curve made by joining two circular arcs that start at A and end at B so that their tangents match 
at the joining point. The angle from the tangent at A to B - A and the angle from B - A to the 
tangent at B are in (--n,  r 0. The angles of the sectors formed by each arc are in (-27t,  2rt). This 
definition of the biarc appeared in I-4]. 
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Assume the smooth curve segment to be approximated has a finite number of curvature extrema 
and inflection points. These special points partition the curve into spiral segments. The theory for 
approximating spiral segments by arc splines appears in Section 2. An algorithm for approximating 
any smooth curve segment, whether it is a spiral or includes curvature extrema or inflection points, 
appears in Section 3. 

2. Theoretical results 

In this section, the approximation of smooth planar spiral segments is considered. Without loss 
of generality, assume the spirals have positive curvature that increases when the arc length is 
increasing. 

Definition 1. Consider the family of circular arcs joining one given point A to another distinct 
given point B. The two circular arcs that match a given unit tangent vector at the first point tA and 
that match a given unit tangent vector at the second point tB will be called the bounding circular 
arcs CA and CB (see Fig. 1). 

Theorem 2. Any biarc (as defined in the Introduction) that joins one point to another distinct point 
and matches given unit tangent vectors at the two points lies between the bounding circular arcs that 
are derived from the two points and the two unit tangent vectors. 

There is a one parameter family of biarcs that join two given points and match given unit tangent 
vectors at those points. The bounding curves of the family of biarcs are the bounding circular arcs 
of the above definition. The proof of Theorem 2 is given in [5]. 

Definition 3. A convex curve is a curve that has the property that if its endpoints are joined by 
a straight line, the enclosed region is a convex region [2]. 

Definition 4. Bounding circular arcs CA and C8 can be derived from the two endpoints A and 
B and the two unit tangent vectors tA and tB of a segment of a spiral of positive increasing curvature. 

~ tB 

A ~ CB 

Fig. 1. Bounding circular arcs. 
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The spiral segment is said to satisfy the enclosing condition if the curvature of the spiral at A is less 
than or equal to the curvature of CA and the curvature of the spiral at B is greater than or equal to 
the curvature of C8 (see Fig. 1). 

Theorem 5. I f  a convex spiral segment of  positive increasing curvature satisfies the enclosing 
condition, then the bounding circular arcs enclose a crescent-shaped region that includes the entire 
spiral segment. 

ProoL Suppose a convex spiral joins A to B and the bounding circular arcs for that spiral segment 
are CA and CB as in Fig. 1. The enclosing condition means that the bounding circular arcs both 
have positive curvature and enclose a crescent-shaped region, and that the spiral is between the 
bounding circular arcs nearA and B. A result in [-2, p.53] states that a circle and a convex spiral can 
have at most three points of intersection, or one point of contact and one noncontact  intersection. 
Thus, the spiral here can intersect the bounding circular arcs only at A and B, and the bounding 
circular arcs must enclose the entire spiral segment. []  

Some notation regarding smooth curve segments will now be established. Assume the curve 
segment Q(s), So <<. s <~ sl,  is parametrized in terms of arc length, and let the arc length be 
h = Sl - So. Using t = t(So) for the unit tangent vector at Q(so), n = n(so) for the unit normal at 
Q(so), and employing the Frenet formulae for curves in the plane, the derivatives of Q(s) with 
respect to arc length are 

Q'(so) -- t, Q"(So) = kn, Q"'(So) = - k 2 t  + k'n, 

where k = k(so) and k' = (d/ds) k(so) are the curvature and its derivative with respect to arc length 
at So. It is convenient to use a coordinate system based on t and n as the X and Y axes. Taylor series 
expansion gives 

~k2h 3 + O(h 4) "] h 
Q(sl) - Q(so) = Q(so + h) - Q(so) = ½kl~2 + (1) lk,h3 + O(h4) j 

Finally, the notat ion .4 x B shall be taken to mean the scalar 

A x B  = ]]A]l" ]lBll sin~b = AxBy - AyBx, (2) 

where tp is the anticlockwise angle from vector 

/ A =  Ay 

to vector 

B =  By 

Theorem 6. Let Q(s), So <~ s <~ sl ,  be a smooth spiral segment of  positive increasing curvature for 
which the derived bounding circular arcs have curvatures of  the same sign, then the maximum distance 
between the two bounding circular arcs is O(h3), where h = sl - So. 
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Proof. Since Q(s) is a spiral of positive increasing curvature, k > 0  and k ' > O .  Let 
d = [ [Q(s0-Q(so)[ [ ,  let 0~ be the angle from t to Q ( s O - Q ( s o ) ,  let fl be the angle from 
Q(sl)  - Q(so) to t(sl),  let arc E be the bounding circular arc with tangent parallel to t at Q(so), and 
let arc F be the bounding circular arc with tangent parallel to t(Sl) at Q(sl )  (see Fig. 2). 

