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SUMMARY

A cytomatrix of proteins at the presynaptic active
zone (CAZ) controls the strength and speed of neuro-
transmitter release at synapses in response to action
potentials. However, the functional role of many CAZ
proteins and their respective isoforms remains
unresolved. Here, we demonstrate that presynaptic
deletion of the two G protein-coupled receptor
kinase-interacting proteins (GITs), GIT1 and GIT2,
at the mouse calyx of Held leads to a large increase
in AP-evoked release with no change in the readily
releasable pool size. Selective presynaptic GIT1
ablation identified a GIT1-specific role in regulating
release probability that was largely responsible for
increased synaptic strength. Increased synaptic
strength was not due to changes in voltage-gated
calcium channel currents or activation kinetics.
Quantitative electron microscopy revealed unaltered
ultrastructural parameters. Thus, our data uncover
distinct roles for GIT1 and GIT2 in regulating neuro-
transmitter release strength, with GIT1 as a specific
regulator of presynaptic release probability.

INTRODUCTION

The release probability (Pr) of synaptic vesicles (SVs) in response

to action potentials (APs) from a pool of fusion competent SVs,

the readily releasable pool (RRP), regulates synapse strength

(Regehr, 2012). Critical to the regulation of SV release at the

active zone (AZ) is an electron dense network of proteins, the cy-

tomatrix at the active zone (CAZ), which regulates SV release

through distinct pathways (Gundelfinger and Fejtova, 2012). A

family of functionally conserved molecules, the G protein-

coupled receptor (GPCR) kinase-interacting proteins (GITs),

are located in the CAZ and function as part of an oligomeric com-

plex with PIX proteins, which serve as a scaffold for numerous

signaling partners (Hoefen and Berk, 2006).
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Inmammals, two genes,Git1 andGit2, encodeGITs that share

highly conserved domain structures and amino acid sequences

(Hoefen and Berk, 2006). In the CNS, GITs are widely co-ex-

pressed (Schmalzigaug et al., 2007) and localized within both

pre- and postsynaptic compartments (Ko et al., 2003). In

D.melanogaster andC. elegans, a single conservedGIT ortholog

is ubiquitously expressed (Bahri et al., 2009; Lucanic and Cheng,

2008). Git2 knockout (KO) mice are viable but have hearing im-

pairments (White et al., 2013) andanxiety-like behaviors (Schmal-

zigaug et al., 2009b). UnlikeGit2KOmice, mostGit1KOmice die

at birth, and adult survivors have impaired fear memory (Schmal-

zigaug et al., 2009a), operant conditioning (Menon et al., 2010),

and spatial and object learning (Won et al., 2011). In addition,

GIT1 has been implicated in Huntington’s disease (Goehler

et al., 2004) and attention deficit hyperactivity disorder (Won

et al., 2011), although this is controversial (Klein et al., 2015).

AlthoughGIT1 function has been characterized in the postsyn-

aptic compartment (Segura et al., 2007; Zhang et al., 2003), due

to the inability to selectively ablate presynaptic GIT expression,

little is known about GIT function at the mammalian presynapse.

The calyx of Held/medial nucleus of the trapezoid body (MNTB)

is a giant glutamatergic axosomatic synapse in the auditory

brainstem, which tightly regulates RRP release dynamics to sup-

port the early stages of auditory processing (Borst and Soria van

Hoeve, 2012). Due to its unparalleled experimental accessibility,

presynaptic mechanisms of synaptic transmission can be

analyzed independent of postsynaptic contributions. Thus, this

is an ideal synapse to address presynaptic GIT functions in syn-

aptic transmission regulation. Here, we used Git1 conditional

knockout (CKO) (Git1�/�, in presence of Cre recombinase),

Git2 KO (Git2�/�), andGit1CKO/Git2 KO (Git1�/�/Git2�/�) trans-
genic mice, together with our ability to conditionally ablate GIT1

expression in the calyx of Held, to analyze the role of GITs in syn-

aptic transmission. We show that loss of both GIT1 and GIT2 re-

sults in increased AP-evoked release but with no change in RRP

size, SV number or distribution at the AZ, voltage-gated calcium

channel currents, or calyx morphology. However, individual

ablation of Git1 increased Pr, while ablation of Git2 did not. Our

data demonstrate that GIT1 and GIT2 proteins regulate synaptic

strength through distinct presynaptic mechanisms that increase

exocytosis efficiency, with a distinct role for GIT1 regulation ofPr.
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Figure 1. GIT Proteins Regulate AP-Evoked Release and Pr

(A)Representative tracesof singleAP-evokedEPSCs fromWT,Git2�/�,Git1�/�,
or Git1�/�/Git2�/� calyces.

