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Abstract

We give explicit constructions of sets S with the property that for each integer k, there are at most
g solutions to k = s1 + s2, si ∈ S; such sets are called Sidon sets if g = 2 and generalized Sidon sets
if g�3. We extend to generalized Sidon sets the Sidon-set constructions of Singer, Bose, and Ruzsa.
We also further optimize Kolountzakis’ idea of interleaving several copies of a Sidon set, extending
the improvements of Cilleruelo, Ruzsa and Trujillo, Jia, and Habsieger and Plagne. The resulting
constructions yield the largest known generalized Sidon sets in virtually all cases.
© 2005 Published by Elsevier Inc.
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1. Sidon’s Problem

In connection with his study of Fourier series, Sidon [18] was led to ask how dense a set
of integers can be without containing any solutions to

s1 + s2 = s3 + s4

aside from the trivial solutions {s1, s2} = {s3, s4}. This, and certain generalizations, have
come to be known as Sidon’s Problem.

Given a set S ⊆ Z, we define the function S ∗ S by

S ∗ S(k) := |{(s1, s2): si ∈ S, s1 + s2 = k}|,
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Table 1
Shortest Sidon sets, up to translation and reflection

k Min{ak − a1} Witness

2 1 {0, 1}
3 3 {0, 1, 3}
4 6 {0, 1, 4, 6}
5 11 {0, 1, 4, 9, 11}

{0, 2, 7, 8, 11}
6 17 {0, 1, 4, 10, 12, 17}

{0, 1, 4, 10, 15, 17}
{0, 1, 8, 11, 13, 17}
{0, 1, 8, 12, 14, 17}

7 25 {0, 1, 4, 10, 18, 23, 25}
{0, 1, 7, 11, 20, 23, 25}
{0, 1, 11, 16, 19, 23, 25}
{0, 2, 3, 10, 16, 21, 25}
{0, 2, 7, 13, 21, 22, 25}

8 34 {0, 1, 4, 9, 15, 22, 32, 34}
9 44 {0, 1, 5, 12, 25, 27, 35, 41, 44}
10 55 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55}

which counts the number of ways to write k as a sum of two elements of S. We
also set

‖S∗‖∞ := ‖S ∗ S‖∞ = max
k∈Z

|{(s1, s2): si ∈ S, s1 + s2 = k}|.

Note that if the set S is translated by c, then the function S∗S is translated by 2c, and ‖S∗‖∞
is unaffected. Similarly, if the set S is dilated by a factor of c, then ‖S∗‖∞ is unaffected.

If ‖S∗‖∞ �2, then S is called a Sidon set. Table 1 contains the optimally dense Sidon
sets with 10 or fewer elements. Erdős and Turàn [8] showed that if S ⊆ [n] := {1, 2, . . . , n}
is a Sidon set, then |S| < n1/2 + O(n1/4), and Singer [19] gave a construction that yields
a Sidon set in [n] with |S| > n1/2 − n5/16, for sufficiently large n. Thus, the maximum
density of a finite Sidon set is asymptotically known. The maximum growth rate of |S ∩[n]|
for an infinite Sidon set S remains enigmatic. We direct the reader to [15] for a survey of
Sidon’s Problem.

The object of this paper is to give constructions of large finite sets S satisfying the
constraints S ⊆ [n] and ‖S∗‖∞ �g, that is, “large” in terms of n and g. We extend the
Sidon set construction of Singer, as well as those of Bose [2] and Ruzsa [16], to allow
‖S∗‖∞ �g for arbitrary g. The essence of our extension is that although the union of 2
distinct Sidon sets typically has large ‖S∗‖∞, the union of two of Singer’s sets will have
‖S∗‖∞ �8. We also further optimize the idea of Kolountzakis [12] (refined in [5,11]) of
controlling ‖S∗‖∞ by interleaving several copies of the same Sidon set.

We warn the reader that the notation ‖S∗‖∞ is not in wide use. Most authors write
“S is a B2[g] set”, sometimes meaning that ‖S∗‖∞ �2g and sometimes that ‖S∗‖∞ �2g+1.
Our notation is motivated by the common practice of using the same symbol for a set and
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Fig. 1. Upper and lower bounds on �(g).

for its indicator function. With this convention,

S ∗ S(k) =
∑
x∈Z

S(x)S(k − x)

is the Fourier convolution of the function S with itself, and counts representations as a sum
of two elements of S. We use the same notation when discussing subsets of Zn, the integers
modulo n, and no ambiguity arises.

Define

R(g, n) := max
S

{|S|: S ⊆ [n], ‖S∗‖∞ �g}. (1)

In words, R(g, n) is the largest possible size of a subset of [n] whose pairwise sums repeat at
most g times. We provide explicit lower bounds on R(g, n) which are new for large values
of g. Fig. 1 shows the current upper and lower bounds on

�(g) := lim inf
n→∞

R(g, n)√	g/2
n.

