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SUMMARY

Hox proteins form complexes with TALE cofactors
from the Pbx and Prep/Meis families to control
transcription, but it remains unclear how Hox:TALE
complexes function. Examining a Hoxb1b:TALE
complex that regulates zebrafish hoxb1a transcrip-
tion, we find maternally deposited TALE proteins at
the hoxb1a promoter already during blastula stages.
These TALE factors recruit histone-modifying en-
zymes to promote an active chromatin profile at the
hoxb1a promoter and also recruit RNA polymerase
II (RNAPII) and P-TEFb. However, in the presence
of TALE factors, RNAPII remains phosphorylated on
serine 5 and hoxb1a transcription is inefficient.
By gastrula stages, Hoxb1b binds together with
TALE factors to the hoxb1a promoter. This triggers
P-TEFb-mediated transitioning of RNAPII to the
serine 2-phosphorylated form and efficient hoxb1a
transcription. We conclude that TALE factors access
promoters during early embryogenesis to poise them
for activation but that Hox proteins are required to
trigger efficient transcription.

INTRODUCTION

Hox proteins are homeodomain-containing transcription factors

that regulate genes required for specification of cell fates. Hox

proteins form complexes with cofactors from the TALE (three

amino acid loop extension) family of homeodomain transcription

factors (reviewed in Mann et al., 2009). The TALE family consists

of four closely related Pbx proteins that are ubiquitously ex-

pressed, four Meis proteins with restricted tissue distribution,

and two ubiquitously expressed Prep proteins (reviewed in

Moens and Selleri, 2006). Hox proteins form dimers with either

a Pbx protein or a Meis/Prep protein, as well as trimers with

one Pbx and one Meis/Prep protein (reviewed in Mann et al.,

2009). Complex formation is required in part to improve the affin-

ity and sequence selectivity of Hox proteins (Slattery et al., 2011),

but it remains largely unclear how Hox:TALE complexes other-

wise function to initiate transcription of target genes.

HoxA1 (the earliest expressed Hox protein in mouse; Hoxb1b

in zebrafish) acts in a trimeric complex with one Pbx and one
Developm
Meis/Prep factor to drive transcription of other hox genes (e.g.,

HoxB1 andHoxB2 in mammals; hoxb1a and hoxb2a in zebrafish;

Figure 1A; Ferretti et al., 2000, 2005; Jacobs et al., 1999; Vlacha-

kis et al., 2001) and represents a useful model to study the func-

tion of Hox:TALE complexes. Disruption of HoxA1/hoxb1b

leads to abnormal hindbrain development (Barrow and Capec-

chi, 1996; Carpenter et al., 1993; Dollé et al., 1993; Goddard

et al., 1996; Mark et al., 1993; McClintock et al., 2002; Studer

et al., 1996) and causes the Bosley-Salih-Alorainy syndrome,

which is characterized by facial weakness, mental retardation,

and autism spectrum disorder in humans (Tischfield et al.,

2005). Hox:TALE-mediated activation of hox transcription in-

volves several events. For instance, chromatin is remodeled so

that the hox clusters decondense (Chambeyron and Bickmore,

2004; Chambeyron et al., 2005) and make novel interchromo-

somal contacts (Würtele and Chartrand, 2006). Accordingly,

expressed hox promoters possess distinct nucleosome organi-

zation (Weicksel et al., 2013) and nucleosomes are covalently

modified to a state supportive of active transcription (Soshnikova

and Duboule, 2009). Additionally, RNA polymerase II (RNAPII)

and the general transcription machinery must be recruited prior

to transcription. Hence, Hox:TALE complexes may regulate

transcription by controlling one or more of these events.

We have examined the function of a Hoxb1b:TALE complex in

the regulation of transcription during zebrafish embryogenesis.