(B) Summary data showing average EPSC amplitudes.

(C) Cumulative frequency histogram of EPSC amplitudes.

(D) Average normalized EPSC amplitudes.

(E) Example traces in response to a 100-Hz stimulus train from WT, Git2�/�,
Git1�/�, or Git1�/�/Git2�/� calyces.

(F) Cumulative plots of EPSC amplitudes with back-extrapolated linear fits.

(G) Average values for the calculated RRP size.

(H) Cumulative frequency histogram of RRP size.

(I) Pr obtained by dividing the amplitude of the first EPSC from the 100-Hz train

by the calculated RRP size.

(J) Cumulative frequency histogram of Pr.

*p<0.05, **p<0.01, ***p<0.001one-wayANOVAwithapost hocDunnett’s test.
RESULTS

GIT Protein Expression at the Calyx of Held
Since the GITs’ expression pattern at the calyx of Held was

unknown, we carried out immunohistochemical (IHC) staining

on the P18-21 calyx of Held. Our results indicated that GIT1
and GIT2 could be detected in the calyx. Line scan analysis

indicated that GIT1 and GIT2 colocalized with vesicular gluta-

mate transporter 1 (VGLUT1) (Figures S1A and S1B). Our

results confirm prior studies where GIT1 was found at

hippocampal presynapse (Ko et al., 2003; Podufall et al.,

2014) and demonstrate that GIT2 is also expressed

presynaptically.
GIT1 and GIT2 Regulate AP-Evoked Release
In order to selectively ablate GIT1 expression or ablate all GIT

expression at the calyx, we injected a rAd that independently

co-expressed Cre and EGFP, using a stereotactic injection

approach into the cochlear nucleus (CN) of P0-1 Git1 CKO or

Git1 CKO/Git2 KO mice (Supplemental Experimental Proce-

dures). This permitted specific analysis of GIT1 presynaptic

function independent of its postsynaptic role, which was not

possible in previous studies using Git1 KO animals (Menon

et al., 2010; Schmalzigaug et al., 2009a). In addition, ablating

GIT1 presynaptically and GIT2 expression globally, we were

able to examine how complete loss of GITs affected presynaptic

function.

To analyze how the individual and combined GIT proteins

regulated AP-evoked release, we performed midline stimulation

of calyx axons while the resultant AMPA excitatory postsynaptic

currents (EPSCs) from principal cells of the MNTB innervated by

transduced and non-transduced P18-21 calyces were recorded

in whole-cell voltage-clamp mode (Supplemental Experimental

Procedures). To determine howGITs affect basal synaptic trans-

mission, we used a stimulation frequency of 0.05 Hz. Loss of

both GIT1 and GIT2 together led to a 2-fold increase in the AP-

evoked EPSCs compared to wild-type (WT) (9.01 ± 1.44 nA,

n = 18 versus 4.52 ± 0.75 nA, n = 13; p < 0.05). Loss of GIT2

had no effect, while loss of GIT1 showed a trend toward

increased AP-evoked release, but did not reach statistical signif-

icance (Figures 1A–1C, Table S1). Expression of Cre alone had

no effect on AP-evoked release (Figures S2A–S2D, Table S1).

Analysis of normalized AP-evoked EPSC waveforms revealed

that GIT loss did not affect AP-evoked release kinetics (Fig-

ure 1D). Analysis of mEPSC revealed no changes in mEPSC

frequency or kinetics (Figure S3, Table S1). These results

demonstrate that GITs regulate synaptic strength at mammalian

CNS synapses.
Loss of GIT1, but Not GIT2, Increases Initial Release
Probability
Increased AP-evoked release could be explained in two ways:

(1) an increase in RRP size or (2) an increase in initial Pr. To deter-

mine the RRP size, we carried out afferent fiber stimulation at

100 Hz and plotted the data using the back extrapolationmethod

(Schneggenburger et al., 1999) and by using the methodology of

Elmqvist and Quastel (EQ) (Figure S4) (Elmqvist and Quastel,

1965). Subsequent analysis revealed that individual loss of

GIT1 or GIT2 alone, or the combined loss of GIT1 and GIT2,

did not lead to any statistically significant increase in the RRP

size compared to WT (Figures 1E–1H, Figures S4A–S4C, Table

S1). Expression of Cre alone had no effect on RRP size (Figures

S2E–S2H, Table S1). Therefore, our functional measure of RRP
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Figure 2. Synaptic Plasticity Is Altered by

the Loss of GIT Expression

(A) Example traces of the EPSC obtained by fiber

stimulation after applying two consecutive pulses

at the frequencies indicated (a1, 10 Hz; a2, 50 Hz;

a3, 100 Hz). Black and white arrowheads indicate

the first and second EPSC, respectively.