We comment that it may be possible to replace the lim inf in the definition of � with a
simple lim, but that this has not been proven and is not important for the purposes of this
paper. The lower bounds on �(g) are all presented in this paper; some are originally found
in [19] (g = 2, 3), [11] (g = 4), and [5] (g = 8, 10) but for other g are new. Other than
the precise asymptotics for the g = 2 and 3 cases (which were found in 1944 [6] and 1996
[17]), the upper bounds indicated in Fig. 1 are due to Green [9] when g�20 is even; for all
other values of g, the upper bounds are new and are the subject of a work in progress by
the authors [14].

Essential to proving these bounds on �(g) is the consideration of

C(g, n) := max
S

{|S|: S ⊆ Zn, ‖S∗‖∞ �g}. (2)

The function C(g, n) gives the largest possible size of a subset of the integers modulo n

whose pairwise sums (mod n) repeat at most g times. There is a sizable literature on R(g, n),
but little work has been done on C(g, n). There is a growing consensus among researchers
on Sidon’s Problem that substantial further progress on the growth of R(g, n) will require
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Table 2
Min{n: R(g, n)�k}

g

k 2 3 4 5 6 7 8 9 10 11

3 4
4 7 5
5 12 8 6
6 18 13 8 7
7 26 19 11 9 8
8 35 25 14 12 10 9
9 45 35 18 15 12 11 10
10 56 46 22 19 14 13 12 11
11 73 58 27 24 17 15 14 13 12
12 �92 �72 31 29 20 18 16 15 14 13
13 37 34 24 21 18 17 16 15
14 44 40 28 26 21 19 18 17
15 �52 �47 32 29 24 22 20 19
16 36 34 27 24 22 21
17 �42 �38 30 28 24 23
18 34 32 27 25
19 �38 �36 30 28
20 33 31
21 �37 35
21 �38

a better understanding of C(g, n). Theorems 1 and 2 below give the state-of-the-art upper
and lower bounds.

Tables 2 and 3 contain exact values for R(g, n) and C(g, n), respectively, for small values
ofg andn.These tables have been established by direct (essentially exhaustive) computation.
Specifically, Table 2 records, for given values of g and k, the smallest possible value of max S

given that S ⊆ Z+, |S| = k and ‖S∗‖∞ �g; in other words, the entry corresponding to
k and g is min{n: R(g, n)�k}. For example, the fact that the (k, g) = (8, 2) entry equals
35 records the fact that there exists an 8-element Sidon set of integers from [35] but no
8-element Sidon set of integers from [34].

To show that R(2, 35)�8, for instance, it is only necessary to observe that

S = {1, 3, 13, 20, 26, 31, 34, 35}
has 8 elements and ‖S∗‖∞ = 2. To show that R(2, 35)�8, however, seems to require an
extensive search.

In the next section, we state our upper bounds on C(g, n), lower bounds on R(g, n) and
C(g, n), and constructions that demonstrate our lower bounds. In Section 3 we prove the
bounds claimed in Section 2. Since the value of this work is primarily as a synthesis and
extension of ideas from a variety of other works, we have endeavored to make this paper
self-contained. We conclude in the final section by listing some questions that we would
like, but have been unable, to answer.
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Table 3
Min{n: C(g, n)�k}

g

k 2 3 4 5 6 7 8 9 10 11

3 6
4 12 7
5 21 11 8
6 31 19 11 9
7 48 29 14 13 10
8 57 43 22 17 12 11
9 73 57 28 19 16 13 12
10 91 36 28 19 17 14 13
11 35 22 21 18 15 14
12 30 23 21 19 16 15
13 31 24 22 19 17
14 28 25 20

2. Theorems and constructions

2.1. Theorems

Theorem 1. (i) (
C(2,n)

2 )�	n
2 
, and in particular C(2, n)�√

n + 1;

(ii) C(3, n)�
√

n + 9/2 + 3;
(iii) C(4, n)�

√
3n + 7/6;

(iv) C(g, n)�√
gn for even g;

(v) C(g, n)�
√

1 − 1
g

√
gn + 1, for odd g.

Theorem 2. Let q be a prime power, and let k, g, f, x, y be positive integers with k < q.
(i) If p is a prime, then C(2k2, p2 − p)�k(p − 1);

(ii) C(2k2, q2 − 1)�kq;
(iii) C(2k2, q2 + q + 1)�kq + 1;
(iv) If gcd(x, y) = 1, then C(gf, xy)�C(g, x)C(f, y);
(v) R(gf, xy)�R(gf, xy + 1 − � y

C(f,y)
�)�R(g, x)C(f, y);

(vi) R(g, 3g − 	g/3
 + 1)�g + 2	g/3
 + 	g/6
.

Theorem 3.

