
Kidney International, Vol. 66 (2004), pp. 196–202

ION CHANNELS – MEMBRANE TRANSPORT – INTEGRATIVE PHYSIOLOGY

Nephrotoxicity of platinum complexes is related to basolateral
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Nephrotoxicity of platinum complexes is related to basolateral
organic cation transport.

Background. Cisplatin and its analogs oxaliplatin and car-
boplatin are widely used antitumor drugs. Nephrotoxicity is a
common and relevant adverse effect that occurs especially in cis-
platin therapy. Cellular and molecular mechanisms of cisplatin-
induced nephrotoxicity are not completely understood. The
nephrotoxicity of platinum complexes was evaluated by a new
in vitro system that utilizes the high Trans Epithelial Electrical
Resistance (TEER) of the C7 clone of the MDCK (Madin-
Darby canine kidney) cells. By means of this assay system we
addressed the question whether the side of application of renal
epithelia influences platinum complex toxicity.

Methods. C7 cells were grown in membrane filter cups, and
the apical or basolateral membranes were exposed to 100-
lmol/L cis-, oxali-, or carboplatin. TEER and caspase-3 activity
were determined. Cimetidine was used as an inhibitor of organic
cation transporters (OCTs). C7 cell lysates were analyzed for
OCT-1 and -2 by Western blot analysis.

Results. TEER dropped by 89.5 ± 9.3% (mean ± SEM;
N = 6) within 24 hours after addition of cisplatin to the ba-
solateral side of C7 cells, while caspase activity increased up to
840.6 ± 17.4% (mean ± SEM; N = 6) compared to control cells.
Exposure of the apical membrane to cisplatin reduced TEER
by only 13.4 ± 8.7% (mean ± SEM; N = 6), and increased
caspase-3 activity up to 213.9 ± 7.6% (mean ± SEM; N = 6).
Oxaliplatin and carboplatin reduced TEER to a lesser extent
than cisplatin. Oxaliplatin lowered TEER stronger than carbo-
platin. In general, basolateral application led to higher caspase
activities and lower TEERs. The OCT-inhibitor cimetidine in-
hibited the TEER decrease induced by platinum complexes.
Immunoblotting confirmed the presence of OCT-2 in C7 cells.

Conclusion. Toxic effects of platinum complexes on renal
epithelia depend on the platinum complex used and the site
of application. We conclude that cell polarity and basolateral
transport mechanisms are essential in nephrotoxicity of plat-
inum drugs.

Key words: nephrotoxicity, apoptosis, caspase-3, cell polarity, cisplatin
analogs.

Received for publication September 15, 2003
and in revised form January 13, 2004
Accepted for publication January 23, 2004

C© 2004 by the International Society of Nephrology

Cisplatin and its analogs carboplatin and oxaliplatin
are widely used antitumor drugs. Among others, platinum
complexes are effective against cancer of the lung, testis,
ovary, cervix, endometrium, oropharynx, bladder, colon,
and rectum [1–4]. It is generally accepted that platinum
complexes exert their main antitumor properties through
binding to DNA, and several specific adducts have been
identified [5–7].

Next to other adverse effects like nausea and diarrhea,
nephrotoxicity is a major disadvantage that occurs espe-
cially in cisplatin therapy. Despite the dose dependency
of the antineoplastic effect, nephrotoxic risks preclude
the use of higher doses to maximize the therapeutic ef-
fect. A current study with high-dose cisplatin treatment
in solid tumors showed that 42% of the treated patients
suffered from nephrotoxic injury [8]. Several mecha-
nisms have been implemented in dose-dependent and cu-
mulative cisplatin-induced nephrotoxicity. Besides DNA
damage, oxidative stress, inhibition of protein synthesis,
mitochondrial dysfunction, and involvement of receptors
of the tumor necrosis factor (TNF) family, apoptosis of
the renal epithelial cells is of critical importance [9–12].