(B) PPR was calculated by dividing the amplitude

of the second EPSC by the amplitude of the first

EPSC at 10 Hz (b1), 50 Hz (b2), and 100 Hz (b3).

(C) Summary plot of normalized EPSC amplitude

to the first EPSC during train stimuli using 10 Hz

(c1), 50 Hz (c2), and 100 Hz (c3) against the stim-

ulus number.

(D) Steady-state depression level measured and

plotted as a function of the stimulation frequency

(d1, 10 Hz; d2, 50 Hz; d3, 100 Hz).

**p < 0.01, ***p < 0.001 one-way ANOVA with a

post hoc Dunnett’s test.
size in the absence of GITs indicates RRP size changes are not

responsible for increased AP-evoked release.

Since the RRP size was unchanged, the increased AP-evoked

release was likely to be caused by increased Pr. To calculate the

initial Pr, we divided the first EPSC amplitude from each train by

the RRP size as calculated by the two different methods. Our re-

sults demonstrated that loss of GIT1 and GIT2 together led to a

significant increase in initial Pr compared to WT (0.37 ± 0.02, n =

18 versus 0.26 ± 0.02, n = 13; p < 0.001) (Figures 1I and 1J). The

same results are obtained by the EQmethod (0.34 ± 0.02, n = 18

versus 0.18 ± 0.03, n = 12; p < 0.001) (Figures S4D and S4E).

Interestingly, GIT1 loss alone also led to similar increases in

initial Pr compared to WT regardless of the method used

(0.35 ± 0.02, n = 19 versus 0.26 ± 0.02, n = 13; p < 0.01) (EQ

method, 0.31 ± 0.02, n = 10 versus 0.18 ± 0.003, n = 12; p <

0.001), while GIT2 did not (Figures 1I and 1K, Figures S4D and
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S4E). Expression of Cre alone did not

change Pr compared to WT (Figures S2I

and S2J, Table S1).

To further confirm GIT1 regulates initial

Pr, we applied a paired pulse stimulation

protocol and calculated the paired pulse

ratio (PPR) at 10, 50, and 100 Hz (Regehr,

2012). Specifically, decreases in the PPR

are hallmarks of increases in Pr due to

presynaptic regulation. Figure 2 shows

that at all frequencies tested there was a

significant reduction in the PPR in both

the Git1�/� or Git1�/�/Git2�/� calyces,

but not the Git2�/� (Figures 2A and 2B,

Table S1). Expression of Cre alone had

no effect on PPRs (Figures S2K and

S2L, Table S1). These results show that

deletion of GITs increased synaptic

strength independent of increased RRP

size. We conclude that GIT1 is the domi-

nant isoform that regulates initial Pr at

the calyx leading to changes in synaptic
strength. In contrast, GIT2 contributes to synaptic strength in-

creases independent of initial Pr regulation.

Loss of GIT1 and Combined Loss of GIT1 and GIT2
Increases Short-Term Depression
Since the initial Pr is increased without changes in the RRP size,

this should lead to an increase in the rate of depression in

response to a train stimulation. We analyzed the RRP release ki-

netics at 10, 50, and 100 Hz. We found an increase in the rate of

onset of depression and lower steady-state levels with the loss of

GIT1 alone, and this amount of depression was not increased

with loss of both GIT1 and GIT2 together (Figures 2C and 2D, Ta-

ble S1). Furthermore, unlike theWTorGit2�/� responses,Git1�/�

and Git1�/�/Git2�/� responses were best fit with a double expo-

nential (Table S2). Expression of Cre resulted in no changes

compared to WT (Figures S2M and S2N, Table S1). Since loss



Figure 3. Loss of GIT Proteins Results in No Changes of Ca2+ Cur-

rent and Activation Kinetics

(A) Stimulus protocol used for the experiment from (B) to (F).
of GIT1 alone led to an increase in frequency-dependent depres-

sion, and with no further increases with the loss of GIT1 and GIT2

together, our data demonstrate that GIT1 regulation of Pr is the

major determinant impacting frequency dependent synaptic

plasticity.
Loss of GIT Proteins Does Not Affect Voltage-Gated
Calcium Currents
Changes in presynaptic calcium currents (Ica) have dramatic ef-

fects on AP-evoked release (Regehr, 2012). To determine if

increased Ica might explain the initial Pr increase with loss of

GIT1 or additional synaptic strength increase with loss of both

GIT1 and GIT2,we measured the Ica in the WT, Git2�/�, Git1�/�,
and Git1�/�/Git2�/� calyces. Analysis of the Ica current-voltage