We find that TALE factors occupy the hoxb1a promoter during

early blastula stages and recruit both chromatin-modifying

enzymes and RNAPII. However, hoxb1a transcription is ineffi-

cient until gastrula stages when Hoxb1b binds the promoter

and triggers P-TEFb-mediated phosphorylation of RNAPII,

thereby driving efficient hoxb1a transcription.
RESULTS

TALE Factors Occupy the hoxb1a Promoter at Blastula
Stages
hoxb1a and hoxb2a expression in rhombomere 4 (r4) of the

zebrafish hindbrain is initiated by a trimeric complex consisting

of Hoxb1b together with one Prep/Meis protein and one Pbx pro-

tein (Choe et al., 2002, 2009; Vlachakis et al., 2001; Waskiewicz

et al., 2001, 2002). The Hoxb1b protein is present only tran-

siently, but once Hoxb1a is expressed, it acts in place of Hoxb1b

to maintain hoxb1a and hoxb2a expression (Figure 1A).

In zebrafish, Prep and Pbx proteins are maternally provided,

whereas hoxb1b (the earliest hox gene) and several meis genes
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become expressed at early gastrula stages (6 hr postfertilization

[hpf]) and hoxb1a transcripts are first detected at �8 hpf (Fig-

ure 1B). Hence, TALE cofactors may have early roles at the

hoxb1a promoter independently of Hoxb1b. Using chromatin

immunoprecipitation (ChIP) analysis, we detect Prep and Pbx

at the hoxb1a promoter by 4 hpf (Figures 1C and 1D), although

they may be present as early as 2 hpf (Prep protein in Figure 1C).

Meis proteins are detected at the hoxb1a promoter by 6 hpf (Fig-

ure 1C) and Hoxb1b by 9 hpf (Figure 1E), in agreement with these

proteins not being maternally contributed. Notably, Hoxb1b

occupancy is coincident with the stage when hoxb1a expression

is first detected. Lastly, Hoxb1a is observed at its own promoter

by 14 hpf (Figure 1E). Furthermore, disruption of Prep/Meis func-

tion (using a dominant negative construct) leads to loss of Pbx

from the hoxb1a promoter (Figures S1E and S1F available

online), consistent with Pbx proteins binding DNA as hetero-

dimers with Prep proteins. We conclude that a Pbx:Prep com-

plex is present at the hoxb1a promoter several hours prior to

binding of Hoxb1b at the promoter and well before the onset of

hoxb1a transcription.

Active and Repressive Histone Marks Are Detected at
hox Promoters at Blastula Stages
Zebrafish hox genes are broadly marked by histone modifica-

tions already during blastula stages (Lindeman et al., 2011; Vast-

enhouw et al., 2010; Wu et al., 2011). Accordingly, we find

acetylation of histone H3 on lysine 27 (H3K27ac) and broad acet-

ylation of histone H4 (H4ac)—two modifications associated with

actively transcribed genes or genes poised for expression—at

the hoxb1a promoter already at 2 hpf (Figures 1F and 1G).

Trimethylation of histone H3 on lysine 4 (H3K4me3)—another

mark associated with transcribed or poised promoters—is

observed at 6 hpf (Figure 1H), a few hours before detectable

hoxb1a transcription. Trimethylation of histone H3 on lysine 27

(H3K27me3)—a repressive mark associated with nonexpressed

genes—is also detectable at the hoxb1a promoter by 2 hpf (Fig-

ure 1I). The coincidence of H3K4me3 and H3K27me3 modifica-

tions at the hoxb1a promoter at 6 hpf (prior to its expression)

likely represents a bivalent mark as reported previously for

zebrafish embryos (Vastenhouw et al., 2010). In contrast, the

presence of H3K27me3 at hoxb1a promoters at 8–12 hpf

(when hoxb1a is expressed) likely reflects the fact that not all

cells in the embryo express hoxb1a at these stages. Indeed,

dissection of 12–14 hpf zebrafish embryos (Figure 1J) revealed

that anterior tissue (that never expresses hoxb1a) displays high

levels of H3K27me3 and low levels of H3K4me3 at the hoxb1a

promoter, while middle tissue (that contains hoxb1a-expressing

and nonexpressing cells) is enriched for H3K4me3 and posterior

tissue (that transiently expressed hoxb1a earlier during develop-
Figure 1. TALE Factors Occupy the hoxb1a Promoter Coincident with

