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INTRODUCTION 

An exact sequence 0 --f L --+ M -+ N -+ 0 of right A-modules (where A is 
a ring) is called pure if its exactness is preserved when tensoring it with any 
left A-module ([3]; cf. also [ZO] for discussion of different notions of purity 
in module categories). It is well-known that the sequence is pure if and only 
if every finitely presented right A-module is a relative projective for it. In 
this paper we will use this last characterization of pure sequences to define 
purity in more general categories. A new proof of the fact that the two defini- 
tions of purity in module categories are equivalent will appear here as a 
special case of Theorem 2, which gives alternative descriptions of purity in 
functor categories. The paper concludes with some characterizations of 
regular (in the von Neumann sense) functor categories (Theorem 4). 

1. FINITELY PRESENTED OBJECTS 

Throughout this paper, z$ will be a Grothendieck category, i.e. an abelian 
category with a generator and exact direct limits. An object M is finitely 
generated if, whenever M = C Mi for a directed family (Mi)l of sub-objects 
of M, there is an i E I such that M = Mi . M is Jinitely presented if it is 
finitely generated and every epimorphism L -+ M, where L is finitely gener- 
ated, has a finitely generated kernel. JX! is said to be a locally finitely generated 
(resp.premzted) category if it has a family of finitely generated (resp. presented) 
generators. 

We list some useful and fairly well-known facts about finitely presented 
objects (cf. [I], [2], and [.5J). 

LEMMA 1. Let O+L-+ M-+N-+O be exact. Then: 
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(i) If M is finitely presented and L is fkitely generated, then N is fkitely 
presented. 

(ii) If L and N are finitely presented, then also M is fkitely presented. 

LEMMA 2. Every jinitely generated projective object is finitely presented. 

LEMMA 3. Suppose ~2 is locally finitely generated. M is finitely presented 
if and only if the functor Hom(M, * ) commutes with direct limits. 

LEMMA 4. If & is locally finitely presented, then every object is a direct 
limit of Jinitely presented objects. 

LEMMA 5. Suppose J&’ is locally fkitely generated and M is a Jinitely 
presented object. Let (NJ1 be the farnib of fkitely genwated subobjects of some 
object N. Then there is a canonical isonunphism 

Extl(M, N) s 5 Extl(M, NJ. 

Proof. For every extension 0 --+ N --t K +- M -+ 0 there is a finitely 
generated subobject K’ of K mapping onto M. The diagram 

O-NnK’----+K’-M -----PO 

1 1 I/ 
O-----+N~K----+M-0 

has N n K’ finitely generated (Lemma 1). So one obtains a well-defined map 
ExP(M, N) -+ lim, Extl(M, NJ, which clearly is the inverse of the homo- 
morphism lim, Exti(M, NJ -+ ExP(M, N) defined by taking push-outs. 

COROLLARY. Suppose &’ is locally finitely generated. If eoety finitely 
generated object is injective, then every finitely presented object is projective. 

2. PURE SEQUENCES AND FLAT OBJECTS 

In this section it is assumed that &’ is locally finitely generated. 

DEFINITION. A short exact sequence in & is pure if every finitely presented 
object is relatively projective for it. 

LEMMA 6. (i) The pure sequences of &form a proper class. 

4W3/3-7* 
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(ii) If J-J is locally f; nite y presented, then there are enough pure-projective 1 
objects. 

(iii) The class of pure sequences is closed under direct limits. 

Proof. (i) and (ii) f 11 o ow from [ZO], Proposition 2.2 and 2.3; (iii) is a 
consequence of Lemma 3. 
Two examples of purity: 

(1) Let M be a finitely presented object with a finitely generated sub-object 
L. L is pure in M if and only if ik’ is split by L. 

(2) Let (MJP be a countable family of objects. @f Mi is then a pure sub- 
object of nr n/r, . 

Proof. If F is finitely presented, then a morphism 

factors over 

for some n < CO (Lemma 3). But 0: Mi is a direct summand of n: Mi , SO 
IJJ may be lifted to n; Mi . 

DEFINITION. An object M is jlat if every exact sequence 0 -+ K---f L -+ 
M --+ 0 is pure. 

