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We consider boundary value problem in which an elastic layer containing a finite length crack is under
compressive loading. The crack is parallel to the layer surfaces and the contact between crack surfaces are
either frictionless or with adhesive friction or Coulomb friction.

Based on fourier integral transformation techniques the solution of the formulated problems is reduced
to the solution of a singular integral equation, then, using Chebyshev’s orthogonal polynomials, to an infi-
nite system of linear algebraic equations. The regularity of these equations is established. The expressions
for stress and displacement components in the elastic layer are presented. Based on the developed ana-
lytical algorithm, extensive numerical investigations have been conducted.

The results of these investigations are illustrated graphically, exposing some novel qualitative and
quantitative knowledge about the stress field in the cracked layer and their dependence on geometric
and applied loading parameters. It can be seen from this study that the crack tip stress field has a mode
II type singularity.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Stress concentration is often a critical concern because it affects
the durability and reliability of structures and their components.
Stress concentrators in structures can exist as a result of material
composition imperfections (cavities, inclusions) or they can be
caused by technological and structural needs (holes, cuts, etc.). In
either case, analyzing the effects of stress concentrators is very
important.

Stress concentrators in the form of cracks have been intensively
studied in the literature. Since experimental observations indicate
that crack growth is often in the form of opening mode crack
growth instead of mixed mode or pure shear mode crack growth,
the research reported in the literature on the subject of crack
growth has mainly focused on mode I fracture (e.g. Erdogan and
Sih, 1963; Sih, 1974; Bilby and Cardew, 1975; Cotterell and Rice,
1980; Hayashi and Nemat-Nasser, 1981; or Broberg, 1987).

In the majority of works in the literature it is assumed that the
crack surfaces are not in contact. However crack surface contact
can occur under compressive loading and such cracks can pose a
potential risk just as cracks under tensile loading (e.g. Roy et al.,
1999; Deng, 1993, 1995; Dhirendra and Narasimhan, 1998;
Ghonem and Kalousek, 1988; Hallbfack, 1998; Hayashi and
Nemat-Nasser, 1981; Hearle and Johnson, 1985; Isaksson and
ll rights reserved.

n).
Stahle, 2002, 2003; Ishida and Abe, 1996; Hancock, 1999;
Makaryan, 2006; Makaryan et al., 2009; Melin, 1986). Due to the
elimination of crack surface opening, the growth of cracks with
crack surface contact is in the shear mode (or mode II under in-
plane loading conditions).

El-Borgi et al. (2004) considered the problem of a functionally
graded coating bonded to a semi-infinite homogeneous medium
with a crack embedded in the FGM layer and parallel to the free
surface. The composite medium is subjected to a frictional Hertzian
contact traction loading applied to the surface of the graded coat-
ing. The author’s utilize a crack closure algorithm whenever the
mode I stress intensity factors turn out to be negative under the ac-
tion of compressive loads.

Broberg (1987) reported laboratory produced mode II crack
growth in plates in experiments conducted in a combination of
pressure and shear loads. Hearle and Johnson (1985) achieved
shear crack growth in experiments performed on rail steels sub-
jected to a moving point load. Ishida and Abe (1996) carried out
rolling contact tests in a rail/wheel contact fatigue testing machine
and reported sub-surface crack growth in mode II. More recently,
the propagation of cracks parallel with a shear loaded surface
(which are sub-surface horizontal cracks) due to surface traction
caused by contact, have been analytically and numerically investi-
gated by several researchers (e.g. Wong et al., 1996; Jayaraman
et al., 1997, Komvopoulos and Cho, 1997). Melin (1987) concluded
that mode II crack growth in an elastic material would be preferred
over mode I only if the ratio between the critical stress intensity
factors KIIc and KIc is fairly low. The effect of crack surface friction
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on mode II stress intensity factor of a central slant crack in a plate
uniformly loaded in uniaxial compression is discussed by Hammo-
uda et al. (2002). Comparison of predictions by mode II or mode III
criteria on crack front twisting in three or four point bending
experiments was done by Lazarus et al. (2008).

Problems with cracks under compressive forces can be inter-
preted as problems with contact of two separate bodies pressed
against each other (El-Borgi et al., 2006; Keer et al., 1972). In these
problems, the length of the contact zone and the contact pressure
(which is zero at the ends of the contact segment) are the primary
unknowns of the problem.

Practical applications where mode II crack propagation gener-
ally is predicted to prevail are in various applications subjected
to a load combination of a shear stress and a high compressive nor-
mal stress (e.g. gear drives, rolling bearings, railway applications or
structures exposed to earth quakes). However, despite the great
number of investigations, the phenomena of crack initiation and
propagation associated with compressive forces are still not fully
understood.

The large number of available investigations in the literature
(e.g. Broberg (1999), Civelek and Erdogan (1974), Hill (1950),
Hutchinson (1968), Isaksson and Stahle (2002), Liu (1974), Sih
et al. (1966), Sundara Raja Iyengar et al. (1988)) has been mainly
restricted to the non-interacting crack surfaces (i.e. non-contacting
crack surfaces).