�(4)�
√

8/7 > 1.069,

�(6)�
√

16/15 > 1.032,

�(8)�
√

8/7 > 1.069,

�(10)�
√

49/45 > 1.043,

�(12)�
√

6/5 > 1.095,

�(14)�
√

121/105 > 1.073,

�(16)�
√

289/240 > 1.097,

�(18)�
√

32/27 > 1.088,

�(20)�
√

40/33 > 1.100,

�(22)�
√

324/275 > 1.085,
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Theorem 4. For g�1,

�(2g + 1)��(2g)� g + 2 	g/3
 + 	g/6
√
3g2 − g 	g/3
 + g

.

In particular,

lim inf
g→∞ �(g)� 11√

96
.

We note that Martin and O’Bryant have shown [14] that lim supg→∞ �(g) < 1.8391,

whereas 11/
√

96 > 1.1226. These lower bounds on �, together with the strongest known
upper bounds, are plotted for 2�g�42 in Fig. 1.

2.2. Constructions

Theorem 2 rests on the constructions given in the following four subsections. We denote
the finite field with q elements by Fq , and its multiplicative group by F×

q .

2.2.1. Ruzsa’s construction
Let � be a generator of the multiplicative group modulo the prime p. For 1� i < p, let

at,i be the congruence class modulo p2 − p defined by

at,i ≡ t (mod p − 1) and at,i ≡ i�t (mod p).

Define the set

Ruzsa(p, �, k) := {at,k: 1� t < p} ⊆ Zp2−p.

Ruzsa [16] showed that Ruzsa(p, �, 1) is a Sidon set. We show that if K is any subset of
[p − 1], then

Ruzsa(p, �, K) :=
⋃
k∈K

Ruzsa(p, �, k)

is a subset of Zp2−p with cardinality |K|(p − 1) and

‖Ruzsa(p, �, K)∗‖∞ �2|K|2.
For example, Ruzsa(11, 2, {1, 2}) is

{7, 39, 58, 63, 65, 86, 92, 100, 101, 104} ∪ {28, 47, 52, 54, 75, 81, 89, 90, 93, 106}
and one may directly verify that ‖Ruzsa(11, 2, {1, 2})∗‖∞ = 8.

2.2.2. Bose’s construction
Let q be any prime power, � a generator of Fq2 , k ∈ Fq , and define the set

Bose(q, �, k) := {a ∈ [q2 − 1]: �a − k� ∈ Fq}.
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Bose [2] showed that for k �= 0, Bose(q, �, k) is Sidon set. We show that if K is any subset
of Fq \ {0}, then

Bose(q, �, K) :=
⋃
k∈K

Bose(q, �, k)

is a subset of Zq2−1, has |K|q elements, and

‖Bose(q, �, K)∗‖∞ �2|K|2.
For example, Bose(11, x mod (11, x2 + 3x + 6), {1, 2}) is

{1, 30, 38, 55, 56, 65, 69, 71, 76, 99, 118}
∪{18, 26, 43, 44, 53, 57, 59, 64, 87, 106, 109}.

2.2.3. Singer’s construction
Sidon sets arose incidentally in Singer’s work [19] on finite projective geometry. While

Singer’s construction gives a slightly thicker Sidon set than Bose’s (which is slightly thicker
than Ruzsa’s), the construction is more complicated—even after the simplification of Bose
and Chowla [3].

Let q be any prime power, and let � be a generator of the multiplicative group of Fq3 . For
each k1, k2 ∈ Fq define the set

T (〈k1, k2〉) := {0} ∪ {a ∈ [q3 − 1]: �a − k2�
2 − k1� ∈ Fq}.

Then define

Singer(q, �, 〈k1, k2〉)
to be the congruence classes modulo q2 + q + 1 that intersect T (〈k1, k2〉). Singer proved
that for k2 = 0, k1 �= 0, Singer(q, �, 〈k1, k2〉) is a Sidon set. We show that if K ⊆ Fq ×Fq

does not contain two pairs with one an Fq -multiple of the other, then

Singer(q, �, K) :=
⋃
�k∈K

Singer(q, �, �k)

is a subset of Zq2+q+1 with |K|q + 1 elements and

‖Singer(q, �, K)∗‖∞ �2|K|2.
For example, Singer(11, x mod (11, x3 + x2 + 6x + 4), {〈1, 1〉, 〈1, 2〉}) is

{0, 9, 57, 59, 63, 81, 86, 97, 100, 112, 125, 132}
∪{3, 15, 28, 35, 36, 45, 93, 95, 99, 117, 122}.
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2.2.4. The Cilleruelo, Ruzsa and Trujillo construction
Kolountzakis observed that if S is a Sidon set, and S + 1 := {s + 1: s ∈ S}, then

‖(S ∪ (S + 1))∗‖∞ �4. This idea of interleaving several copies of the same Sidon set was
extended incorrectly by Jia (but fixed by Lindström), and then correctly by Cilleruelo, Ruzsa
and Trujillo and Habsieger and Plagne (to h > 2).

Let S ⊆ Zx and M ⊆ Zy have ‖S∗‖∞ �g and ‖M∗‖∞ �f . Let S′ ⊆ [x] and M ′ ⊆ [y]
be corresponding sets of integers, i.e., S = {s mod x: s ∈ S′}. Now, let

M ′ + yS′ := {m + ys: m ∈ M ′, s ∈ S′} ⊆ Z.