The distance between Q(so) and Q(Sl) is {use (1) and (A.1)}, 

d = h - -  ~ 4 k 2 h  3 -1- O(h4), (3) 

and from (2), 

d sin ~ = t x (Q(sO - Q(so)). 

Dividing the above by d{(1), (2), (3)}, 

sin ~ = ½kh + -~k'h 2 + O(h3), (4) 

and by (A.2) ~ is 

= ½kh + ~k'h 2 + O(h3). (5) 

Similarly, 

dsinfl  = (Q(sl)  - Q(so)) x t (s l) ,  

where t(s~) is the derivative of (1), so 

sin fl = ½kh + ½k'h 2 + O(h3), 

and 

fl = ½kh + ½k'h 2 + O(h3). 

Consider for a moment  just arc E (see Fig. 3); the radius U W  of arc E is 

1 d 
KE -- 2 sin 

(6) 

(7) 

t(sl) 

P 
) 

Q(So) ~ J ~ ~ _ . . . . ~  ~ -  

Fig. 2. Notation for bounding circular arcs of a spiral segment Q(s). 
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W 

1 

k E 

Fig. 3. Bounding circular arc E. 
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and VW is d/(2 tan a). The distance U V is 

d d d 
2sin~t 2 t a n ~ - 2 t a n ~ "  

The m ax imum distance between the two bounding  arcs E and F is the difference of two distances 
like UV, and is {(3), (5), (6), (A.3)}: 

tan - t a n ~  =~-~ +O(h4 ) .  

Formula  (8) proves the theorem. []  

(8) 

Theorem 7. I f  a given spiral o f  positive increasing curvature is repeatedly divided into segments such 
that the lengths o f  the segments approach zero, each segment will eventually be enclosed by the 
bounding circular arcs derived from that segment. 

Proof. Consider  the spiral segment Q(s) f rom Q(so) to Q(sl), and let h = sl - So. The curvatures of 
Q(s) at so and sl are k and k(sl) = k + k'h + O(h2). F r o m  the results in Theorem 6, the curvature of 
the bounding  circular arc E is {(3), (4), (7)}: 

kE -- m 
2 sin k ! 

- k + - ~ - h  + O(h2), 

and similarly the curvature of bounding  circular arc F is 

ke 2 sin fl 2k ' .  -- ~ - k +--~-h + O(h2) • 

For  small enough h, the following is true: the signs of the curvatures of the bound ing  circular arcs 
are the same; k < kE and ke < k(Sl) (Q(s) is a spiral of positive increasing curvature,  k > 0 and 
k' > 0); the enclosing condi t ion is satisfied, and the spiral is enclosed by the bounding  circular arcs 
according to Theorem 5. []  
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The final two theorems are concerned with the accuracy of the approximat ion  by arc splines. 
Theorem 8 gives the order of the error and Theorem 9 gives the leading term of the error. 

Theorem 8. I f  the bounding circular arcs enclose a given spiral segment of  positive curvature Q(s), 
So <~ s <. sl, and a biarc (as defined in the Introduction) that matches the same data as the bounding 
circular arcs is found, then the maximum distance between the biarc and the spiral is O(h3), where 
h = s l  --So. 

Proof. If a spiral segment is enclosed by bounding  circular arcs, the same bounding  circular arcs 
enclose the corresponding biarc (Theorem 2). The max imum distance between the bounding  
circular arcs is O(h 3) (Theorem 6). This proves Theorem 8. []  

Theorem 9. The maximum distance between the biarc and the spiral as described in Theorem 8 is 

k ! 

- -  h 3 -I- O ( h 4 ) .  
324 

Proof. Consider  the one parameter  family of biarcs from Q(so) to Q(s~) with 0 being the parameter.  
The radii of the two circular arcs from which the biarc is formed are 1-4] 

s i n ½ ( / / -  ~ + 0) ,4 
R° = 2 ~ i n - ~ + l / ) -  

(9) 

and 

sin ½ (2c~ -- 0) 
RI = 2sin½(a + / / - -  0)sin½(a + / / )  

d, (10) 

where ~,//, and d are defined in Theorem 6 (also see Fig. 2), and 0 lies in the interval (~ - / / ,  2~). 
It is usual to choose 0 as a weighted average of ~ and //. For  example, 0 = ~ minimizes 