In this paper we show that if an elastic layer containing a crack
parallel to the layer boundary surfaces is under compressive load-
ing on the layer boundary surfaces the shear stress can became
infinite at the crack tips and at the same time the normal stress
is finite along the crack line. In other words we show that compres-
sive loading normal to the crack surfaces can lead to a mode II type
stress singularity at the crack tips and can initiate mode II type
crack growth. To that end, the plane problem of an elastic layer,
weakened by a finite-length crack under compressive loading is
considered, in which the crack surfaces are in full contact with
either no friction or with Coulomb friction or a friction given in ad-
vance (i.e. adhesive friction).

Based on the Fourier integral transformation techniques the
solution of the formulated problem is reduced to the solution of
a singular integral equation, and then, using the Chebyshev‘s
orthogonal polynomials, to an infinite system of linear algebraic
equations. The regularity of these equations is established. These
equations are solved numerically for several typical cases and the
resulting stress distributions are described.
2. Problem description and formulation

Let us suppose that an elastic layer occupies the domain
�1 < x <1, �h1 6 y 6 h2 and a finite crack �x0 < x < x0 is located
at y = 0 (see Fig. 1). The layer surfaces y = h1 and y = �h2 are under
Fig. 1. An elastic layer weakened by a finite length crack and is under the action of
compressive surface forces.
the action of certain compressive mechanical forces as shown in
Fig. 1., and the crack surfaces are pressed together so that they
are in full contact. In other words along the crack surfaces the nor-
mal stress satisfy the condition ry(x, ±0) < 0.

This elasticity plane problem can be reduced to solving the bi-
harmonic equation below in Terms of an Airy stress function
(Sneddon and Berry, 1958):

D2Uðx; yÞ ¼ 0: ð1Þ

The stress and displacement’s components can be expressed
through the function U(x,y) as:

ryðx; yÞ ¼
@2Uðx; yÞ
@x2 ; rxðx; yÞ ¼

@2Uðx; yÞ
@y2 ;

sxyðx; yÞ ¼ �
@2Uðx; yÞ
@x@y

; ð2Þ

uxðx; yÞ ¼
1
E

Z
@2Uðx; yÞ
@y2 dx� m

@Uðx; yÞ
@x

þ U0

 !
; ð3Þ

uyðx; yÞ ¼
1
E

Z
@2Uðx; yÞ
@x2 dy� m

@Uðx; yÞ
@y

þ V0

 !
: ð4Þ

In the above

D2 ¼ @2

@x2 þ
@2

@y2 ð5Þ

is the Laplace operator; E and m are the Young’s modulus and Pois-
son’s ratio, respectively; and

U0 and V0 are constants. Eqs. (1)–(4) are valid for a plane stress
problem. For a plane strain problem E and m should be replaced by
E! E

1�m2 and m! m
1�m . To avoid confusion, the Airy stress function

and the associated stress and displacement quantities for the re-
gions above and below the crack plane will be denoted by a sub-
script ‘‘1’’ or ‘‘2’’. Specifically, the region above the crack plane
�1 < x <1, 0 < y 6 h1 will be assigned the subscript ‘‘1’’, and the
region below the crack plane �1 < x <1, h2 6 y < 0 will be as-
signed the subscript ‘‘2’’.

2.1. Boundary conditions

The boundary conditions will be written in the following form:

rðjÞy ðx; ljÞ ¼ pjðxÞ; sðjÞxyðx; ljÞ ¼ 0; �1 6 x <1;

j ¼ 1;2; l1 ¼ h1; l2 ¼ �h2; ð6Þ
rðlÞy ðx;0Þ ¼ rð2Þy ðx;0Þ; sðlÞxyðx;0Þ ¼ sð2Þxy ðx;0Þ;
uðlÞy ðx;0Þ ¼ uð2Þy ðx;0Þ; �1 6 x <1; ð7Þ

uð1Þx ðx;0Þ ¼ uð2Þx ðx;0Þ x0 < jxj <1;
sð1Þxy ðx;0Þ ¼ sð2Þxy ðx;0Þ ¼ sðxÞ �x0 < x < x0:

(
ð8a;bÞ

In addition to (6), (7), (8a,b) we should add the overall equilibrium
condition of the layerZ 1

�1
xkp1ðxÞdk ¼

Z 1

�1
ð�1Þkxkp2ðxÞdk; k ¼ 0;1 ð9Þ

In (8) the function s(x) represents the distribution of shear stress on
the contacting crack surfaces. In this paper for s(x) we will assume:

sðxÞ ¼
0 for frictionless contact between crack surfaces;

k0ryðx;0Þ for Coulomb friction between crack surfaces;

s0ðxÞ for adhesive friction with a known shear stress:

8><
>:

ð10Þ

where k0 is a Coulomb friction coefficient.
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In addition to the boundary conditions (6), (7) and (8a,b) we
should add the condition ry(x, ±0) < 0.

When �x0 < x < x0. This condition is necessary for crack surfaces
to be in full contact. Later we will show that depending on the loca-
tion of applied external forces and on the geometry of the cracked
layer the mentioned full contact condition may be violated.