The set

M + yS := {t mod xy: t ∈ M ′ + yS′} ⊆ Zxy

satisfies ‖(M + yS)∗‖∞ �gf .

3. Proofs

If S is a set of integers (or congruence classes), we use S(x) to denote the corresponding
indicator function. Also, we use the standard notations for convolution and correlation of
two real-valued functions

S ∗ T (x) =
∑
y

S(y)T (x − y) and S ◦ T (x) =
∑
y

S(y)T (x + y).

For sets S, T of integers, S ∗ T (x) is the number of ways to write x as a sum s + t with
s ∈ S and t ∈ T . Likewise, S ◦T (x), is the number of ways to write x as a difference t − s.

3.1. Theorem 1

Part (i) is just the combination of the pigeonhole principle and the fact (which we prove
below) that if ‖S∗S‖∞ �2, then for k �= 0, S◦S(k)�1. Part (ii) follows from the observation
that if ‖S ∗ S‖∞ �3, then S ◦ S(k)�2 for k �= 0, and in fact S ◦ S(k)�1 for almost all
k. Part (iii) follows an idea of Cilleruelo: if ‖S ∗ S‖∞ �4, then S ◦ S is small on average.
For g > 4, the theorem is a straightforward consequence of the pigeonhole principle. We
consider (iii) to be the interesting contribution.

Proof. (i) We show that (
C(2,n)

2 )�	n/2
, whence C(2, n) <
√

n + 1. Let S ⊆ [n] have
‖S∗‖∞ �2. If {s1, s2}, {s3, s4} are distinct pairs of distinct elements of S, and

s1 − s2 ≡ s3 − s4 (mod n), (3)

then s4 + s1 ≡ s1 + s4 ≡ s3 + s2 ≡ s3 + s2, contradicting the supposition that ‖S∗‖∞ �2.
Therefore, the map {s1, s2} �→ {±(s1 − s2)} is 1-1 on pairs of distinct elements of S, and
the image is contained in {{±1}, {±2}, . . . , {±	n/2
}}. Thus, (

|S|
2 )�	n/2
.

This bound is actually achieved for n = p2 + p + 1 when p is prime (see Theorem
2(iii)).
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(ii) Now suppose that ‖S∗‖∞ = 3, and consider the pairs of distinct elements of S.
Any solution to (3) must have {s1, s2} ∩ {s3, s4} �= ∅ since ‖S∗‖∞ < 4, and each of the
|S| possible intersections can occur only once. Therefore, after deleting one pair for each
element of S, we get a set of (

|S|
2 )−|S| pairs which is mapped 1-1 by {s1, s2} �→ {±(s1−s2)}

into {{±1}, {±2}, . . . , {±	n/2
}}. This proves Theorem 1 for g = 3.
(iii) Now suppose that ‖S∗‖∞ = 4, where S ⊆ Zn. The obvious map from

X := {((s1, s2), (s3, s4)): s1 − s2 ≡ s3 − s4, s1 /∈ {s2, s3}}
to

Y := {((s1, s4), (s3, s2)): s1 + s4 ≡ s3 + s2, {s1, s4} /≡ {s2, s3}}
is easily seen to be 1-1 (but not necessarily onto): |X|� |Y |. We have

|X| =
∑
k �=0
k∈Zn

(S ◦ S(k)2 − S ◦ S(k))� 1

n − 1

⎛
⎜⎜⎜⎝

∑
k �=0
k∈Zn

S ◦ S(k)

⎞
⎟⎟⎟⎠

2

−
∑
k �=0
k∈Zn

S ◦ S(k)

= (|S|2 − |S|)2

n − 1
− |S|2 + |S|,

|Y | = |(S ∗ S)−1(3)| 4 + |(S ∗ S)−1(4)|8�4|S| + 8
|S|2 − |S|

4
= 2|S|2 + 2|S|.

Comparing the lower bound on |X| with the upper bound on |Y | yields |S|�√
3n + 7/6.

(iv) and (v). There are |S|2 pairs of elements from S ⊆ Zn, and there are just n possible
values for the sum of two elements. If ‖S∗‖∞ �g then each possible value is realized at
most g times. Thus |S|2 �gn. The only way a sum can occur an odd number of times is if
it is twice an element of S, so for odd g, |S|2 �(g − 1)n + |S|. �

3.2. Theorem 2

The first three parts of Theorem 2 are all proved in a similar manner, which we outline
here. For disjoint sets S1, . . . , Sk , with S = ∪Si , we have

S ∗ S = (S1 + · · · + Sk) ∗ (S1 + · · · + Sk) =
k∑

i,j=1

Si ∗ Sj

and since Si ∗ Sj is nonnegative,

‖S ∗ S‖∞ �
k∑

i,j=1

‖Si ∗ Sj‖∞ �k2 max
1� i,j �k

‖Si ∗ Sj‖∞.

