PARITY OF PATHS AND CIRCUITS IN TOURNAMENTS

Rodney FORCADE
Mathematics Department, Illinois State University, Normal, Ill., USA

Received 20 July 1972

1. Introduction

Let T_{n} be a tournament on n vertices and let $x_{1}, x_{2}, \ldots, x_{n}$ be any permutation of the vertices (see end of [4]). Let $e_{i}=+1$ whenever $x_{i} \rightarrow x_{i+1}$ and $e_{i}=-1$ whenever $x_{i+1} \rightarrow x_{i}$ for $1 \leq i \leq n-1$. Traditionally the sequence $x_{1}, x_{2}, \ldots, x_{n}$ would be called a Hamiltonian path if all e_{i} 's were +1 , and the sequence would be called an antidirected Hamiltonian path (see [1]) if each $e_{i}=-e_{i+1}$. But we are concerned with. paths which reailze other sequences $e_{1}, e_{2}, \ldots, e_{n-1}$ of +1 's and -1 's. Given such a sequence, we let $P=P\left(e_{1}, e_{2}, \ldots, e_{n-1}\right)$ be the digraph with vertices $1,2, \ldots, n$ and edges $i \rightarrow(i+1)$ if $e_{i}=1$, and $(i+1) \rightarrow i$ if $e_{i}=-1$. Let $I\left(P, T_{n}\right)$ be the number of edge-direction-preserving maps of the vertices of F onto thcse of T_{n} in a one-to-one manner. Theorem 2.1 gives the parity of $I\left(P, T_{n}\right)$ purely in terms of the sequence of e_{i} 's, thus generalizing the well-known theorem of Redei (see [3, pp. 21-24]) that the number of Hamiltonian paths in a tournament is odd. Corollary 2.2 shows that (see the conjecture at the end of [4]) when n is a power of two, each T_{n} realizes every sequence of e_{i} 's. Theorem 3.1 is a circuit analogue of Theorem 2.1, and Corollary 3.2 shows that it is necessary (if one wishes the parity to be independent of the tournament) to count maps of paths rather than their images (the actual paths in the tournament).
2.

If n is a non-negative integer, let $U(n)$ denote the set of integers such that $n=\Sigma\left\{2^{i}: i \in U(n)\right\}$. If m, n are non-negative integers, we define a binary relation R, where $(m, n) \in R$ iff $U(m) \subseteq U(n)$.

Theorem 2.1. If $P=P\left(e_{1}, e_{2}, \ldots, e_{n-1}\right)$ and T_{n} is any tournament on n vertices, the far. \& of $I\left(P, T_{n}\right)$ equals that of the number of R-linearly ordered subsets (counting the empty set) of the set $\{i<n:(i, n) \in R$, $\left.e_{i}=-1\right\}$.

Proof. The proof is by induction on n and by induction on the largest integer k such that $e_{k}=-1$ (let $k=0$ if all $e_{i}=1$). The theorem is trivial when $n=2$ since the only set to be counted is the empty set and the parity is odd. The thecrem is true if $k=0$ (for any n) by the afore-mentioned theorem of Redei. We may therefore assume that $n>2$ and $k>0$ and that the theorem is true for any lesser value of n (with any k) and for the present value of n with lesser values of k. Let $P^{*}=P\left(e_{1}, \ldots\right.$ $\ldots, e_{k-1},+1,+1, \ldots,+1$), so P^{*} differs from P in the $k^{\text {th }}$ edge. Note that $I\left(P^{\prime}, T_{n}\right)+I\left(P^{*}, T_{n}\right)$ equals the sum of all products of the form $I\left({ }^{\prime}\left(e_{i}, \ldots, e_{\kappa-1}\right), T_{k}\right) \cdot I\left(P(+1,+1, \ldots,+1), T_{n-k}\right)$, where T_{k} is any k-vertex suttournament of T_{n} and T_{n-k} denotes the complimentary ($n-k$) vertex subtcurnament in i_{n}. But the right-hand factor of each product is odd by the Redei theoremı and the left-hand factor can be calculated (modulo 2) by our inductive hy oothesis. Thus $I\left(P, T_{n}\right)+I\left(P^{*}, T_{n}\right)$ has the parity of $\binom{n}{k} \cdot L$, where L is the number of R-linearly ordered subsets of $\left\{i<k:(i, k) \in R, e_{i}=-1\right\}$. It was proved by Lucas [2] that if p is a prime and if a_{i} and b_{i} are the $i^{\text {th }}$ coefficients of the p-ary expansions of n and k, respectively, then $\binom{n}{k}$ is congruent (mcdulo p) to the product of all $\binom{q_{i}}{b_{i}}$. In particular $\binom{n}{k}$ is odd iff $(k, n) \in R$. Thus the theorem is established if $(k, n) \notin R$. When $(k, n) \in R$, we have $I\left(P, T_{n}\right)+I\left(P^{*}, T_{i n}\right)$ hes the parity of L which alsc equals the number of R-linearly ordered subsets of $\left\{i<n:(i, k) \in R, e_{i}=-1\right\}$ which contain the element K (since R is transitive). The theorem follows easily by applying the second part of the inductive hypothesis (lesser values of k) to $I\left(P^{*}, T\right)$.