For a long time nephrotoxic injury was thought to be
due to necrosis, until apoptosis was identified as an al-
ternate mechanism of nephrotoxic cell death. Apoptosis
enables cells to kill themselves under physiologic condi-
tions, but it is also the specific mechanism through which
cells with damaged genetic contents (i.e., cancer cells
during cisplatin therapy) are removed [13]. Caspases, a
class of cysteine proteases that are key regulators of the
apoptotic pathway, have come into the focus of cisplatin-
induced nephrotoxic injury [14]. In LLC-PK1 cells, a cell
line obtained from proximal tubules of pigs, cisplatin
leads to activation of initiator caspases-2, -8, and -9, and
consecutively to activation of the executioner caspase-3
[15]. The hallmark of apoptosis is the cleavage of nuclear
chromatin by DNases that can be activated by caspase-3
[16].

Although cisplatin-induced nephrotoxicity has been
subject of extensive research, the knowledge about the
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influence of cell polarity and transport mechanisms is lim-
ited. There are no universally accepted platinum trans-
port proteins identified to date, and the mechanism by
which cisplatin enters cells is not fully understood [17].
Endo et al [18] found a carrier-mediated uptake of cis-
platin by epithelial cells derived from proximal tubules
of the opossum (OK cell line). Accumulation of cisplatin
in the cells was more effective from the basolateral than
from the apical cell culture medium. Okuda et al [19] in-
vestigated the role of basolateral membrane transport in
cisplatin-induced toxicity in LLC-PK1 cells, but they did
not distinguish between apoptosis and necrosis because
only lactate dehydrogenase (LDH) release into the cul-
ture medium was measured.

We have established a new model for the investigation
of platinum complex-induced toxicity in renal epithelia
by utilizing the C7 clone of the MDCK (Madin-Darby
canine kidney) cells [20]. The C7 cells build a tight mono-
layer, which is reflected by their high Trans Epithelial
Electrical Resistance (TEER) of up to 20,000 �·cm2.
By means of this assay system we addressed the ques-
tion whether site of application has an effect on plat-
inum complex–induced cell death. Here we report that
platinum complex toxicity strongly depends on the
site of application (i.e., basolateral application violates
monolayers more than apical application). Cisplatin, ox-
aliplatin, and carboplatin induce loss of epithelial mono-
layer integrity by apoptosis via activation of caspase-3 to
different extents.

METHODS

Cell culture and reagents

The phenotypic and genotypic properties of MDCK-
C7 cells have been described in detail previously [20].
In short, the C7 clone resembles principal cells of the
renal collecting duct epithelium with high transepithe-
lial electrical resistance. C7 cells were grown in flasks
under standard conditions (37◦C, 5% CO2) in minimal
essential medium (MEM) with Earle’s salts, nonessen-
tial amino acids, glutamic acid, and 10% fetal calf serum
(FCS; Biochrom, Berlin, Germany). For TEER measure-
ments, 400,000 MDCK-C7 cells were seeded in a filter cup
(growth area 4.2 cm2, 1 × 106 pores/cm2, 0.4 lm pore di-
ameter; Becton Dickinson Labware, Franklin Lakes, NJ,
USA) (Fig. 1). The polygonal flat C7 cells grow firmly
attached to the microfilter membrane and form an ep-
ithelial monolayer. To prevent bacterial growth during
repeated TEER measurements penicillin (100 U/mL)
and streptomycin (1 lg/mL) were present in the me-
dia. Medium exchange and transepithelial electrical re-
sistance measurement started three days after seeding
MDCK-C7 cells. TEER was measured at least once per
day in six-well dishes. TEER values were corrected for
background resistance. After another two to four days,
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Fig. 1. Experimental setup. C7-MDCK cells (2) were seeded in micro-
filter membrane cups (3) mounted in wells to form a tight and polar-
ized monolayer that divides the cell culture medium in an upper (1)
and lower (4) medium compartment. The basolateral side of the cells
is freely accessible for platinum drugs by adding them to the lower
medium. Substances have contact to the apical membrane after adding
them to the upper medium.

platinum complexes were added to the upper or lower
medium compartment.

Application of platinum complexes

Cisplatin [cis-Platinum(II) diamine dichloride], ox-
aliplatin [SP-4–2-(1R-trans)]-1,2-cyclohexanediamine-
N,N′)[ethanedioata(2-)-O,O′-platinum], and carboplatin
[cis-diamine(1,1-cyclobutanedicarboxylato)-platinum]
were purchased as crystalline powders (Sigma Aldrich,
Taufkirchen, Germany) and dissolved in phosphate-
buffered saline (PBS) containing Ca2+ and Mg2+

[(mmol/L): 137 NaCl, 2.7 KCl, 4.3 Na2HPO4, 1.4
KH2PO4; 1 MgCl2, 1 CaCl2; pH 7.4 at 37◦C]. Controls
were performed by adding solvent to both medium
compartments because there was no difference between
the addition of solvent to the upper or lower medium.