3. Solution of the problem

The solutions of the bi-harmonic Eq. (1) can be represented by
the following integral transforms for the regions ‘‘1’’ and ‘‘2’’
(Sneddon and Berry, 1958; Sneddon, 1955):

UðjÞðx; yÞ ¼
Z 1

�1
½AjðkÞ sinh kyþ BjðkÞky cosh kyþ CjðkÞ cosh ky

þ DjðkÞky sinh ky�e�ikxdk; ð11Þ

Using relations (2)–(4) and the representation (11), the stress and
displacement components can be expressed as:

rðjÞy ðx; yÞ ¼ �
Z 1

�1
k2f½BjðkÞkyþ CjðkÞ� cosh kyþ ½DjðkÞky

þ AjðkÞ� sinh kyge�ikxdk; ð12Þ

sðjÞxyðx; yÞ ¼ i
Z 1

�1
k2f½BjðkÞkyþ CjðkÞ þ DjðkÞ� sinh kyþ ½DjðkÞky

þ AjðkÞ þ BjðkÞ� cosh kyge�ikxdk; ð13Þ

rðjÞx ðx; yÞ ¼
Z 1

�1
k2f½BjðkÞkyþ CjðkÞ þ 2DjðkÞ� cosh ky

þ ½DjðkÞkyþ AjðkÞ þ 2BjðkÞ� sinh kyge�ikxdk; ð14Þ

@uðjÞx ðx; yÞ
@x

¼ 1
E

Z 1

�1
k2f½ð1þ mÞðBjðkÞkyþ CjðkÞÞ þ 2DjðkÞ�

� cosh kyþ ½ð1þ mÞðDjðkÞkyþ AjðkÞÞ þ 2BjðkÞ�
� sinh kyge�ikxdk; ð15Þ

@uðjÞy ðx; yÞ
@x

¼ i
E

Z 1

�1
k2f½ð1þ mÞðBjðkÞkyþ CjðkÞÞ � ð1� mÞDjðkÞ�

� sinh kyþþ½ð1þ mÞðDjðkÞkyþ AjðkÞÞ � ð1
� mÞBjðkÞ� cosh kyge�ikxdk: ð16Þ

In the above, the functions

AjðkÞ; BjðkÞ; CjðkÞ; DjðkÞ; ð j ¼ 1;2Þ ð17Þ

are unknown and to be determined from the boundary conditions
(6), (7) and (8a,b).

Before applying the boundary conditions 6,7,8a,b let us intro-
duce a new unknown function

uðxÞ ¼
@ uð1Þx ðx;0Þ � uð2Þx ðx; 0Þ
h i

@x
: ð18Þ

Using (18) the boundary condition (8a) will be replaced by

@½uð1Þx ðx;0Þ � uð2Þx ðx;0Þ�
@x

¼
uðxÞ; jxj < x0;

0; jxj > x0:

�
ð19Þ

It is noted that u(x) is unknown and must be determined from the
(8b).

Based on the Fourier integral transformation technique

UðkÞ ¼ 1
2p

Z x0

�x0

uðxÞeikxdx; PjðkÞ ¼
1

2p

Z 1

�1
pjðxÞeikxdxðj ¼ 1;2Þ

ð20Þ
from the boundary conditions (6), (7) and (19), we can get the fol-
lowing system of algebraic equations for the unknown functions
(17):

½ljkBjðkÞ þ CjðkÞ� cosh ljkþ ½AjðkÞ þ ljkDjðkÞ� sinh ljk

¼ �k�2PjðkÞðj ¼ 1;2; Þ; ð21Þ
½AjðkÞ þ BjðkÞ þ ljkDjðkÞ� cosh ljkþ ½CjðkÞ þ DjðkÞ
þ ljkBjðkÞ� sinh ljk ¼ 0ðj ¼ 1;2; Þ; ð22Þ

C1ðkÞ � C2ðkÞ ¼ 0; A1ðkÞ þ B1ðkÞ � A2ðkÞ � B2ðkÞ ¼ 0; ð23a;bÞ

ð1þ mÞA1ðkÞ � ð1� mÞB1ðkÞ � ð1þ mÞA2ðkÞ þ ð1� mÞB2ðkÞ ¼ 0; ð24Þ
ð1þ mÞC1ðkÞ þ 2D1ðkÞ � ð1þ mÞC2ðkÞ � 2D2ðkÞ ¼ Ek�2UðkÞ: ð25Þ

The solution for the system of the Eqs. (21–25) are given by

A1ðkÞ � A2ðkÞ ¼
1

2DðkÞk2 �P1ðkÞP1ðh1k;h2kÞ þ P2ðkÞP1ðh1k; h2kÞ
�

þ UðkÞk2

2
h2

2 sinh 2h1kþ 2h1h2ðh1 þ h2Þkþ h2
1 sinh 2h2k

h i)
:

ð26a;bÞ

B1ðkÞ � B2ðkÞ ¼
1

2DðkÞk2 P1ðkÞP1ðh1k; h2kÞ � P2ðkÞP1ðh1k;h2kÞ
�

� UðkÞ
4
�2h1k� 2h2kþ 2h2k cosh 2h1kþ 2h1k cosh 2h2k½

� sinh 2h1k� sinh 2h2kþ sinh 2ðh1 þ h2Þk�g; ð27a;bÞ

C1ðkÞ � C2ðkÞ ¼
1

2DðkÞk2 P1ðkÞP3ðh1k; h2kÞ þ P2ðkÞP3ðh1k; h2kÞ
�

� UðkÞk2

2
½h2

1ð1� cosh 2h2kÞ � h2
2ð1� cosh 2h1kÞ�

)
;