(I/V) relationship demonstrated no change in the Ica steady-state

amplitude in the Git1�/� or Git2�/� calyces (Figure 3, Table S1).

However, there was a slight reduction in the Git1�/�/Git2�/�

calyces, but this did not reach significance (Figures 3A–3C, Table

S1). Normalization of ICa to the ICa maximum revealed no

changes in the activation kinetics (Figure 3D). In addition, there

was no change in ICa tail current peak amplitudes and activation

kinetics (Figures 3E and 3F, Table S1). Finally, Cslow values re-

vealed no difference in calyx size between the WT and Git1�/�,
Git2�/�, or Git1�/�/Git2�/� calyces (Figure 3K).

Since our fiber stimulation experiments used APs to trigger SV

release, we tested whether ICa influx triggered by a pseudo-AP

waveform would be affected. To do so, we recorded the ICa
evoked by pseudo-AP waveforms (Yang and Wang, 2006) (Fig-

ures 3G and 3H). Since the integral of ICa in response to an AP is

the key determinant of the resultant EPSC, we measured the ICa
charge in response to the pseudo-AP waveform and found no

reduction in the ICa charge in Git1�/�, Git2�/�, or Git1�/�/Git2�/�

calyces compared to WT (Figure 3I). Since the loss of GITs did

not affect ICa amplitude, charge, or activation kinetics, this indi-

cates that the loss of GIT proteins leads to an increased exocy-

tosis efficiency, similar to what happens during calyx develop-

ment (Taschenberger et al., 2002). Finally, we conclude that

GIT1 regulation of Pr is independent of VGCC regulation.
Loss GIT Proteins Does Not Change SV Distribution at
the Active Zone
Since GITs interact with CAZ proteins implicated in AZ organiza-

tion (Kim et al., 2003; Ko et al., 2003), it is possible that the
(B) Representative ICa traces for I/V curve analysis from �80 mV to +60 mV

from WT, Git2�/�, Git1�/�, and Git1�/�/Git2�/� calyces. Insets show in detail

the tail currents.

(C) I/V plot representing the average steady state ICa amplitudes plotted

against voltage.

(D) Normalized average raw ICa amplitudes to Imax.

(E) Analysis of voltage-dependent activation of VGCCs.

(F) Normalized tail currents to Imax.

(G) Stimulus protocol used for the experiment from (H) to (L).

(H) Representative ICa obtained fromWT,Git2�/�,Git1�/�, andGit1�/�/Git2�/�

calyces.

(I) Average values of ICa charge.

(J) Cumulative frequency of ICa charge.

(K) Average values of capacitance (Cslow).

(L) Cumlative frequency of Cslow.
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Figure 4. Ablation of GIT Expression Does

Not Affect the Number of Docked SV or SV

Distribution

(A) EM sample images taken from WT, Git2�/�,
Git1�/�, and Git1�/�/Git2�/� calyces. Top panels:

calyx of Held is demarcated in yellow, and the

nanogold GFP labeling in green (scale bar =

500 nm). Bottom panels: detail of the AZ analyzed.

SVs closest to the AZ are shown in red shade, and

AZ length is been denoted by a red line (scale bar =

200 nm).

(B) Summary of normalized distribution of SV dis-

tance from AZs.

(C) Average number of SVs localized within 5 nm

relative to the AZs.

(D) Cumulative frequency histogram of the AZ

length.

(E)Exampleof3Dreconstructions fromWT,Git2�/�,
Git1�/�, and Git1�/�/Git2�/� calyces.

(F and G) Average values of surface area (F) and

the corresponding cumulative frequency distri-

bution (G).