I R o / R I - l l  [7], 0 = ½ ( ~ + / / )  minimizes I R I - R o l  [8], and 0 = ½ ( 3 ~ - / / )  minimizes 
I 1 / R 1 -  1/R0l [8]. For  these three choices, 0 = ½kh + 02hZq - O(h 3) {(5), (6)}. Only the choice 
0 = ~ - / / ,  which is not  allowed by the range for 0, would give 0 = O(h2): 

Without  loss of generality, only the deviation between Q(s) and the first circular arc of the biarc 
need be calculated in detail. The formula for Ro is {(3), (5), (6), (9), (A.4)}: 

1 k' 
Ro - k 6k 2 h + O(h2). (11) 

The above calculation is easier if you divide the two factors that  depend on 0 first. The radial 
distance or deviation between the curve Q(s) and the first circular arc is 

D(s) = 1[ Q(s) - Co II - R0, (12) 

where the centre of the first circular arc Co is 

Co = Q(so) + Ron. (13) 
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Let g = s - So, and let O((g, h) k) stand for a power series in g and h with terms of order k and 
higher. The deviation D(s) can be expressed {(1), (13), (A.1), (11)}: 

D(s) = II Q(s) - Q(so) - Ron II -- Ro 

- \ kg - R o  

1 1 g2____ 
=Ro 1 + R o  - k  3Ro g3 q_ 0(g4)  __ Ro 

=Ro  l + ~  - k  g2 g3 6Ro + O(g4) - Ro 

1 ( 1  )g2  g3 +O(¢) 

= ~2k '  o2(h - 2g) + 0((9,  h)4). (14) 

Asymptotically, D(s) has a double zero at g = 0 or s = So because the curve and biarc match 
tangents there. Asymptotically, D(s) also has a zero at g -- ½h, and this means the first circular arc 
of the biarc meets the spiral at Q(So + ½h). For the commonly used biarcs, 0 = ½kh + O(h2), the 
joining point of the two arcs of the biarc is {(13), (A.4), (A.5), (11), (1)}: 

cos0 - s i n 0 " ]  
C° + R° \s in  0 c o s O ] ( _  01) 

= Q(so) + / |½h + 0(h2)'~ 

O(h Y k 

= ~(So + ½h) + O(h2). 

The above show that asymptotically the first circular arc ends at Q(so + ½h), and thus g is in [0, ½h] 
for the first circular arc. The biarc crosses the spiral at the joining point of the two arcs that make 
up the biarc. Let f (g )  = g2(h - 2g); the maximum value of this expression for g in [0, lh]  occurs 
when g = ½h. The maximum deviation of the first circular arc from the spiral is from (14) 

k ! 

- -  h 3 + O(h4) .  (15) 
324 

An analogous result follows for the second circular arc, but that deviation has the opposite sign 
of the above. [] 

Corollary. As the length of  a segment of  a spiral approaches zero, the distance from the spiral to the 
approximating biarc approaches __1_13.5 of  the distance between the bounding circular arcs. 
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Deviation 

j ~ -  

Arc length along the biarc 

Fig. 4. Deviation between a cubic B6zier and the corresponding biarc. 

Proof. The maximum distance between the bounding circular arcs (8) divided by the maximum 
distance from Q(s) to the biarc (15) is 2x~44 = 13.5. [] 

The result in the corollary could be used to reduce calculations. To find a biarc within e of a given 
spiral, one could subdivide until the maximum distance between bounding circular arcs is e. 
However, the corollary shows that an error of e will be achieved (asymptotically as h approaches 
zero) when the maximum distance between the bounding circular arcs is 13.5e. 

An illustration of some of the results in Theorem 9 is given in Fig. 4. The radial distance (12) from 
a cubic B6zier spiral curve with control points (0, 0), (100, 0), (200, 2), (300, 8) to the corresponding 
biarc is plotted against the arc length along the biarc. The point J corresponds to the joining point 
of the two arcs of the biarc. Notice that the deviation and its first derivative are zero at both end 
points and that the deviation changes sign near J as predicted by the asymptotic analysis in 
Theorem 9. 

3. Algorithm and examples 

The goal is to approximate a smooth planar curve by an arc spline to a given tolerance. The 
method proposed here is to partition the curve so that the curve is between bounding circular arcs 
and the bounding circular arcs are within the required tolerance. Biarcs that match the same data 
are between the same bounding circular arcs. The biarcs join to form an arc spline that is then 
guaranteed to be within the required tolerance of the curve. 