D2ðkÞ ¼ D1ðkÞ �
EUðkÞ

2k2 ; ð28a-cÞ

D1ðkÞ ¼
1

2DðkÞk2 P1ðkÞP4ððh1k;h2kÞ þ
P2ðkÞ
2DðkÞ P4ððh1k;h2kÞ

�

� UðkÞ
4
½1þ 4h2ðh1 þ h2Þk2 þ cosh 2h1k� cosh 2h2k

� cosh 2ðh1 þ h2Þk� 2h2k sinh 2h1kþ 2h1k sinh 2h2k�
�
:

ð29Þ

In the above expressions, the unknown functions (17) are repre-
sented in terms of the single unknown function U(k), which is the
Fourier transform of the unknown function (18). Note that u(x), thus
U(k), will be determined such that the shear stress condition on the
contacting crack surfaces (see (10) and the second condition in (8))
will be satisfied.

In (26–29) the following notations are used:

P1ðh1k;h2kÞ ¼ ðh1 þ 2h2Þk cosh h1kþ h1k coshðh1 þ 2h2Þk
þ ½1þ 2h2ðh1 þ h2Þk2 sinh h1k� þ sinhðh1 þ 2h2Þk;

ð30Þ
P2ðh1k;h2kÞ ¼ f2ðh1 þ h2Þk cosh h1kþ sinh h1kþ sinhðh1 þ 2h2Þkg;

ð31Þ
P3ðh1k;h2kÞ ¼ ðh1 þ 2h2Þk sinh h1k� h1k sinhðh1 þ 2h2Þk

þ ½1þ 2h2ðh1 þ h2Þk2 cosh h1k� � coshðh1 þ 2h2Þk;
ð32Þ

P4ðh1k;h2kÞ ¼ fcoshðh1 þ 2h2Þk� cosh h1k� 2ðh1 þ h2Þk sinh h1kg
ð33Þ
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and the following non-dimensional parameters are introduced:

hj

x0
! hi;

x
x0
! x;

uðxÞ
x0
! uðxÞ;

pjðxÞ
x0E

! pjðxÞ: ð34Þ

To determine U(k) the second condition in (8a,b) must be utilized.
Inserting the functions from (17) into the expression for the shear
stress (13) on the surface y = 0, we will get:

sð1Þxy ðx;0Þ
E

� sð2Þxy ðx;0Þ
E

¼ � i
8

Z 1

�1
UðkÞ½2sgnðkÞ þ wðkÞ�e�ikxdk

þ i
2

MðxÞ �1 < x <1: ð35Þ

In the Eq. (35)

wðkÞ ¼ w1ðkÞ
DðkÞ ; MðxÞ ¼

Z 1

�1
uðkÞe�ikxdk; uðkÞ ¼

up1ðkÞ þup2ðkÞ
DðkÞ ;

ð36a-cÞ

DðkÞ ¼ sinh2½kðh1 þ h2Þ� � ½kðh1 þ h2Þ�2; ð37Þ

w1ðkÞ ¼ sgnðkÞ þ 1
2

1� sgnðkÞ½ �e2ðh1þh2Þk � 1
2
½1

þ sgnðkÞ�e�2ðh1þh2Þk � 2ðh1

þ h2Þk 1� ðh1 þ h2ÞksgnðkÞ þ 2h1h2k
2� �

� 1þ 2h2
2k

2
� �

sinh 2h1k� 1þ 2h2
1k

2
� �

sinh 2h2k

þ 2h2k cosh 2h1kþ 2h1k cosh 2h2k; ð38Þ

up1ðkÞ ¼ kP1ðkÞfh1 cosh h1k� h1 coshðh1 þ 2h2Þk
� 2h2ðh1 þ h2Þk sinh h1k�; ð39Þ

up2ðkÞ ¼ �kP2ðkÞ½h2 cosh h2k� h2 coshðh2 þ 2h1Þk
� 2h1ðh2 þ h1Þk sinh h2k�: ð40Þ

By satisfying the shear stress condition in (8) we can get the follow-
ing integral equation:

� i
8

Z 1

�1
UðkÞ½2sgnðkÞ þ wðkÞ�e�ikxdk ¼ � i

2
MðxÞ þ sðxÞ � 1 < x < 1;

ð41Þ

Once this integral equation is solved, which will be done in the next
section, the stress and displacement fields will be completely
determined.

4. Solution of the integral equation (41)

In this section we will reduce the integral Eq. (41) to an infinite
system of linear algebraic equations.

Two methods were developed for this purpose. The first method
is described in the following paragraphs while the second method
is briefly summarized in the Appendix.