To prove (i), we need to show that the sets Ruzsa(p, �, i) (1� i < p) are disjoint (hence
Ruzsa(p, �, K) has cardinality |K|(p − 1)), and that

‖Ruzsa(p, �, i) ∗ Ruzsa(p, �, j)‖∞ �2.
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Specifically, we use unique factorization in Fp[x] to show that there are not 3 distinct pairs

(arm,i , avm,j ) ∈ Ruzsa(p, �, i) × Ruzsa(p, �, j)

with the same sum.
The proofs of (ii) and (iii) follow the same outline, but use unique factorization in Fq [x]

and Fq2 [x], respectively.

Proof. (i) For the entirety of the proof, we work with fixed p and �. It is therefore convenient
to introduce the notation Rk = Ruzsa(p, �, k). We need to show that Ri ∩ Rj = ∅ for
1� i < j < p, and that ‖Ri ∗ Rj‖∞ �2 (including the possibility i = j ).

Suppose that am1,i = am2,j ∈ Ri ∩ Rj , with m1, m2 ∈ [1, p). We have m1 ≡ am1,i =
am2,j ≡ m2 (mod p −1), so m1 = m2. Reducing the equation am1,i = am2,j modulo p, we
find i�m1 ≡ j�m2 = j�m1 (mod p), so i = j . Thus for i �= j , the sets Ri, Rj are disjoint.

Now suppose, by way of contradiction, that there are three pairs (arm,i , avm,j ) ∈ Ri ×Rj

satisfying arm,i + avm,j ≡ k (mod p2 − p). Each pair gives rise to a factorization modulo
p of

x2 − kx + ij�k ≡ (x − arm,i)(x − avm,j ) (mod p).

Factorization modulo p is unique, so it must be that two of the three pairs are congruent
modulo p, say

ar1,i ≡ ar2,i (mod p). (4)

In this case, i�r1 ≡ ar1,i ≡ ar2,i ≡ i�r2 (mod p). Since � has multiplicative order p − 1,
this tells us that r1 ≡ r2 (mod p − 1). Since arm,i ≡ rm (mod p − 1) by definition, we have

ar1,i ≡ ar2,i (mod p − 1). (5)

Eqs. (4) and (5), together with

ar1,i + av1,j ≡ k ≡ ar2,i + av2,j (mod p2 − p)

imply that the first two pairs are identical, and so there are not three such pairs. Thus, for
each k ∈ Zn, we have shown that Ri ∗ Rj (k)�2.

(ii) For k ∈ Fq , let Bk = Bose(q, �, k). We need to show that |Bi | = q, that Bi ∩Bj = ∅
for distinct i, j ∈ Fq \ {0}, and that ‖Bi ∗ Bj‖∞ �2 (including the possibility that i = j ).

Since {�, 1} is a basis for Fq2 over Fq , we can for each s′ ∈ [q2 − 1] write �s′
as a linear

combination of � and 1. We define s (unprimed) to be the coefficient of 1, i.e.,

�s′ = i� + s

for some i. In this proof, primed variables are integers between 1 and q2 − 1, and unprimed
variables are elements of Fq . Note also that a′ = b′ implies a = b, whereas a = b does not
imply a′ = b′.

Since � generates the multiplicative group, for i �= 0 each s ∈ Fq has a corresponding
s′, so that |Bi | = q. Moreover, we know that i� + s1 = j� + s2 implies that i = j and
s1 = s2. In particular, if i �= j , then Bi ∩ Bj = ∅. Thus |Bose(q, �, K)| = |K|q.
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We now fix i and j in Fp \ {0} (not necessarily distinct), and show that Bi ∗ Bj (k)�2

for k ∈ Zq2−1. Define c1, c2 ∈ Fp by (ij)−1�k′ − �2 = c1� + c2, and consider pairs
(r ′, v′) ∈ Bi × Bj with r ′ + v′ ≡ k′ (mod q2 − 1). We have

c1� + c2 = (ij)−1�k′ − �2 = (ij)−1�r ′+v′ − �2 = (ij)−1�r ′
�v′ − �2

= (ij)−1(i� + r)(j� + v) − �2 = (i−1r + j−1v)� + i−1rj−1v.

This means that (a, b) = (i−1r, j−1v) is a solution to x2 − c1x + c2 = (x − a)(x − b). By
unique factorization over finite fields, there are at most two such pairs. Thus, Bi ∗Bj (k)�2
and so ‖Bi ∗ Bj‖∞ �2.