(H and I) Summary data showing average values

of volume (H) and the corresponding cumulative

frequency distribution (I).
increased exocytosis efficiency we observed in the Git1�/� and

Git1�/�/Git2�/� calyces was due to altered presynaptic sub-

structure. To test this hypothesis, we acquired and analyzed

electron microscopy (EM) images from WT, Git2�/�, Git1�/�,
andGit1�/�/Git2�/� calyces to assess if SV docking, SV distribu-

tion, or AZ length were altered. Analysis of EM images revealed
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that SV distribution and number of

docked SVs were not changed in any of

the genotypes tested (Figures 4A–4C,

Table S1), and there was only minor

reduction in the AZ length in the Git1�/�/
Git2�/� compared to WT (262.1 ±

5.82 nm, n = 120 versus 293.6 ± 6.2 nm,

n = 125; p < 0.01) (Figure 4D, Table S1).

Since docked SVs are correlated with

RRP size (Schikorski and Stevens,

2001), these results are consistent with

our previous observation that loss of

GITs does not affect RRP size (Figure 1).

In conclusion, our results indicate that

loss of GITs does not affect synaptic sub-

structure, SV docking, or SV distribution

relative to the AZ and is not the cause

for increased Pr in the Git1�/� calyces or

synaptic strength increases in theGit1�/�/
Git2�/� synapses.

Although in murine neurons, interfer-

encewith GIT1 function changes dendrite

morphogenesis and morphology (Zhang

et al., 2003), it remains unknown if GIT

proteins affect presynaptic morphology.

Despite the fact that Cslow values indicate

that loss of GITs did not affect calyx size
(Figure 3K), Cslow values do not report the actual calyx size, but

the capacitance of the calyx and the variable length of axon

that remains attached (Borst and Sakmann, 1998). Therefore,

to accurately quantitate if calyx morphology was altered by the

loss of GITs, we carried out 3D reconstructions from confocal

z stack images of WT, Git2�/�, Git1�/�, or Git1�/�/Git2�/�



calyces and determined the surface area and volume from the

P18-21 calyces (Figures 4E–4I). Analysis revealed no surface

area reduction in theGit2�/�,Git1�/�, orGit1�/�/Git2�/� calyces

compared to WT (Figures 4F and 4G, Table S1). However,

despite no change in surface area, there was an increase in

the volume of Git2�/� calyces compared to WT (880.50 ±

59.17 mm3, n = 29 versus 639.60 ± 41.46 mm3, n = 29; p < 0.05)

(Figures 4H and 4I, Table S1). Nevertheless, based on the

absence of surface area and volume changes in Git1�/� or

Git1�/�/Git2�/�, we conclude that the increased exocytosis effi-

ciency due to increases of Pr, with loss of GIT1, and further syn-

aptic strength increase in the absence of GIT1 and GIT2 are not

due to altered calyx morphology.

DISCUSSION

In our present study, we tested whether GIT proteins have a role

in presynaptic regulation of mammalian synaptic function. Using

our ability to selectively study GIT presynaptic function, we

conclude that GIT1 and GIT2 proteins regulate synaptic strength

by increasing the exocytosis efficiency through distinct mecha-

nisms: GIT1 by negatively regulating Pr, while GIT2 acts through

an unknown mechanism.

Although GIT1 and GIT2 share the same domain structure,

they appear to have some distinct functions at the molecular

level (Hoefen and Berk, 2006) and behaviorally (Schmalzigaug

et al., 2009a, 2009b). Only loss of GIT1 alone led to an increase

in Pr while no further increases in Pr were seen with loss of both

GIT1 and GIT2. These GIT isoform differences of Pr regulation

might be explained by high levels of GIT1 expression relative

to GIT2 in the calyx, GIT1 mRNA levels are �10-fold higher

than GIT2 mRNA levels (Körber et al., 2014) or by GIT2 having

an independent mechanism for regulating synaptic strength.

Nonetheless, it is clear that GIT2 contributes to regulation of

presynaptic function as the combined loss of GIT1 and GIT2

is required to significantly increase AP-evoked EPSCs. At the

calyx, Pr is reduced during development (Iwasaki and Takaha-

shi, 2001; Taschenberger and von Gersdorff, 2000). Although

increases in GIT1 and GIT2 expression levels after hearing

onset may contribute to Pr reduction, GIT mRNA levels in

GBCs are unchanged before and after hearing (Körber et al.,

2014).