4.1. Method 1: Chebyshev’s orthogonal polynomials with a singular
integral equation

Using the well-known integral (Prudnikov et al., 1998):Z 1

�1
sgnðkÞe�iðx�yÞkdk ¼ � 2i

x� y
: ð42Þ
Eq. (41) can be reduced to following singular integral equation:

� 1
4p

Z 1

�1

uðyÞ
x� y

dy� i
16p

Z 1

�1
uðyÞdy

Z 1

�1
wðkÞeikðy�xÞdk

¼ � i
2

MðxÞ þ sðxÞ � 1 < x < 1: ð43Þ

The integral Eq. (43) should be considered with the following
condition

Uð0Þ ¼ 1
2p

Z 1

�1
uðxÞdx ¼ 1

2p

Z 1

�1
½uð1Þx ðx;0Þ � uð2Þx ðx;0Þ�;xdx

¼ 1
2p
½uð1Þx ðx;0Þ � uð2Þx ðx;0Þ�

x ¼ 1
x ¼ �1

				 ¼ 0;
ð44Þ

which can be derived from (18).
For the solution of the integral Eq. (43) we can use the Cheby-

shev’s orthogonal polynomials method which is based on the fol-
lowing well-known spectral expression for the Chebyshev’s
orthogonal polynomials Tm(x) (first kind) and Um(x) (second kind)
(Prudnikov et al., 1998; Gradshtein and Ryzhik, 1994):

1
p

Z 1

�1

1
x� y

TmðyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p dy ¼ �Um�1ðxÞ; m ¼ 1;2; . . . ð45Þ

Let us represent the solution of the integral Eq. (43) in the form of a
series of the Chebyshev’s orthogonal polynomials of the first kind
(Klubin, 1969):

uðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

X1
m¼1

XmTmðxÞ: ð46Þ

In (46)Xn (n = 1,2, . . .) are unknown coefficients that are to be deter-
mined. Let’s note that the solution in the form of (46) automatically
satisfies the condition (44). For completeness of the solution the
summation in (46) should be started from ‘‘0’’. However, as shown
below, the term with sub-index ‘‘0’’ is zero. Using the orthogonal
conditions

Z 1

�1

TmðxÞTnðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p dx ¼

0; m ¼ n;
p
2 ; m ¼ n – 0;
p; m ¼ n ¼ 0

8><
>: ð47Þ

and the fact that T0(x) = 1 we can derive:Z 1

�1
uðxÞdx ¼

X1
m¼0

Xm

Z 1

�1

TmðxÞT0ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p dx ¼ p X0 ¼ 0; ð48Þ

which means X0 = 0.
Utilizing the well-known integral (Watson, 1995)Z 1

�1

TmðxÞeikxffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p dx ¼ ðiÞmpJmðkÞ; ð49Þ

the Fourier inverse transform U(k) of the function u(x) can be ex-
pressed through the coefficients Xn(n = 1,2,3. . .) as follows:

UðkÞ ¼ 1
2p

Z 1

�1
uðxÞeikxdx ¼ 1

2

X1
m¼1

ðiÞmXmJmðkÞ; ð50Þ

where the Jm(k), (m = 1,2, . . .) are the Bessel functions of the first
kind.

Next we will continue to apply the Chebyshev’s orthogonal
polynomials method. To determine the remaining coefficients
Xn(n = 1,2, . . .) we will substitute (46) into the (43) and use the
spectral expression (45) to derive the following equation:

1
4

X1
m¼1

XmUm�1ðxÞ �
i

16

X1
m¼1

ðiÞmXm

Z 1

�1
JmðkÞwðkÞe�ikxdk

¼ � i
2

MðxÞ þ sðxÞ; �1 < x < 1: ð51Þ
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Using the following properties of Chebyshev’s orthogonal polyno-
mials of the second kind

Z 1

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

UmðxÞUnðxÞdx ¼
0; m – n;
p
2 ; m ¼ n

(
ð52Þ

and the known integral (Watson, 1995)

Z 1

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

Un�1ðxÞe�ikxdx ¼ ð�iÞn�1pn
JnðkÞ

k
; ð53Þ

finally we can get the following infinite system of linear algebraic
equations for the unknown coefficients in the representation (46)

Xn þ
X1
m¼1

AmnXm ¼ an; n ¼ 1;2;3; . . . ; ð54Þ

where

Amn ¼
n
2
ð�iÞnðiÞm

Z 1

�1
k�1wðkÞJmðkÞJnðkÞdk m; n ¼ 1;2; . . . ; ð55Þ
an ¼ 4nð�iÞn
Z 1

�1
k�1uðkÞJnðkÞdkþ 8

p

Z 1

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

Un�1ðxÞs0ðxÞdx:

ð56Þ
4.2. Regularity of the infinite system of linear algebraic equations

The infinite system of linear algebraic Eq. (54) is quasi-regular if
the following conditions hold (Kantorovich, 1964):

lim
n!1

X1
m¼1

jAmnj ¼ 0; lim
n!1

an ¼ 0: ð57Þ

Note that the regularity of algebraic Eq. (54) strictly depends on
behavior of functions w(k) and u(k) when k ?1. The function
w(k) is infinitely time differentiable and exponentially tends to zero
when k ?1. That is, the function w(k) satisfies the inequality
w(k) < M0 e�hk, where h = min{h1,h2} and M0 is some positive finite
numbers. Using the above properties for w (k) and the inequality for
Bessel functions (Watson, 1995)

jJnðkÞj <
k2

nðn� 1Þ ; when n > 1; ð58Þ

we arrive at

jAmnj ¼
n
4
ðiÞmþn

Z 1

�1
k�1wðkÞJmðkÞJnðkÞdk

				
				 6 M01

1
ðn� 1Þ

1
mðm� 1Þ :