(iii) We first note that �a and �b (for any integers a, b) are linearly dependent over
Fq if and only if their ratio is in Fq . Since F×

q is a subgroup of F×
q3 , we see that Fq =

{�x(q2+q+1): x ∈ Z}. Thus, we have the following linear dependence criterion: �a and �b

are linearly dependent if and only if a ≡ b (mod q2 + q + 1).
Since {�2, �, 1} is a basis for Fq3 over Fq , we can for each s′ ∈ [q3 − 1] write �s′

as a

linear combination of �2, � and 1. We define s (unprimed) to be the coefficient of 1, i.e.,

�s′ = k2�
2 + k1� + s

for some k1, k2. In this proof, primed variables are integers between 1 and q3 − 1, and
unprimed variables are elements of Fq . Note, as above, that a′ = b′ implies a = b, whereas
a = b does not imply a′ = b′. We also define s̄ to be the congruence class of the integer s′
modulo q2 + q + 1.

For �k = 〈k1, k2〉 ∈ F2
q define

T (�k) := {s′ ∈ [q3 − 1] : �s′ = s + k1� + k2�
2, s ∈ Fq}

which also reiterates the connection between primed variables (such as s′ ∈ [q3 − 1])
and unprimed variables (such as s ∈ Fq ). Define S(�k) to be the set of congruence classes
modulo q2 + q + 1 that intersect T (�k); as noted above, we denote the congruence class
s′ mod q2 + q + 1 as s̄. Let K = {�k1, �k2, . . .} ⊆ Fq × Fq be a set that does not contain
two pairs with one being a multiple of the other. Let S1 := {0} ∪ S(�k1), and for i > 1 let
Si := S(�ki).

We need to show that |S1| = q + 1, for i > 1 that |Si | = q, and for distinct i and j , the
sets Si and Sj are disjoint. This will imply that

Singer(q, �, K) =
|K|⋃
i=1

Si

has cardinality |K|q + 1. All of these are immediate consequences of the fact that each
element of Fq3 has a unique representation as an Fq -linear combination of �2, �, and 1.

We will show that for any i, j (not necessarily distinct) there are not three pairs (r̄m, v̄m) ∈
Si × Sj with the same sum modulo q2 + q + 1.
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Suppose that �ki = 〈k1, k2〉 and �kj = 〈�1, �2〉. Set K(r, z) := r + k1z + k2z
2 and

L(v, z) = v + �1z + �2z
2. Since

r̄1 + v̄1 = r̄2 + v̄2 = r̄3 + v̄3,

there are constants c2, c3 ∈ Fq such that �r ′
1+v′

1 = c2�
r ′
2+v′

2 = c3�
r ′
3+v′

3 , and since �r ′+v′ =
�r ′

�v′ = K(r, �)L(v, �), the polynomials

f2(z) := c2K(r2, z)L(v2, z) − K(r1, z)L(v1, z),

f3(z) := c3K(r3, z)L(v3, z) − K(r1, z)L(v1, z)

both have � as a root (we are assuming for the moment that none of v̄m, r̄m are 0̄).
If c2 = 1, then f2(z) is a quadratic with the cubic � as a root: consequently f2(z) = 0

identically. This gives three equations in the unknowns r1, v1, r2, v2, k1, k2, �1, �2. These
equations with the assumption that 〈k1, k2〉 is not a multiple of 〈�1, �2〉, imply that r1 = r2

and v1 = v2. Thus �r ′
1 = �r ′

2 , and so r ′
1 = r ′

2, and so (r ′
1, v

′
1) = (r ′

2, v
′
2), contrary to our

assumption of distinctness. Similarly c3 �= 1 and c2 �= c3.
Now

g(z) := (c3 − 1)f2(z) − (c2 − 1)f3(z)

is a quadratic with � as a root. Setting its coefficients equal to 0 gives 3 equations:

0 = c2(r1 v1 − r2 v2) + c3(r3 v3 − r1v1) + c2c3(r2v2 − r3v3),

0 = c2(�1(r1 − r2) + k1(v1 − v2)) + c3(�1(r3 − r1) + k1(v3 − v1))

+c2c3(�1(r2 − r3) + k1(v2 − v3)),

0 = c2(�2(r1 − r2) + k2(v1 − v2)) + c3(�2(r3 − r1) + k2(v3 − v1))

+c2c3(�2(r2 − r3) + k2(v2 − v3)).

When combined with our knowledge that c2, c3 are not 0, 1, or equal, and 〈k1, k2〉 not a
multiple of 〈�1, �2〉, this implies that the pairs (r̄m, v̄m) are not distinct.

Now suppose that r̄1 = 0, v̄1 �= 0, and set

f2(z) := c2K(r2, z)L(v2, z) − L(v1, z),

f3(z) := c3K(r3, z)L(v3, z) − L(v1, z).

We have f2(�) = f3(�) = 0, and in particular

g(z) := c3f2(z) − c2f3(z)

is a quadratic with � as a root. Setting the coefficients of g(z) equal to 0 yields equations
which, as before, with our assumptions about c2, c3, k1, k2, �1, �2, imply that the three pairs
(r̄m, v̄m) are not distinct. The case r̄1 = v̄1 = 0 is handled similarly. The case r̄1 = v̄2 = 0 is
eliminated for distinct i, j by the disjointness of Si and Sj , and for i = j by the distinctness
assumption on the three pairs.