Application of organic cation transporter inhibitor

The organic cation transporter (OCT) inhibitor cime-
tidine [21] (Sigma Aldrich) was dissolved in PBS with
Ca2+ and Mg2+ (see application of platinum complexes;
107 mmol/L stock solution). Cimetidine was added 1 hour
before addition of oxaliplatin (100 lmol/L) or carboplatin
(100 lmol/L) and 6 hours before addition of cisplatin
(10 lmol/L) to the basolateral medium.

Measurement of transepithelial electrical resistance

For transepithelial electrical resistance measurements,
published in detail previously [22], commercially avail-
able STX-2 chopstick electrodes (WPI; Sarasota, FL,
USA) were used. The concentric electrodes deliver cur-
rent pulses (�I) and detect changes in transepithelial
voltage (�V). The electrical resistance can be derived
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continuously and measured with an ohmmeter. The mea-
surement of the transepithelial electrical resistance pro-
vides a continuous assay system. Because measurements
are performed under sterile conditions, they can be re-
peated in the same culture dish as often as desired
at appropriate time intervals. Platinum complexes were
added after C7 monolayers developed a resistance of
≥8 k�·cm2. A resistance ≥1 k�·cm2 already implicates a
tight MDCK-C7 monolayer. Decreases in transepithelial
resistance reflect changes in monolayer integrity. Resis-
tances were set to 100% at the time of platinum complex
addition.

Determination of caspase-3 activity and protein contents

The caspase assay was based on the cleavage of
the 7-amino-4-coumarin (AMC) derived substrate Z-
DEVD-AMC by caspase-3 and closely related proteases.
Caspase-3 activity was measured with slight modifications
of the manufacturer’s instructions (Molecular Probes,
Inc., Eugene, OR, USA). Cell culture media were cen-
trifuged at 1500 rpm for 5 minutes, and the cell pellet was
added to the corresponding filter or well. Filter cups were
placed in empty wells. Lysis buffer (200 lL) was added to
each filter before cells were subjected to a short freeze-
thaw cycle of 10 minutes at −80◦C. Cells were scraped off
and centrifuged (6000 rpm, 5 min, 4◦C). The supernatants
were used to determine protein contents and enzymatic
activity of the samples. The Pierce Micro BCA Protein
Assay Kit (Pierce Biotechnology, Rockford, IL, USA)
was used for quantification of total protein at a wave-
length of 546 nm. Supernatant (60 lL) was mixed with
60 lL of 2× substrate in microplates for fluorescence
readings. Specificity of substrate cleavage was tested by
addition of the Ac-DEVD-CHO-inhibitor to the reac-
tion mixture. The reaction mixture was incubated for
30 minutes at room temperature. AMC was determined
using a Fluoroscan II fluorometer (Labsystems, Helsinki,
Finland) with an excitation wavelength of 350 nm and an
emission wavelength of 460 nm. Based on the standard
curve of AMC and the results of protein quantification,
caspase activity was calculated as lmol/L AMC per mg
protein. For clarity, the mean caspase activity of control
samples at the time of platinum complex application was
set to 100%. The results are therefore expressed as a ra-
tio of the mean caspase activity of samples 48 hours after
solvent or platinum complex application, and the mean
caspase activity of controls shortly before addition.

Western blot analysis of C7 cell lysate

C7 cells were harvested by trypsination and heated
(95◦C, 5 min) in reducing sample buffer [(mmol/L): 100
Tris-HCl, 200 DTT; pH 6.8 with 4% SDS, 10% sucrose,
0.015% bromphenolblue]. Protein content was deter-
mined by the amido-black method [23]. Polyacrylamide
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Fig. 2. Changes in transepithelial electrical resistance after addition of
cisplatin. Transepithelial electrical resistance of MDCK C7 cell mono-
layers was measured in 24-hour time intervals before and after addition
of 100 lmol/L cisplatin or solvent to the apical or basolateral medium.
Cisplatin or solvent was added to the culture medium at day 5 (arrow)
after seeding the C7 cells. Results are mean ± SEM, N = 6 each plot,
∗P < 0.05.

gels 7.5% were loaded with 20 lg protein per lane and
run at 50 V in buffer [(mmol/L): 25 Tris, 192 glycine, 3.5
SDS] in an electrophoretic chamber (Bio-Rad, München,
Germany).