ð59Þ

When n ?1

X1
m¼1

jAmnj !
N0

ðn� 1Þ þ
M01

ðn� 1Þ
X1
m¼2

1
mðm� 1Þ ¼

M02

ðn� 1Þ ! 0; ð60Þ
janj ¼ 4nð�iÞn
Z 1

�1
k�1uðkÞJnðkÞdk

				
þ 8

p

Z 1

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

Un�1ðxÞs0ðxÞdx
				! M03

ðn� 1Þ ! 0: ð61Þ

In (59)–(61) the coefficients M0j(j = 1,2,3) are some positive finite
constants.
5. Expressions for the normal and shear stresses along the line
Y = 0 and the stress intensity factor (SIF)

Using the formulas (12), (13) and the representation (A1 and
A2) we will have the following formulas for the shear and normal
stresses along the line y = 0:

sð1Þxy ðx;0Þ
E

� sð2Þxy ðx;0Þ
E

¼ � 1

8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1
p

�
X1
m¼1

ðiÞmXm ½ð�1Þm þ 1� cosðmp=2ÞsgnðxÞ þ i½ð�1Þm � 1� sinðmp=2Þ
� �

jxj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1
p� �m

� i
16

X1
m¼1

ðiÞmXm

Z 1

�1
wðkÞJmðkÞe�ikxdkþ i

2
MðxÞ; jxj > 1; ð62Þ

rð1Þy ðx;0Þ
E

� rð2Þy ðx;0Þ
E

¼ 1
4

X1
m¼1

ðiÞmXm

Z 1

�1
aðkh1; kh2ÞJmðkÞe�ikxdk

þ 1
2

Z 1

�1
½P1ðkÞbðkh1; kh2Þ þ P2ðkÞbðkh2; kh1Þ�e�ikxdk;

�1 < x <1; ð63Þ

where

aðkh1; kh2Þ ¼ k2ðh2
2sinh2kh1 � h2

1sinh2kh2ÞD�1ðkÞ; ð64Þ

bðkh1; kh2Þ ¼ fh1k sinhðh1 þ 2h2Þk� 1þ 2h2k
2ðh1 þ h2Þ

� �
cosh h1k

þ coshðh1 þ 2h2Þk� ðh1 þ 2h2Þk sinh h1kgD�1ðkÞ:
ð65Þ

From (62) and (63) it can be seen that the stress field has a mode II
type singularity at the crack tips. Specifically, the shear stress has an
inverse square-root singularity when x ? ±1 and the normal stress
ry is finite everywhere along y = 0 (even at the crack tips x = ±1).
The mode II stress intensity factor (SIF) for the singular shear stress
can be calculated in the following form:

K�II ¼ lim
x!�1

sxyðx;0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pjx2 � 1j

q

¼ � E
ffiffiffiffi
p
p

8

X1
m¼1

ðiÞmXm ½ð�1Þm þ 1� cosðmp=2ÞsgnðxÞ
�

þ i½ð�1Þm � 1� sinðmp=2Þg;

K�I ¼ lim
x!�1

ryðx;0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pjx2 � 1j

q
¼ 0: ð66a;bÞ

It will be not hard to estimate the angle of initial crack extension
especially for discussed case. From (66a, b) we can see that intensity
factor K�I ¼ 0 and K�II – 0 from which is following that the initial
crack extension direction should be along the crack line (perpendic-
ular to the applied forces).
6. Numerical results

The regularity of the algebraic Eq. (54) can be seen numerically.
However the required number of truncated system of equations
strictly depends on the thickness of the layer and the locations of
the applied external forces. For a moderately thick layer with
h1 � 1 and h2 � 1 (note the non-dimensional normalizations intro-
duced in (34)) the solutions of the truncated systems with N = 30
equations and N = 20 equations are different by �10�4. In addition,
when the number of equations in (55) N > 15 the coefficients Xn are
on the order of 10�5. For a very thin layer, i.e. h1 + h2 < < 1, the solu-
tion of (54) converges slowly (the coefficients Xn will be on the or-
der of 10�5 only when N > 50).
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Fig. 2. Variation of sð1Þxy ðx;0Þ=E with x ahead of the right crack tip for various values
of h1, for the frictionless contact case.
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Fig. 3. Variation of rð1Þy ðx;0Þ=E along the x-axis for various values of h1, for the case
of frictionless crack surface contact.
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For numerical purposes we will consider the case of non-sym-
metric concentrated forces with p1(x) = �P1[d(x � a1) + d (x � b1)]
and p2(x) = �P2[d(x � a2) + d(x � b2)], where ai and bi (i = 1,2) are
the locations of the forces; Pi(i = 1,2) are the magnitudes of the
concentrated forces, and d(x) is the Dirac–Delta function. In partic-
ular, loading parameter values P1 = 1, P2 = 2, a1 = �5, a2 = 0, b1 = 15,
b2 = 5, are used as an example. Note that the choice of these param-
eter values satisfies the overall equilibrium conditions specified in
(9). The influence of various parameters (e.g. layer thickness) on

the distributions of the normalized shear stress (E�1sð1Þxy ðx;0Þ �
E�1sð2Þxy ðx;0Þ) and the normalized normal stress (E�1rð1Þy ðx;0Þ �
E�1rð2Þy ðx;0Þ) will be described below. Concentrated forces coeffi-
cients and locations we choice in such a way as to get strong bend-
ing effect around crack location.