A short description of the algorithm follows. Let Approx(A, B) be a procedure that finds an arc 
spline approximation to the curve from point A to point B. The following outline shows how the 
curve could be partitioned so that the arc spline produced approximates the curve to a given 
tolerance. 

procedure Approx(A, B) 
ease 1. If A very close to B, then return a straight line as part of the arc spline approximation. 
ease 2. If the enclosing condition of Definition 4 is satisfied, assume the curve is a spiral, and 

calculate the maximum distance between the bounding circular arcs (8). 
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c a s e  3. 

c a s e  2a. If the bounding circular arcs are close enough, find a biarc and return it as 
part of the arc spline approximation. 

e a s e  2b. If the bounding circular arcs are not close enough, invoke Approx(A, 
½(A + B)) and Approx(½(A + B), B). 

If the enclosing condition of Definition 4 is not satisfied, invoke Approx(A, ½(A + B)) 
and Approx(½(A + B), B). 

Several comments about the algorithm are in order. Case 1 is used if all other conditions are not 
met. It prevents infinite recursion when the enclosing condition has not been satisfied in a reason- 
able number of subdivisions. Returning a straight line may mean the loss of unit tangent continuity. 
For approximation to B6zier curves the condition that A be very close to B can be replaced by 
a flatness test [1, p. 222]. 

In case 2, the enclosing condition of Definition 4 is a necessary but not sufficient condition that 
the curve is a spiral. A nonspiral curve is not necessarily enclosed by the bounding circular arcs, so 
the biarc is not necessarily within the required tolerance even when the bounding circular arcs are. 
The curve segments with curvature extrema or inflection points could cause trouble. One solution 
is to ignore the problem. Assuming there are a small number of such points, only a small number of 
segments will cause difficulty, and, if the subdivision is fine enough, they may fall under case 1. 
Another solution is to search for and partition the curve at curvature extrema and inflection points 
before starting the arc spline approximation. A method for determining curvature extrema in cubic 
B~zier curves is given in [9]. Formulae for the curvature extrema of quadratic NURBS are given in 
[3]. This solution entails more work, but is satisfying in that the curve segments being approxim- 
ated will be spirals so that the assumption in case 2 is valid. 

Two numerical examples are given. The first, and simpler, curve is a cubic B6zier curve with 
control points (0, 0), (30, 150), (250, 120), (300, 0) (see Fig. 5). It was approximated by an arc spline 
(formed from Sabin's biarcs [7]) using the above method. Table 1 gives the maximum distance 
between bounding circular arcs, the distance from the arc spline to the cubic B6zier (estimated by 
taking the maximum of two hundred distances), and the number of biarcs used. 

The second example is a quintic B6zier with control points (0, 0), ( - 2 0 ,  150), (250, 120), (300, 0), 
(350, 100), and (250, 300) (see Fig. 6). It was approximated by an arc spline (formed from Sabin's 
biarcs I-7]) using the above method. Table 2 gives the maximum distance between bounding 

j 
Fig. 5. A cubic B6zier. 
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Table 1 
Accuracy of the arc spline approximation to the cubic B6zier 
curve 

Distance between 
bounding arcs 

Distance from arc spline Number of 
to cubic B6zier biarcs 

1.2180 0.32954 4 
0.27735 0.03512 1 8 
0.04378 2 0.0040455 16 
0.0059694 0.00048843 32 

Fig. 6. A quintic B6zier. 

Table 2 
Accuracy of the arc spline approximation to the quintic B6zier 
curve 

Distance between 
bounding arcs 

Distance from arc spline Number of 
to quintic B6zier biarcs 

10.809 4.1602 4 
1.9133 0.63756 8 
0.41899 0.053943 16 
0.067176 0.0061082 32 

c i rcular  arcs, the d i s tance  f rom the arc  spline to the quint ic  B6zier (es t imated  by  t ak ing  the 
m a x i m u m  of  two  h u n d r e d  distances),  a n d  the  n u m b e r  of  b iarcs  used. 

The  numer i ca l  resul ts  for b o t h  the a b o v e  examples  are  cons is ten t  wi th  the theore t ica l  resul ts  tha t  
the  a p p r o x i m a t i o n s  are  O(h  3) and  tha t  the  m a x i m u m  dis tance  be tween  the curve  and  b iarc  is a b o u t  

1 of  the d i s tance  be tween  the b o u n d i n g  circles. 13.5 
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A p p e n d i x  

The following Taylor  series expansions were used: 

x / - f  + x = 1 + ½x -- ~ x  2 + O(x3), 
arcsin x = x + ix3  + O(xS), 

t a n x  = x + ½x 3 + O(xS), 

sin x = x - 16x3 + O(xS), 

cosx  = 1 - ½x 2 + O(x4). 

(A.1) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 
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