(A) Diagram of hoxb1a and hoxb2a regulation by Hox, Pbx, and Prep/Meis facto

(B) Diagram summarizing temporal expression of Hox, Pbx, and Prep/Meis facto

(C–E) Time course of Prep/Meis (C), Pbx (D) and Hoxb1a/Hoxb1b (E) occupancy

(F–I) Time course of H3K27ac (F), H4ac (G), H3K4me3 (H), and H3K27me3 (I) mo

(J) Diagram of zebrafish dissection into anterior (Ant), middle (Mid), and posterio

(K) Detection of histone modifications in anterior, middle, and posterior pieces.

Data are presented as the average of a minimum of three repeats with error bars

Microsoft Excel; p values < 0.05 are indicated. See also Figure S1.
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ment) displays low levels of bothmarks (Figure 1K). We conclude

that the hoxb1a promoter is marked by histone modifications

already at blastula stages, well before the hoxb1a gene becomes

transcribed and note that a similar pattern is observed at the

hoxb2a promoter (Figures S1A–S1D).

TALE Factors Promote Deposition of Active Chromatin
Marks in the Early Embryo
The presence of Prep and Pbx at the hoxb1a locus as chromatin

modifications appear during blastula stages suggested that

TALE factors might modulate chromatin marks prior to the onset

of hoxb1a transcription. We therefore examined the effect of

TALE cofactors on histone modifications at 4 hpf. This time

point is several hours prior to the onset of hox expression and

represents a stage when embryonic cells remain multipotent

and undifferentiated (Ho and Kimmel, 1993). We find that

H3K27ac is increased dramatically at the hoxb1a promoter

when Pbx4+Meis3, or Pbx4+Prep1, expression is increased by

mRNA injection into the fertilized egg (Figure 2A). Similar effects

are observed at the hoxb2a and ppp1r14ab promoters that are

also regulated by Hoxb1b:TALE complexes (Figures S2A and

S2B), but not at the otx1 and pax2 promoters that are not

controlled by Hoxb1b:TALE complexes (Figure 2H). Additionally,

H3K27me3 is markedly decreased at the hoxb1a promoter

following injection of Pbx4+Prep1 mRNA (Figure 2B) while

H3K4me3 is increased (Figure 2C), but neither chromatin mark

is affected at promoters that are not controlled by Hoxb1b:TALE

complexes (Figures 2I and 2J). Similar changes in histone

modification levels are observed when cofactors are expressed

individually (Figures S2C and S2D). Because Hox proteins are

not yet expressed at 4 hpf, TALE factors must act independently

of Hox proteins to affect histone modifications at this stage.

Indeed, even when Pbx and Prep are overexpressed, we do

not observe endogenous Hoxb1b at the hoxb1a promoter by 4

hpf (Figure S2E). We also note that Hoxb1b+Pbx4+Prep1 injec-

tion has the same effect as Pbx4+Prep1 injection on H3K27Ac

(Figure 2A) and H3K27me3 (Figure 2B), but increases the level

of H3K4me3 approximately 2-fold (Figure 2C). Hence, TALE

cofactors appear to affect histone modifications largely inde-

pendent of Hox proteins.

We next examined the effect of reducing TALE factor levels by

coinjecting antisense morpholino oligonucleotides (MOs) that

disrupt translation of Pbx2 and Pbx4 (the predominant Pbx pro-

teins at this stage; Waskiewicz et al., 2002) together with mRNA

encoding a dominant negative construct that blocks Meis and

Prep function (Choe et al., 2002). We find that reducing cofactor

levels in this manner leads to a reduction in H3K27ac (Figure 2D)

and H3K4me3 (Figure 2F), as well as an increase in H3K27me3

(Figure 2E), at the hoxb1a promoter. Similar effects are observed
the Appearance of Histone Modifications at Early Blastula Stages

rs. PG1, paralog group 1.