For the example described above, calculations have been carried
out for the cases of (a) frictionless crack surface contact; (b) fric-
tional crack surface contact with the Coulomb friction with a fric-
tion coefficient of k0 = 0.5; and (c) adhesive friction with a known
function s0(x) = 0.5(x � 1) (for different type of friction laws see
Gladwell, 1980). The bottom region thickness will be taken to be
h2 = 5 while the top region thickness h1 will take values 2, 3, 4
and 5, and the effects of this thickness variation on the stress field
and SIF will be evaluated.

Table 1 shows the influence of the top region thickness h1 (and
thus the total layer thickness) and the type of friction on the stress
intensity factors KþII =E

ffiffiffiffi
p
p

(for the crack tip at x = 1) and K�II =E
ffiffiffiffi
p
p

(for the crack tip at x = �1). It is seen that, in the case of adhesive
contact with the known shear stress function, the SIFs first increase
quickly and then decrease quickly as h1 increases from 2 to 3 and
then to 5. In the cases of frictionless and Coulomb friction contact,
several observations can be made. First, the overall trend is that the
SIFs first almost remain constant and then decrease slowly as h1 in-
creases from 2 to 3 and then to 5. Second, the SIFs at the left and
right crack tips have very similar values even though the loading
is not very symmetrical about the midpoint between the crack tips.
Third, it seems the SIFs are not strongly dependent on the friction
coefficient value (the maximum difference is about 1� 2% between
k0 = 0.0 and k0 = 0.5).

Detailed stress and strain variations along the crack line (the x
axis) are shown in Figs. 2–9. For the singular shear stress, the stress
distribution is shown only ahead of the right crack tip at x = 1.0.
20 10 10 20 30
x

1.2

1.0
h1=5

Fig. 4. Variation of eð1Þx ðx; h1Þ with x on the top surface of a cracked layer for various
values of h1, for the case of frictionless crack surface contact.
6.1. Frictionless contact case

Fig. 2. shows the variation of the normalized shear stress
sð1Þxy ðx;0Þ=E with x ahead of the right crack tip (which is at
x = 1.0), which indicates that the stress level is higher as the crack
tip is approached, consistent with the existence of a shear stress
singularity at the crack tip.

Fig. 3 shows the variation of the normalized normal stress
rð1Þy ðx;0Þ=E along the x-axis. It is seen that the normal stress is finite
along the entire x-axis (i.e. the normal stress has no singularity at
the crack tips along the x-axis). It is also necessary to note that the
normal stress becomes positive in the crack region (-1.0,1.0) for
the case of the thickness parameter value h1 = 2, which violates
the crack surface contact condition (the normal stress must be
Table 1
Values of stress intensity factors.

Coulomb friction (k0 = 0.5) Frictionless contact

h1: 2 3 4 5 2 3

KþII =E
ffiffiffiffi
p
p

0.187 0.190 0.184 0.175 0.189 0.186

K�II =E
ffiffiffiffi
p
p

0.191 0.193 0.184 0.171 0.190 0.189
negative in the crack region) and thus the solution for this partic-
ular case is not valid. For the other three thickness parameter val-
ues, the normal stress stays negative in the crack region and thus
the solution is valid. This example demonstrates that the formu-
lated problem requiring full crack surface contact under compres-
sive loading may not be physically possible for certain parameter
(k0 = 0.0) Adhesive friction (s0(x) = 0.5(x � 1))

4 5 2 3 4 5

0.173 0.157 0.469 3.281 1.761 1.102
0.176 0.158 0.973 3.331 1.810 1.131
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Fig. 5. Variation of eð1Þx ðx;h1Þ with x on the top surface of a non-cracked layer for
various values of h1, for the case of frictionless crack surface contact.
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Fig. 6. Variation of sð1Þxy ðx;0Þ=E with x ahead of the right crack tip for various values
of h1, for the case of frictional crack surface contact obeying the Coulomb friction
law with a coefficient of k0 = 0.5.
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Fig. 7. Variation of rð1Þy ðx;0Þ=E along the x-axis for various values of of h1, for the
case of frictional crack surface contact obeying the Coulomb friction law with a
coefficient of k0 = 0.5.
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Fig. 8. Variation of sð1Þxy ðx;0Þ=E with x ahead of the right crack tip for various values
of h1, for the case of frictional crack surface contact obeying an adhesive friction law
with a known shear stress function s0(x) = 0.5(x � 1).
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Fig. 9. Variation of rð1Þy ðx;0Þ=E along the x axis for various values of h1, for the case
of frictional crack surface contact obeying an adhesive friction law with a known
shear stress function s0(x) = 0.5(x � 1).
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values (e.g. for relatively thin layers, i.e. h1 + h2 < 1 and for certain
locations of the external forces that lead to strong bending effects).