LEMMA 7. (i) Every projective object is flat. 

(ii) Every Jinitely p resented flat object is projective. 

(iii) Every direct limit of$at objects isflat. 

Proof. Clear. 

LEMMA 8. (Cf. [ 71). Suppose ~2 has enough projective objects. The following 
properties of an object M are equivalent: 

(a) M is flat. 

(b) There exists a pure exact sequence 0 -+ K -+ P -+ M -+ 0 with 
projective P. 

(c) Every morphism F -+ M, where F is finitely presented, may be factored 
through a projective object. 

Proof. Trivial. 
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3. PURITY IN FUNCTOR CATEGORIES 

For this section we assume that .s’ has a family of finitely generated projec- 
tive generators, i.e., ~4 may be considered as the category of contravariant 
additive functors from a small preadditive category .9 to (/lb). In particular 
S& is locally finitely presented, with M finitely presented if and only if there 
is an exact sequence P, -+ P,, -+ M -+ 0 with finitely generated projective P6 . 
For every object X in 9 we write hx for the object Hom( * , X) in &. 

Let zZ* be the category of those covariant right exact functorsF : ..@ --t (Ab) 
which commute with direct sums. We call F(M) the tensor product of F E &* 
and ME ~2, this terminology being justified by Theorem 1 below. Every 
F in &‘* defines a functor F’ : 9 + (Ab) as F’(X) = F(h,). But for every 
object M in .JY there is an exact sequence 

and so it is clear that F is uniquely determined by F’. Therefore we will 
identify JP with the category of covariant additive functors 9 - (Ab). 
When JZ’ is the category of right modules over a ring A, then of course &* 
is the category of left modules over A. 

The following result is an extension of a theorem of Watts [II] from 
module categories to functor categories. Note that if ME JZ? and G is an 
Abelian group, then Hom=(M(.), G) is a covariant functor .9 -+ (Ab) and 
thus an object of &*. 

THEOREM 1. There are natural isomorphisms 

Hom,,(F, HomZ(M, G)) g Hom&(M, HomZ(F, G)) s Hom,(F(M), G) 

fm any ME -01, F E .&* and Abelian group G. 

Proof, For each pair M, F there is a natural transformation of functors 

4 : M(o) - Horn.@(*), F(M)) 

with +r : M(X) E Hom(h, , M) + Hom(F(X), F(M)) given as+x(or) = F(a). 
Every homomorphism X : F(M) -+ G induces a natural transformation 
Hom(F(*), F(M)) + Hom(F(*), G), w ic composed with + gives a morphism h h 
x : M - Hom(F, G). 

Conversely, let there be given a natural transformation 

+ : M(s) -+ Hom(F(*), G). 

Thus for each XE .9 we have I& : Hom(h* , M) --f Hom(F(X), G). The 
object M may be presented by an exact sequence 

@h,+@hx/+M-0 

4W8/3-7 
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with c1 having components W( : hxi ---f M. Applying F to this sequence, we 
obtain 

@F(Yj)3@F(Xi)+F(M)-0. 

Define a homomorphism CL: @ F(XJ -+ G by setting pi = #~(a~) : F(XJ + G. 
Buty-F@) =Ob ecause of the naturality of #, so p factors over P(or) to give 
a homomorphism p’ :P(M) -+ G. One verifies that the mapping # -+ p’ is 
the inverse of the homomorphism /\ ---f A. 

Define contravariant “duality functors” 

as 

S(M) = HomdW*), Q/z>, 

T(F) = Hom.dF(*), Q/z), 

where Q/Z denotes the Abelian group of ration& mod 1. S and T are clearly 
exact and faithful functors. 

THEOREM 2. The folkwing properties are equivalent for an exact sequence 
O--+L-+M+N-+Oind: 

(a) It is pure. 

(b) The sequence 0 -+ F(L) + F(M) + F(N) -+ 0 is exact for all F E d*. 

(c) The sequence 0 -+ S(N) -+ S(M) + S(L) -+ 0 splits in &*. 

(d) Every object T(F) is a relative injective for it. 