Thus there are not such (r̄m, v̄m) (1�m�3), whether none of these six variables are 0,
one of them is 0, or two of them are 0.
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(iv) Consider mi, ni ∈ M ′ and si, ti ∈ S′ with

(m1 + ys1) + (n1 + yt1) ≡ · · · ≡ (mgh+1 + ysgf +1)

+(ngf +1 + ytgf +1) (mod xy). (6)

We need to show that mi = mj , si = sj , ni = nj , and ti = tj , for some distinct i, j . Reduc-
ing Eq. (6) modulo y, we see that m1 + n1 ≡ m2 + n2 ≡ · · · ≡ mgf +1 + ngf +1 (mod y).
Since ‖M∗‖∞ �f , we can reorder the mi, ni, si , ti so that m1 = m2 = · · · = mg+1 and
n1 = n2 = · · · = ng+1. Reducing Eq. (6) modulo x we arrive at

ys1 + yt1 ≡ ys2 + yt2 ≡ · · · ≡ ysg+1 + ytg+1 (mod x)

whence, since gcd(x, y) = 1,

s1 + t1 ≡ s2 + t2 ≡ · · · ≡ sg+1 + tg+1 (mod x).

The si mod x and ti mod x are from S, and ‖S∗‖∞ �g, so that for some distinct i, j , si = sj
and ti = tj .

(v) Let M ⊆ Zy have cardinality C(f, y) and ‖M∗‖∞ �f . Set M ′ = {m ∈ [y]: m mod y

∈ M}. Let S′ ⊆ [0, r) have cardinality R(g, r) and ‖(S′)∗‖∞ �g. Set (with x > 2r)
S := {s mod x: s ∈ S′} ⊆ Zx . By the construction in (iv) of this theorem M + yS ⊆ Zxy

has

‖(M + yS)∗‖∞ �gf.

Since M ′ + yS′ ⊆ [y + yr] and M ′ + yS′ ≡ M + yS (mod xy), if xy > 2(y + yr) then
‖(M ′ + yS′)∗‖∞ = ‖(M + yS)∗‖∞ �gf .

We can shift M modulo y without affecting |M| or ‖M∗‖∞. Since there clearly must be
two consecutive elements of M with difference at least �y/C(f, y)�, we may assume that
M ′ ⊆ [y − �y/C(f, y)� + 1]. Thus,

M ′ + yS′ ⊆ [y − �y/C(f, y)� + 1 + y(r − 1)] = [yr + 1 − �y/C(f, y)�]
and

|M ′ + yS′| = |M||S′| = C(f, y)R(g, r).

This proves (v).
The reader might feel that the part of the argument concerning the largest gap in M is

more trouble than it is worth. We include this for two reasons. First, Erdős [10, Problem
C9] offered $500 for an answer to the question, “Is R(2, n) = √

n + O(1)?” This question
would be answered in the negative if one could show, for example, that Bose(p, �, 1)

contains a gap that is not O(p), as seems likely from the experiments of Zhang [20] and
Lindström [13]. Second, there is some literature (e.g., [7,17]) concerning the possible size
of the largest gap in a maximal Sidon set contained in {1, . . . , n}. In short, we include this
argument because there is some reason to believe that this is a significant source of the error
term in at least one case, and because there is some reason to believe that improvement is
possible.
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(vi) The set

S :=
[

0,
⌊g

3

⌋)
∪

{
g −

⌊g

3

⌋
+ 2

[
0,

⌊g

6

⌋)}

∪
[
g, g +

⌊g

3

⌋)
∪

(
2g −

⌊g

3

⌋
, 3g −

⌊g

3

⌋]

has cardinality g + 2	g/3
 + 	g/6
, is contained in [0, 3g − 	g/3
], and has

‖S∗‖∞ = g + 2
⌊g

3

⌋
+

⌊g

6

⌋
.

We remark that this family of examples was motivated by the finite sequence

S = (1, 0, 1
2 , 1, 0, 1, 1, 1),

which has the property that its autocorrelations

S ∗ S = (1, 0, 1, 2, 1
4 , 3, 3, 3, 3, 3, 3, 2, 3, 2, 1)

are small relative to the sum of its entries. In other words, the ratio of the �∞-norm of S ∗ S

to the �1-norm of S itself is small. If we could find a finite sequence of rational numbers for
which the corresponding ratio were smaller, it could possibly be converted into a family of
examples that would improve the lower bound for �(2g) in Theorem 4 for large g. �

3.3. Theorems 3 and 4

Our plan is to employ the inequality of Theorem 2(v) when y is large, f = 2, and x ≈ 8
3g.

In other words, we need nontrivial lower bounds for C(2, y) for y → ∞ and for R(g, x)

for values of x that are not much larger than g. The first need is filled by Theorem 2(i), (ii)
or (iii), while the second need is filled by Theorem 2(vi).