Gels were blotted on a polyvinylidene fluoride (PVDF)
membrane at 80 mA for 1.5 hours. The blots were blocked
with 5% skim milk in PBS without Ca2+ and Mg2+ (see
application of platinum complexes) at 4◦C overnight, in-
cubated with primary antibody (1:5000 Anti OCT1/2,
Cat. nos. OCT11-A and OCT21-A, respectively; Alpha-
diagnostic, San Antonio, TX, USA) for 1 hour at 37◦C,
and secondary antibody (1:5000 antirabbit IgG, peroxi-
dase conjugate no. A0545; Sigma Aldrich) for 1.5 hours at
room temperature. After incubation, blots were washed
in PBS with 0.05% Tween and exposed to x-ray film
(AGFA, Leverkusen, Germany) using the enhanced lu-
minescence kit (West Femto; Pierce).

Statistical analysis

Data of experiments are given as mean value ± stan-
dard error of the mean (SEM). Statistical significance was
tested with the U test (Mann-Whitney-Wilcoxon), a reli-
able test for small numbers with unknown statistical dis-
tribution. a was set to 0.05 as threshhold for significance.

RESULTS

Transepithelial electrical resistance measurements

Platinum complexes were added when TEER was
higher than 8 k�·cm2. The mean transepithelial resis-
tance was 9.5 ± 0.3 k�·cm2 when cisplatin was added
(Fig. 2). Apical application of cisplatin led to a decrease
in transepithelial resistance from 9.5 ± 0.2 k�·cm2 to
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Fig. 3. Transepithelial electrical resistance 24 hours after addition of
platinum complexes. Cis-, oxali-, and carboplatin (100 lmol/L final con-
centration) were added either to the apical or basolateral medium com-
partment. Solvent was added to the upper and lower medium for con-
trols. The resistance of every monolayer at the time of platinum complex
application was set to 100%. Results are mean ± SEM, N = 6 each bar,
∗P < 0.05.

8.2 ± 0.7 k�·cm2 within 24 hours. Addition of cisplatin
to the basolateral medium induced a complete break-
down of transepithelial resistance from 9.6 ± 0.3 k�·cm2

to 0.8 ± 0.1 k�·cm2 within the same time. Addition of
solvent (PBS with Ca2+ and Mg2+) for controls to ei-
ther medium compartment did not affect electrical resis-
tance (Fig. 2). TEER of controls increased by 14.4 ± 5.7%
within 24 hours (Fig. 3). There was no significant differ-
ence between controls and the application of oxaliplatin
(105.6 ± 4.4%) or carboplatin (108.6 ± 9.8%) to the api-
cal medium, whereas application of cisplatin lowered the
resistance significantly to 86.6 ± 8.7% of the initial resis-
tance. Basolateral application of cisplatin (10.5 ± 9.3%)
induced a complete TEER breakdown, and oxaliplatin
(54.2 ± 4.3%) reduced TEER significantly to a higher
extent than carboplatin (89.6 ± 6.1%).

The OCT inhibitor cimetidine inhibited the TEER de-
crease induced by platinum complexes (Fig. 4). Twenty-
four hours after basolateral addition of oxaliplatin the
difference between cimetidine and controls was already
statistically significant (data not shown). Cimetidine
alone (500 lmol/L and 1 mmol/L) had no effect on TEER.