Figs. 4 and 5 respectively, show the variation of the longitudinal
strain eð1Þx ðx;h1Þ on the top surface of the layer in a cracked layer
and a non-cracked layer for various h1 values. These two figures
provide a comparison of the distributions of the observable surface
strain in a cracked layer and in a non-cracked layer and offer in-
sights about the effect of the crack’s presence on the strain distri-
bution. In particular, it can be seen that the surface strain values in
the cracked and non-cracked layers sometimes can be different by
40%.

6.2. Coulomb friction contact case

For the case of frictional crack surface contact obeying the
Coulomb friction law with a friction coefficient of k0 = 0.5, Fig. 6
shows the variation of the normalized shear stress sð1Þxy ðx;0Þ=E with
x ahead of the right crack tip (which is at x = 1.0), Fig. 7 shows the
variation of the normalized normal stress rð1Þy ðx;0Þ=E with along
the x-axis. The features of these variations are similar to those
shown in Figs. 3 and 4 for the frictionless contact case, mainly that
the shear stress variation indicates a stress singularity at the crack
tip along the x-axis while the normal stress is finite along the en-
tire x-axis. Also, the solution for the thickness value of h1 = 2 shows
a positive normal stress within the crack contact zone, which vio-
lates the full contact condition and thus the solution is invalid.

6.3. Adhesive friction contact case

For the case of frictional crack surface contact obeying an adhe-
sive friction law with a known shear stress function
s0(x) = 0.5(x � 1), Fig. 8 shows the variation of the normalized
shear stress sð1Þxy ðx;0Þ=E with x ahead of the right crack tip (which
is at x = 1.0), and Fig. 9 shows the variation of the normalized nor-
mal stress rð1Þy ðx;0Þ=E along the x axis. Again the main trend is sim-
ilar to those shown in Figs. 3 and 4.
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7. Conclusions

The boundary value problem of an elastic layer containing a fi-
nite length crack under compressive mechanical loadings has been
studied. The crack surfaces are taken to be in full contact with fric-
tionless contact or frictional contact with either the Coulomb fric-
tion law or an adhesive friction law.

Based on the Fourier integral transformation techniques the
solution of the formulated problem is reduced to the solution of
a singular integral equation, then, using the Chebyshev‘s orthogo-
nal polynomials, to an infinite system of linear algebraic equations.
The regularity of these equations is established. The expressions
for the stress and displacement components in the elastic layer
are presented. Based on the analytical solution, it is found that,
along the x-axis (which aligns with the crack line) the shear stress
has an inverse square root singularity at the crack tips while the
normal stresses are finite.

Based on the developed analytical algorithm, extensive numer-
ical investigations have been conducted. The results of these inves-
tigations are illustrated graphically exposing some novel
qualitative and quantitative knowledge about stress concentration
in the layer depending on some geometric and physical parameters
of a layer. The numerical results show that the geometrical and
physical parameters of the problem have an essential influence
on the stress distribution around the crack. A stress distribution
around crack surfaces in a case of frictional contact with the Cou-
lomb friction law practically is similar to those in the case of fric-
tionless contact. For example, even for large values of Coulomb
friction coefficient (e.g. k0 � 0.8) the differences between the shear
stresses around the crack tip for a frictionless case and case with
Coulomb friction law become no more than 3%. However there
are quantitative and qualitative differences between the case with
an adhesive friction law and the case of frictionless contact.

The findings of this study can serve as a theoretical basis for
investigating stress concentration and crack growth in cracked
material layers under compressive loading conditions.
Appendix A. Method 2: Chebyshev’s orthogonal polynomials
without a singular integral equation

Representation (50) can help us to propose another way to
determine U(k) directly from (41) without going through the sin-
gular integral Eq. (43). Taking into account the following well-
known integrals (Watson, 1995):
Z 1

�1
sgnðkÞk�1JnðkÞJmðkÞdk ¼

1
n ; n ¼ m;

0; n – m;

(
ðA1Þ

Z 1

�1
sgnðkÞJnðkÞe�ikxdk ¼

2ð�iÞn�1Un�1ðxÞ; jxj < 1;
½ð�1Þn�1� sinnp

2 �i½ð�1Þnþ1� cosðnp=2ÞsgnðxÞffiffiffiffiffiffiffiffi
x2�1
p

jxjþ
ffiffiffiffiffiffiffiffi
x2�1
pð Þn jxj > 1

8<
: ;

ðA2Þ
and substituting (50) into the (41) we can arrive at exactly the same
linear algebraic Eq. (54). Note that this second method is a direct
method for deriving the linear algebraic Eq. (54), without dealing
with the singular integral Eq. (43).

The set of infinite number of linear algebraic Eq. (54) can be
solved by the method of truncation to a set of finite number of lin-
ear algebraic equations. However, in order to apply the truncation
method, we need to show the regularity of (54). Another approxi-
mate method for solving the singular integral Eq. (43) was pro-
posed by Erdogan et al. (1973).
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