Proof, It follows from Theorem 1 that (b) is equivalent to the condition 
that all F in &* are relative projectives with respect to the sequence 
0 + S(N) -+ S(M) -+ S(L) -+ 0. Hence (b) + (c), and it is also clear from 
Theorem 1 that (b) o (d). 

(a) o (b). In view of Lemma 4 it suffices to consider finitely presented 
F in &*. Now F is finitely presented if and only if there are finitely generated 
projective objects P, , PI and a morphism Q : PI --+ PO inducing an exact 
sequence [in the category of all additive functors d + (Ab)] 

0 -+ Hom(K, a) -+ Hom(Pa , *) -+ Hom(P, , *) + F + 0, 

where K = Coker OL is finitely presented. So we see that there are symmetrical 
presentations of finitely presented objects in J&’ and in &*, and the assertion 
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follows from a verification that $ is surjective if and only if v is injective in 
the following diagram: 

0 0 0 

1 
0 - Hom(K, L) - Hom(P, , L) - Hom(Pl , L) - F(L) - 0 

0 - Hom(K, M) -+ Hom(P, , M) --+ Hom(P, , M) -+ F(M) - 0 

0 - Hom(K, N) + Hom(P, , N) --+ Hom(J’l, N) -F(N)--+0 

1 1 1 
0 0 0 

COROLLARY. There are enough pure-injective objects. An object is pure- 
injective if and only if it is a direct summand of T(F) for some FE JP. The 
category d has pure-injective envelopes. 

Proof. The first two statements are consequences of “the adjoint theorem” 
(cf. [ZO], Sets. 3 and 9), while the last statement follows from [IO], 
Proposition 4.5. 

4. FLATNESS IN FUNCTOR CATEGORIES 

We assume J&’ is a functor category as in the previous section. For each F 
in sB* we may define Tor,(F, *) as the nth left-derived functor of F, and obtain 
the formula ([q and [8], chapt. 8.4) 

Tor,,(F, M) = Nat(Ext”(M, -), F). 

Since JZZ has enough projectives, every short exact sequence in JZI gives rise 
to the usual long exact sequence of Tor’s. 

THEOREM 3. The following properties of an object M in szf are quivalent: 

(a) M is flat. 

(b) M is a direct limit of projective objects. 
(c) For every exact sequence 0 -+ F -+ G -+ H+ 0 in .&*, also the 

sequence 0 ---f F(M) + G(M) + H(M) -+ 0 is exact. 

(d) S(M) is an injective object in &*. 
(e) Tor,(F, M) = 0 for all F in .KI*. 
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Proof. (a) * (b): Choose an exact sequence 0 + K + P-t M+ 0 
where P is a direct sum of finitely generated projectives. For each finitely 
generated subobject A of K one gets a diagram 

0-ALP’-L-O 

4 d 1 
O-K-P-M-0, 

* 

where j3 makes P’ a finitely generated direct summand of P. Since L is finitely 
presented, the morphism L --+ M may be lifted to L + P. From this follows 
the existence of a morphism y: P -+ K such that y&’ = 01. For the rest of 
the proof we may now proceed as in the proof given by Govorov [4] in the 
module case. 

(b) + (c): Exactness of 0 -+F-+G+H+O in &* means that the 
sequence 0 -+ F(L) + G(L) --+ H(L) + 0 is exact for each finitely generated 
projective generator L. It is then exact for all projective L, and by hypothesis 
also for M. 

(c) = (a): We want to show that every exact sequence 0 -+ K + L --t 
M-+ 0 is pure. Consider any H in Jze* and choose an exact sequence 
0 -+ F + G -+ H -+ 0 in LX?* with projective G. We obtain a commutative 
diagram 

F(K) - G(K) - H(K) - 0 

1 cp 1 9 1 

F(L) - G(L) - H(L) -0 

1 1 1 
0 -F(M)- G(M) - H(M) - 0 

1 1 1 
0 0 0 

with exact rows and columns. G is flat in &*, so by the implication (a) * (c) 
applied to G instead of M, we conclude that q~ is a monomorphism. A 
diagram-chase then shows that also + is a monomorphism. 