Corollary 2.2. If n is a power of 2 , then $I\left(P, T_{n}\right)$ is always odd, hence greater lian zero. Thus every tournament on n vertices contains paths r ealizing every sequence of e_{i} 's.

Proof. The set whose R-linearly ordered subsets are to be counted is empty.

3. Circuits

Given a sequence $e_{1}, e_{2}, \ldots, e_{n}$ of -1 's and +1 's, let $\mathcal{C}\left(e_{1}, \ldots, e_{n}\right)$ be the diagraph with the same vertices and edges as $P\left(e_{1}, \ldots, e_{n-1}\right)$ and one additional edge, either $n \rightarrow 1$ if $e_{n}=1$ or $1 \rightarrow n$ if $e_{n}=-1$.

Theorem 3.1. Let $C=C\left(e_{1}, \ldots, e_{i}\right)$ and let T_{n} be any tournament on n vertices. The parity of $I\left(C, T_{n}\right)$ equals that of

$$
n \cdot w\left(T_{n}\right)+\Sigma\left\{I\left(P\left(1,1, \ldots, 1, e_{1}, e_{2}, \ldots, e_{k-1}\right), T_{n}\right): e_{k}=-1\right\}
$$

where $w\left(T_{n}\right)$ denotes the number of H miltonian circuits in T_{n}. In view of Theort,$n 2.1$, this means that the purit; of $I\left(C, T_{n}\right)$ depends only on the e_{i} 's and on $w\left(T_{n}\right)$.

Proof. The proof is a simple induction on the largest integer k such that $e_{k}=--1$, using the fact that if C and C^{*} are two circuits differing in exactly one edge, $I\left(C, T_{n}\right)+I\left(C^{*}, T_{n}\right)=I\left(P, T_{n}\right)$, where P is the path obtained by removing the disagreeable edge from either circuit. Note also that $n \cdot w\left(T_{n}\right)=I\left(C(1,1, \ldots, 1), T_{n}\right)$.

Corollary 3.2. If $P=P\left(e_{1}, e_{2}, \ldots, e_{n-1}\right)$ and if $I\left(P, T_{n}\right)$ differs from the number $J\left(P, T_{n}\right)$ of paths in T_{n} which are isomorphic to P, then n is odd, P is symmetric about its midpoint (so $I\left(P . T_{n}\right)$ is even), and tine pariiy of $J\left(P, T_{n}\right)$ is not the same for all tournaments T_{n}.

Proof. The only non-trivial statement concerns the variation of $J\left(P, T_{n}\right)$ in different tournaments. Let P be symmetric and let C be the circuit formed by adding a directed edge from the first to the ast vertex of P. Note that C contains only one copy of P for if $e_{1}=e_{k}, e_{2}=e_{k+1}$, etc., then $\epsilon_{j}=e_{n-j}$ with $j=\frac{1}{2}(n-k+1)$ or $j=\frac{1}{2}(k-1)$ (depending on whether k is even or odd), contradicting the symmetry of P. So we have that $J\left(P, T_{n}\right)=I\left(C, T_{n}\right)$, and (by Theorem 3.1 and the odd parity of n) we need only show that the parity of $w\left(T_{n}\right)$ differs for different tourn:ments T_{n}. Consider the transitive tournament $T T_{n}$ and the tournament $T T_{n}^{*}$ cbtained by reversing the edge between the first and last vertices of $T T_{n}$. Clearly $w\left(T T_{n}\right)=0$ and $w\left(T T_{n}^{*}\right)=1$.

Peferences

[1] B. Griutbaum, Antidirected Hamiltonian paths in tournaments, J. Combin. Theory 1 1 (1971) 249-257.
[2] E. Lucas, Sur les congruences des nombres eulei iens et des coefficients differentiels des fonctions trigonométriques, suivant un module premier, Bull. Soc. Math. France 6 (1877/78) 52.
[3] J.W. Moon, Topics on toumaments (Holt, Rineliart and Winston, New York, 1968).
!4! M. Rosenfled, Antidirected Hamiltonian paths in toumaments, J. Combin. Theory (EI) 12 (1972) 93-99.