For any positive integers x and m�
√

n/x, the monotonicity of R in the second variable
gives R(2g, n)�R(2g, x(m2 − 1))�R(g, x)C(2, m2 − 1) by Theorem 2(v). If we choose
m to be the largest prime not exceeding

√
n/x (so that m�

√
n/x by the Prime Number

Theorem), Then Theorem 2(ii) gives R(2g, n)�R(g, x) · m�R(g, x)
√

n/x for any fixed
positive integer g, and hence

�(2g) = lim inf
n→∞

R(2g, n)√
gn

� lim inf
n→∞

R(g, x)
√

n/x√
gn

= R(g, x)√
gx

.

The problem now is to choose x so as to make R(g, x)/
√

gx as large as we can manage
for each g. For g = 2, 3, . . . , 11, we use Table 2 to choose x = 7, 5, 31, 9, 20, 15, 30, 24,
33, and 25, respectively (see Table 4 for witnesses to the values claimed for R(g, x)). This
yields Theorem 3.

We note that Habsieger and Plagne [11] have proven that R(2, x)/
√

2x is actually max-
imized at x = 7. For g > 2, we have chosen x based solely on the computations reported
in Table 2. For general g, it appears that R(g, x)/

√
gx is actually maximized at a fairly

small value of x, suggesting that this construction suffers from “edge effects” and is not
best possible.
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Table 4
Important values of R(g, x) and witnesses

g x R(g, x) Witness R(g, x)/
√

gx

2 7 4 {1, 2, 5, 7} √
8/7 ≈ 1.069

3 5 4 {1, 2, 3, 5} √
16/15 ≈ 1.033

4 31 12 {1, 2, 4, 10, 11, 12, 14, 19, 25, 26, 30, 31} √
36/31 ≈ 1.078

5 9 7 {1, 2, 3, 4, 5, 7, 9} √
49/45 ≈ 1.043

6 20 12 {1, 2, 3, 4, 5, 6, 9, 10, 13, 15, 19, 20} √
6/5 ≈ 1.095

7 15 11 {1, 2, 3, 7, 8, 9, 10, 11, 12, 13, 15} √
121/105 ≈ 1.073

8 30 17 {1, 2, 5, 7, 8, 9, 11, 12, 13, 14, 16, 18, 26, 27, 28, 29, 30} √
289/240 ≈ 1.097

9 24 16 {1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14, 15, 17, 22, 23, 24} √
32/27 ≈ 1.089

10 33 20 {1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 20, 21, 22, 23, 30, 31, 32, 33} √
40/33 ≈ 1.101

11 25 18 {1, 2, 3, 4, 5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 25} √
324/275 ≈ 1.085

The first assertion of Theorem 4 is the immediate consequence of the obvious R(2g +
1, n)�R(g, n). To prove the lower bound on �(2g), we set x = 3g −	g/3
+ 1 and appeal
to Theorem 2(vi).

We remark that the above proof gives the more refined result

R(2g, n)� 11

8
√

3

√
2gn

(
1 + O

(
g−1 +

(n

g

)(�−1)/2))

as n
g

and g both go to infinity, where � < 1 is any number such that for sufficiently large
y, there is always a prime between y − y� and y. For instance, we can take � = 0.525
by Baker et al. [1]. This clarification implies the final assertion of the theorem for even g,
and the obvious inequality R(2g + 1, n)�R(2g, n) implies the final assertion for odd g as
well.

4. Significant open problems

It seems highly likely that

lim
n→∞

R(g, n)√
n

is well-defined for each g, but this is known only for g = 2 and 3. It also seems likely that

lim
n→∞

R(2g, n)

R(2g + 1, n)
= 1.

The evidence so far is consistent with the conjecture limg→∞ �(g) = √
2.

One truly outstanding problem is to construct sets S ⊆ Z with ‖S∗‖∞ = 4 that are not
the union of two Sidon sets. In fact, all known constructions of sets with ‖S∗‖∞ �g are
not native, but are built up by combining Sidon sets. It seems doubtful that this type of
construction can be asymptotically densest possible. The asymptotic growth of R(4, n), or
even of C(4, n), is a major target.
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As a computational observation, the set S = B〈1,0〉 ∪ B〈1,1〉 ∪ B〈1,2〉, where

B〈k1,k2〉 := {a′ ∈ [q3 − 1]: �a′ − k2�
2 − k1� ∈ Fq}

and � generates the multiplicative group of Fq3 , has the property that

S ∗ S ∗ S(k) =
∣∣∣
{
(s1, s2, s3): si ∈ S,

∑
si = k

}∣∣∣ �81,

even when the sums are considered modulo q3 − 1. As such, it seems likely that the gen-
eralizations of Bose’s and Singer’s constructions given in this paper generalize further to
give sets whose h-fold sums repeat a bounded number of times. Proving this, however, will
require a more efficient handling of systems of equations than is presented in the current
paper.

We direct our readers to the survey and annotated bibliography [15] for the current status
of these and other open problems related to Sidon sets.
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