rs. ZGA, zygotic genome activation.

at the hoxb1a promoter. NT, not tested.

difications at the hoxb1a promoter.

r (Post) pieces.

indicating SD. Statistical significance was determined using Student’s t test in
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Figure 2. TALE Factors Promote Deposition of Active Chromatin Marks in the Early Embryo

(A–C) Detection of H3K27ac (A), H3K27me3 (B), and H3K4me3 (C) modifications in 4 hpf embryos overexpressing TALE factors, or TALE factors + Hoxb1b.

(D–F) Detection of H3K27ac (D), H3K27me3 (E), andH3K4me3 (F) modifications in 4–12 hpf embryos following disruption of Pbx (PbxMO) and Prep/Meis (PBCAB)

function.

(G) Occupancy of CBP at the hoxb1a promoter in 4 hpf embryos overexpressing TALE factors.

(H–J) Detection of H3K27ac (H), H3K27me3 (I), and H3K4me3 (J) modifications at two promoters (otx1 and pax2) not regulated by TALE factors.

Data are presented as the average of a minimum of three repeats with error bars indicating SD. Statistical significance was determined using Student’s t test in

Microsoft Excel; p values < 0.05 are indicated. See also Figure S2.
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at the hoxb2a promoter (Figures S2G–S2I). These changes in his-

tone modifications are detectable as early as 6 hpf and remain at

least to 12 hpf. Because hoxb1b expression is being initiated

around 6 hpf, these effects could conceivably be due to disrup-

tion of a TALE:Hox complex rather than a TALE dimer. To test

this possibility, we used MOs to block Hoxb1a and Hoxb1b

activity, as reported previously (McClintock et al., 2002). We

find no effect of Hoxb1a/b MOs on histone modifications at

8 hpf (Figures S2J–S2M), but observe Hox-dependent changes
206 Developmental Cell 28, 203–211, January 27, 2014 ª2014 Elsevi
by 12 hpf. This result demonstrates that TALE factors modulate

histone modifications independently of Hox proteins at least up

to 8 hpf—in agreement with the fact that Hox proteins are not

detectable at the hoxb1a promoter until 9 hpf (Figure 1E).

The effect of TALE factors on histone modification levels could

be explained if these factors recruit histone-modifying enzymes.

In particular, acetylation of H3K27 is catalyzed by CBP (Tie et al.,

2009), and it has been reported previously that Pbx binds CBP

and HDACs (Choe et al., 2009; Saleh et al., 2000). Indeed, using
er Inc.



Figure 3. TALE Factors Recruit RNA

Polymerase II but Drive Only Weak hoxb1a

Transcription

(A–I) In situ hybridization to hoxb1a transcripts in

4 hpf zebrafish embryos injected with mRNA and

MOs as indicated in lower right corner of each

panel. Arrows indicate examples of positive

signals.

(J and K) Quantitative PCR detection of hoxb1a

transcripts in 4 hpf zebrafish embryos injected

with the indicated mRNAs and MOs.

(L) Occupancy of serine-5 phosphorylated RNA

polymerase II at the hoxb1a promoter of 4 hpf

embryos overexpressing TALE factors or TALE

factors + Hoxb1b.

Data are presented as the average of a minimum

of three repeats (except in K, which was done in

duplicate) with error bars indicating SD. Statistical

significancewas determined using Student’s t test

in Microsoft Excel; p values < 0.05 are indicated.
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ChIP analysis we find that Pbx4+Prep1 recruits CBP to the

hoxb1a promoter at 4 hpf (Figure 2G). We conclude that TALE

factors recruit histone-modifying enzymes to promote deposi-

tion of active chromatin marks at early stages of embryogenesis.