(a) + (d): Choose an exact sequence 0 -+ K -+ P-t M -+O with 
projective P. The dual sequence 0 -+ S(M) -+ S(P) -+ S(K) + 0 is exact 
and S(P) is an injective object. Theorem 2 asserts that 0 -+ K 4 P -+ M -+ 0 
is pure if and only if the dual sequence splits, i.e., S(M) is injective. 
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(a) u (e) follows, of course, from the long exact sequence 

Tor,(F, P) -+ Tor,(F, M) -+ F(K) -+ F(P) + F(M) -+ 0 

induced by the exact sequence 0 + K--t P -+ M -+ 0 with projective P. 

5. REGULAR FUNCTOR CATEGORIES 

The following theorem characterizes functor categories which are regular, 
in the sense of von Neumann. 

THEOREM 4. Let ZZ’ be a Grothendieck category with a family 9 of jinitely 
presented generators. The following statements are equivalent: 

(a) All objects are flat. 

(b) All short exact sequences are pure. 

(c) All finitely presented objects are projective. 

(d) Every finitely presented object is split by its finitely generated 
sub-objects. 

(d’) EveryF E g is projective and split by its finitely generated sub-objects. 

(e) Every finitely presentedF has a regular endomorphism ring Hom(F, F). 

(f) If F and G are finitely presented, then for every morphism OL : F +- G 
there exists a 9 : G + F such that 01 = CXCJXX. 

(f’) If F and G are in F, then they are projective and for every morphism 
a: : F --f G there exists a q~ : G -+ F such that 01 = 0~9)“. 

Note: If & satisfies these conditions and g has only one member F, 
then J& is equivalent to the category of modules over the regular ring 
Hom(F,F). In this case (d’) and (f’) p rovide Morita-invariant definitions of 
regular rings. 

Proof. The implications (a) o (b) rj (c) and (f) + (e) are trivial. 

(c) 3 (d) and (c) z- (d’) follow directly from Lemma 1. 

(c) => (a) follows from Lemmas 4 and 7 (iii). 

(d) 3 (c): Let 0 4 K -+L -+ M -+ 0 be any exact sequence with M 
finitely presented. Since &’ is locally finitely presented, there exists a com- 
mutative diagram 

O-K’-F-M-O 

1 1 1 II 
O-K-L-M-0 
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with finitely presented F. K’ is then finitely generated, so the upper row splits 
which causes also the lower row to split. 

(d’) 3 (c): For every finitely presented objectF there is an exact sequence 

n 
O+L-+F,-rF-+O 

with Fi ES. L is then finitely generated, and one shows by induction on n 
that the sequence splits (Osofsky [9], p. 897). 

(d) =E= (f): Consider the canonical factorization of a as 

Im a is finitely generated, so there exists a morphism h : G -+ Im a with 
+9 = 1. But then it follows that Im a is finitely presented, so there exists 
TV : Im M --t F with yp = 1. One obtains a&~ = ,%ycl/\ler = /3y = a. 

(e) z- (d): Let L b e a finitely generated subobject of a finitely presented 
object F. There exist a finitely presented object G and a sequence of morphisms 

FOGA G--f-&~ F&FOG, 

where /I is an epimorphism, and TI and h are canonical. By hypothesis there 
is an endomorphism q of F @ G such that ha/h = ha/hrpAa/3v. But k is a 
monomorphism and Is, is an epimorphism, so IL = @$a and consequently 
a splits. 

(f) =S (f’) is clear since all finitely presented objects will be projective by 
the already proved implication (f) + (c). 

(f’) 3 (d’): Let K be a finitely generated subobject of F E 9. It clearly 
suffices to consider the case when K is a quotient of Fl @ F2 with Fl , F, E 9. 
We have the diagram 

with the obvious morphisms. As before it is seen that the monomorphisms ai 
split F, so there exist idempotent endomorphisms ei of F such that 
Im a< = Im ei . One then shows in the usual way that Im a = Im e, + Im ea = 
Im(e, + g) where e, and g are orthogonal idempotents. 
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COROLLARY. Suppose d is locally finitely presented and every finite& 
generated object is injective. d is then a regular functor category. 

Proof. Recall the corollary of Lemma 5, 
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