The RRP consists of two SVs populations, those that are

readily releasable and those that are reluctant to be released

in response to an AP. The regulation of the number that are

readily releasable directly effects initial Pr (Neher, 2010). CAZ

proteins have emerged as potential regulators of Pr through

different mechanisms: (1) positional priming, which regulates

SV to VGCC coupling (Neher, 2010), and (2) post priming,

which regulates downstream signaling cascades after posi-

tional priming that lower the energy barrier for fusion (Lee

et al., 2013). At the calyx, positional priming is tightly regulated

to ensure continuous SV availability for encoding auditory infor-

mation (Chen et al., 2015; Fedchyshyn and Wang, 2005; Naka-

mura et al., 2015). However, understanding of the molecular

mechanisms that regulate positional priming is still in the early

stages. At the calyx, Munc13-1 has been suggested to posi-

tively regulate positional priming by bringing SVs closer to the
VGCCs (Chen et al., 2013). At hippocampal synapses, the actin

cytoskeleton is implied to be a structural barrier that prevents

close association between SVs and VGCCs, thereby serving

as negative regulators of positional priming (Cingolani and

Goda, 2008). Studies at the calyx on Septin 5 (Yang et al.,

2010) and those that acutely disrupt the actin cytoskeleton

(Lee et al., 2012) demonstrate that these structural barriers

can serve as negative regulators of SV release in response to

an AP and affect Pr. Since GIT1 is located at the AZ at the

same distance as RIM proteins with respect to Bassoon (Podu-

fall et al., 2014), it is possible that GIT/PIX complexes might

regulate actin dynamics at the AZ, which affects positional

priming of SVs. Evidence supporting this hypothesis comes

from a study in which knockdown of Piccolo, a regulator of

F-actin dynamics and a GIT binding protein, results in facilita-

tion of SV exocytosis and increases the rates of depression

(Waites et al., 2011). Future studies will be needed to address

this possibility.

Our data cannot rule out a possible role for GITs in post prim-

ing. Previous studies revealed that modulation of lipid signaling

at the AZ can change Pr (Basu et al., 2007; Lee et al., 2013).

GITs deactivate Arf6, which in turn can regulate the production

of lipids PA and PIP2 (Hoefen and Berk, 2006). Work in neuroen-

docrine cells suggests that GITs negatively regulate Arf6 path-

ways to inhibit exocytosis (Meyer et al., 2006). However, the

granule docking site in neuroendocrine cells is different from

the AZ in neurons, and they have different release rates. Thus,

the mechanisms of GIT function found in neuroendocrine cells

will need to be verified in neurons.

Our findings on the functional role of GIT proteins at the calyx

define a different phenotype than reported in a Drosophila

transgenic model where dGIT function was analyzed at the

NMJ (Podufall et al., 2014). These differences might be due

to: (1) sequence differences between the mammalian GIT and

Drosophila dGITproteins (43% similar) (Bahri et al., 2009); (2)

complete deletion of GIT proteins in our study, and hypo-

morphs in Drosophila; (3) differences in AZ organization at the

fly NMJ compared to a mammalian AZ (Zhai and Bellen,

2004). Differing results with GITs across species is not unrea-

sonable, as disruption of the ELKS/CAST homolog bruchpilot

(Kaeser et al., 2009) differentially effects synaptic transmission

in Drosophila and mammals. Interestingly, disruption of dGIT

function in high external Ca2+ did lead to increased presence

of synaptopHluorin on the plasma membrane at 10 and

50 Hz. This result could be interpreted as the loss of GIT result-

ing in an increase in Pr at the Drosophila NMJ, which would be

consistent with our findings in the calyx. Finally, dGIT regulates

endocytosis in Drosophila, but it remains to be tested in

mammals.

In summary, we have demonstrated for the first time that GITs

are important presynaptic regulators of synaptic strength. This

regulation of synaptic strength by GITs is likely to contribute

to the disruption of the neuronal circuit output that leads to

hearing loss phenotypes, impairment in fear memory, and

spatial and object learning. Future studies will resolve the

mechanisms by which GITs regulate RRP dynamics and their

roles in the early stages of auditory processing and neurological

diseases.
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EXPERIMENTAL PROCEDURES

Afferent fiber stimulation and presynaptic recordings were performed as pre-

viously described on P16-21 mice (Chen et al., 2013, 2015). Confocal images

were acquired with a Zeiss LSM 780 and analyzed using Amira 5.6 and Fiji im-

aging analysis software. For EM experiments, Tecnai G2 Spirit BioTwin TEM

was used, and images were taken with a Veleta CCD camera (Olympus) oper-

ated by TIA software (FEI) and analyzed using Fiji. All procedures were per-

formed in accordance with the animal welfare guidelines of MPFI Institutional

Animal Care and Use Committee.
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