TALE Factors Recruit RNA Polymerase II but Drive
Inefficient hoxb1a Transcription
Because TALE factors promote an active chromatin state, we

next examined if they also support hoxb1a transcription. We

find that Pbx4+Prep1 induces hoxb1a transcription in a dose-

dependent manner at 4 hpf (Figures 3D–3F and 3J). Disruption
Developmental Cell 28, 203–211
of Hox function does not affect this

transcription; Figures 3G–3I, and 3K),

confirming that it is mediated by TALE

proteins independent of Hox proteins.

However, TALE-mediated hoxb1a tran-

scription is inefficient, because inclusion

of Hoxb1b increases transcription from

4- to 30-fold (Figures 3C, 3J, and 3K).

The increased transcription mediated

by Hoxb1b could be explained if Hoxb1b

recruits additional RNAPII to the hoxb1a

transcription start site (TSS). We initially

examined RNAPII phosphorylated on

serine 5 (P-Ser5-RNAPII), which repre-

sents RNAPII that is bound to the

TSS and has initiated transcription, but

remains paused without engaging in

active elongation of transcripts (reviewed

in Adelman and Lis, 2012). ChIP analysis

revealed that P-Ser5-RNAPII is barely

detectable at the hoxb1a promoter in 4

hpf embryos, but occupancy is signifi-

cantly increased upon introduction of

TALE factors (Figure 3L). However, inclu-

sion of Hoxb1b does not increase

P-Ser5-Pol II levels further. Our results

indicate that TALE proteins are sufficient
to recruit P-Ser5-RNAPII to the hoxb1a promoter and drive

weak transcription, but that Hoxb1b is required for efficient

transcription of the hoxb1a gene.

Hoxb1b Triggers P-TEFb-Mediated Activation of RNA
Polymerase II
Paused P-Ser5-RNAPII is converted to an actively elongating

form by P-TEFb, which phosphorylates both serine-2 of

RNAPII (P-Ser2-RNAPII) and the negative elongation factors

DSIF and NELF. Together, these phosphorylation events convert

paused RNAPII into an active form capable of proceeding into
, January 27, 2014 ª2014 Elsevier Inc. 207
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the gene and producing full-length transcripts. We find that

hoxb1a transcription induced by Pbx4+Prep1 or Pbx4+Prep1+

Hoxb1b is inhibited by flavopiridol, a small molecule inhibitor of

P-TEFb (Chao and Price, 2001), in a dose-dependent manner

(Figures 4A–4G), demonstrating that hoxb1a transcription is

P-TEFb-dependent.

Transcription of some genes is activated when P-TEFb is

recruited by sequence specific transcription factors (reviewed

in Peterlin and Price, 2006), suggesting that Hoxb1b may act

by recruiting P-TEFb. However, using ChIP analysis, we find

that TALE factors are sufficient to recruit P-TEFb and that

Hoxb1b does not increase P-TEFb levels further (Figure 4H).

Notably, wemake the same observation for regulation of themu-

rine HoxB1 gene in F9 cells (Figures 4I–4L). To test whether

Hoxb1b is instead required for active phosphorylation of

RNAPII by P-TEFb, we carried out ChIP experiments for P-

Ser2-RNAPII. We find low levels of P-Ser2-RNAPII in the pres-

ence of TALE cofactors at 4 hpf (Figure 4M), consistent with

the low level of transcription we observe under these conditions

(Figure 3). Strikingly, inclusion of Hoxb1b leads to a robust in-

crease in P-Ser2-RNAPII both at the TSS and over exon 2 of

the hoxb1a gene (Figure 4M). We conclude that TALE cofactors

recruit P-TEFb to the hoxb1a promoter and that Hoxb1b is

required to initiate P-TEFb-mediated conversion of paused

RNAPII into elongating RNAPII.

DISCUSSION

Previous studies have demonstrated a requirement for Hox:

TALE complexes in driving transcription of Hox-target genes

(reviewed in Mann et al., 2009). Our results define the specific

contributions and sequential order of action for these factors.

In particular, we demonstrate that the complex is ‘split’ tempo-

rally during embryogenesis such that TALE factors have early

roles in poising the hoxb1a locus for activation, while Hoxb1b

is required to trigger hoxb1a transcription. Our findings are

consistent with previous work demonstrating that Pbx and

Meis proteins recruit CBP to actively transcribed genes (Choe

et al., 2009; Huang et al., 2005; Saleh et al., 2000; Wang

et al., 2010), but here we show that TALE factors also recruit

histone-modifying enzymes independent of Hox proteins and

prior to gene activation.
Figure 4. Hoxb1b triggers P-TEFb-Mediated Activation of RNA Polyme

(A–F) Embryos were injected with mRNA as indicated in lower right corner of each

flavopiridol (E and F) until 4 hpf, followed by in situ hybridization to detect hoxb1

(G) Quantitative PCR detection of hoxb1a transcripts in 4 hpf zebrafish embryos in

of flavopiridol.

(H) CDK9 (the catalytic component of P-TEFb) occupancy at a region 10 kb up

transcription start site (TSS), or at Exon 2 in 4 hpf embryos overexpressing TALE

(I) Quantitative PCR detection of HoxB1 transcripts in F9 cells transfected with t

(J) Western blot detection of transcription factors following transfection of F9 ce

(K) Quantitative PCR detection of HoxB1 transcripts in F9 cells transfected w

flavopiridol.

(L) CDK9 occupancy at the TALE:Hox binding site (MPH) and the transcription

plasmids.

(M) Occupancy of serine-2 phosphorylated RNA polymerase II at the hoxb1a tran

factors or TALE factors + Hoxb1b.

(N) Ratio of Prep1+Pbx4+Hoxb1b signal/Prep1+Pbx4 signal for various paramet

Data are presented as the average of a minimum of three repeats with error bars

Microsoft Excel; p values < 0.05 are indicated.

Developm
We note that histones at the hoxb1a and hoxb2a promoters

are highly acetylated already at the earliest stage assayed,

although TALE factors are not yet detectable, suggesting that

TALE factors increase acetylation beyond a basal level that is

established independently of TALE factors. H3K27me3 is also

detectable prior to TALE factor binding, but is reduced in the

presence of TALE factors. Hence, TALE factors may act to pro-

tect the hoxb1a locus, which is targeted for early expression,

from the repressive properties of the H3K27me3 mark. In

contrast, the H3K4me3 mark is barely detectable at blastula

stages, but appears in the presence of TALE factors, suggesting

that the cofactors may promote de novo deposition of this mark.

It is also striking that the extent of H3K4me3 modification corre-

lates with transcription such that we observe low levels in the

presence of TALE factors, when transcription is limited, and

higher levels in the presence of TALE+Hoxb1b, when transcrip-

tion is elevated. Lastly, we note that the H3K27ac and H3K4me3

histone marks are not completely abolished upon disruption of

Pbx and Prep/Meis function. While this is most likely due to the

cofactors not being completely eliminated in our experiments

(e.g., the Pbx MOs target translation from maternal mRNA, but

Pbx proteins are also maternally deposited), it remains possible

that other pathways are also involved in controlling histone

modifications at hox-regulated promoters.

We quantified the contribution of Hoxb1b to hoxb1a expres-

sion by deriving a ratio for the effect of Pbx4+Prep1+Hoxb1 rela-

tive to the effect of Pbx4+Prep1 (Figure 4N). The ratios for

H3K27ac levels, H3K27me3 levels, P-Ser5-RNAPII recruitment,

and P-TEFb recruitment are all close to 1.0, suggesting that

Hoxb1b does not have an effect on these parameters beyond

that contributed by the TALE factors. In contrast, the ratios for

H3K4me3 levels, P-Ser2-RNAPII recruitment, and mRNA levels

are significantly higher than 1.0, indicating that Hoxb1b affects

these parameters. Because phosphorylation of serine 2 in

RNAPII (a P-TEFb substrate) increases in the presence of

Hoxb1b, while P-TEFb levels are unaffected, it appears that

Hoxb1b stimulates P-TEFb activity, leading to increased tran-

scription. Inactive P-TEFb is thought to be associated with the

7SK RNA complex (Nguyen et al., 2001; Yang et al., 2001) and

recent work demonstrates that a sizeable pool of 7SK is associ-

atedwith poised promoters (Ji et al., 2013). Hence, the 7SK com-

plex may be recruited by TALE factors and Hoxb1b may act to
rase II

panel and incubated in DMSO (A and B), 10 mM flavopiridol (C and D), or 35 mM

a expression. Arrows point to examples of hoxb1a expression.

jected with the indicated mRNAs and treated with the indicated concentrations

stream of the hoxb1a promoter, at the TALE:Hox binding site (MPH), at the

factors or TALE factors + Hoxb1b.

he indicated plasmids.

lls.

ith the indicated plasmids and treated with the indicated concentrations of

start site (TSS) of the HoxB1 gene in F9 cells transfected with the indicated

scription start site (left) or exon 2 (right) of 4 hpf embryos overexpressing TALE

ers related to hoxb1a expression.

indicating SD. Statistical significance was determined using Student’s t test in
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locally redistribute P-TEFb from 7SK to the hoxb1a locus,

possibly acting together with Brd4, which is known to associate

with active P-TEFb and help it localize to chromatin (Yang et al.,

2005). Lastly, TALE factors were initially identified inmammals as

proto-oncogenes and we hypothesize that the oncogenic poten-

tial of these factors stems, at least in part, from their ability to pre-

pare promoters for transcriptional activation.

EXPERIMENTAL PROCEDURES

Plasmid Constructs, In Situ Hybridization, and Quantitative RT-PCR

meis3, prep1, pbx4, and hoxb1b constructs for mRNA synthesis, as well as the

PBCAB dominant negative construct, have been reported previously (Choe

et al., 2002). Antisense morpholinos to pbx4 and pbx2 (Erickson et al., 2007)

and hoxb1a/b (McClintock et al., 2002) have been published. Embryo injec-

tions, in situ hybridizations and quantitative RT-PCR using gene specific

primers (see Supplemental Experimental Procedures), were carried out as pre-

viously reported (Choe et al., 2009). Human HoxA1 (id105018) and Pbx1a

(id109104) were obtained from Addgene. Human Prep1 was cloned from

HEK293 cDNA. Human Prep1, HoxA1, and Pbx1b (amplified from Pbx1a)

were each subcloned into the pCS2 expression vector. F9 cell transfections

were carried out by mixing 4 mg of plasmid with 10 mg of Lipofectamine 2000

(Life Technologies) for each transfection. Antibodies for western blots were

anti-HA (Roche; #1867423), anti-Myc (Roche; #11667149001), and anti-flag

(Sigma; #f1804). All animal work was approved by the University of Massachu-

setts Medical School institutional animal care review board.

Antisera and ChIP

Antisera to Meis, Pbx, and Hoxb1b were reported previously (Choe et al.,

2009). Rabbit antisera were raised to full-length Prep1 and Hoxb1a using

standard protocols. All other antibodies are commercially available (see Sup-

plemental Experimental Procedures). ChIPs were performed as reported

previously (Choe et al., 2009), except ChIP for Ser2-RNAPII, which was

done using the ChIP-IT kit from Active Motif. qPCR was performed using

gene specific primers (see Supplemental Experimental Procedures) and

normalized to 1% input sample. Control ChIPs were carried out with preim-

mune serum, Ig-matched antibodies, or beads alone. Data are presented as

the average of a minimum of three repeats with error bars indicating SD. Sta-

tistical significance was determined using Student’s t test in Microsoft Excel.

Flavopiridol Treatments

Flavopiridol (F3055, Sigma-Aldrich) was dissolved in DMSO and diluted in

fish water immediately prior to treatment. Embryos were incubated in

flavopiridol or the corresponding concentration of DMSO from 0 hpf until being

harvested at 4 hpf.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and two figures and can be found with this article online at http://dx.doi.org/
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