Caspase-3 activity

Addition of solvent to the apical and basolateral
medium (Fig. 1) did not increase caspase-3 activity sig-
nificantly within 24 hours (108 ± 6.4%) (Fig. 5). Addi-
tion of cisplatin (840.6 ± 17.4%), oxaliplatin (241.8 ±
13.4%), or carboplatin (138.5 ± 11.5%) to the basolat-
eral medium led to a stronger enhancement of caspase
activity than addition to the apical medium. Cisplatin in
the apical medium raised caspase activity (213.9 ± 7.6%),
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Fig. 4. Application of the organic cation transporter inhibitor cimeti-
dine. Cisplatin (10 lmol/L), oxaliplatin (100 lmol/L), and carboplatin
(100 lmol/L) were added to the basolateral medium in combination
with cimetidine (500 lmol/L or 1 mmol/L) or solvent.
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Fig. 5. Caspase-3 activity 24 hours after addition of platinum com-
plexes. When electrical resistance of MDCK-C7 cells on filter mem-
branes was higher than 8 k�·cm2, cis-, oxali-, and carboplatin (100
lmol/L final concentration) were added either to the apical or basolat-
eral medium compartment. Solvent was added to the upper and lower
medium for controls. Caspase-3 activity of controls before platinum
complex application was set to 100%. Results are mean ± SEM, N = 6
each bar, ∗P < 0.05.

whereas application of oxaliplatin (104.2 ± 9.7%) or car-
boplatin (115.4 ± 8.0%) in the apical medium had no
significant effect.

Western blot analysis of C7 cell lysate

Immunoblotting of C7 cell lysates confirmed the pres-
ence of more OCT-2 than OCT-1 (Fig. 7). The strongest
band in the Western blot for OCT-2 had a molecular
weight of about 65 kD, which is in accordance with the
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Fig. 7. Western blot analysis of C7 cell lysate. OCT-2 but not OCT-
1 was detected in the lysate of MDCK-C7 cells by using polyclonal
antibodies and a protocol described in the Methods section.

calculated molecular weights of organic cation trans-
porters in rats, mice, or humans [24, 25].

DISCUSSION

Basic mechanisms of platinum complex toxicity in po-
larized renal cells were investigated in the present study.

Here we report that the cisplatin analogs oxaliplatin and
carboplatin induce activation of caspase-3 in renal ep-
ithelia. So far, the activation of caspase-3 by carboplatin
and oxaliplatin has only been associated with their anti-
neoplastic effect [6, 26]. Furthermore, we can show that
cisplatin, oxaliplatin, and carboplatin induce caspase-3
activation to different extents, and that this activation
depends on the site of application in a renal epithelium.

Studies in renal and nonrenal cell models revealed that
caspase-3 is activated by a variety of stimuli, including
receptor-mediated activation of caspase-8 [27, 28]. Mem-
bers of the tumor necrosis factor receptor (TNFR) family
are especially directly involved in caspase activation and
subsequent cisplatin-induced renal failure [29–31]. Addi-
tionally, MDCK cells express TNFR1 and TNFR2 [32].

Altogether, high caspase-3 activities are correlated
with low TEERs in our model system (Fig. 6). TEER
is a useful addition to biochemical parameters because it
contains valuable information about monolayer integrity.
It reflects functional changes in epithelial permeability.
Hence, platinum complex–induced apoptosis is accompa-
nied by an increased permeability of the epithelial mono-
layer and vice versa.

The difference between apical and basolateral plat-
inum complex application is essentially based on the
negligible paracellular shunt of our model system. Para-
cellular diffusion of platinum complexes from the apical
to the basolateral side would consequently lead to ba-
solateral uptake of cisplatin, and thus, result in TEER
breakdown and increased caspase activities. It is likely
that a basolaterally located transporter is responsible for
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the different effects between apical and basolateral ap-
plication of platinum complexes. Because the reactive
species of cisplatin are positively charged, few candidate
transporters have to be considered. OCTs, for example,
are polyspecific, potential-driven transporters that are
involved in the basolateral entry step in organic cation
secretion [25]. They transport substrates like metabolic
products or the model cation tetraethylammonium
(TEA) from the basolateral side into the cytosol before
apical secretion via a proton-cation exchanger [21, 33].

We suppose that organic cation transporters (OCTs)
are involved in the transport of platinum drugs into the
cytosol, and thus are responsible for differences between
apical and basolateral application of platinum complexes.
The nephrotoxic effect of cisplatin is preferentially lo-
cated in the S3 segment of the proximal tubulus [14]. In-
terestingly, high expression levels of OCTs can be found
in this part of the nephron [34]. rOCT1 has been detected
in the basolateral membrane of S1 and S2 segments of re-
nal proximal tubules, whereas rOCT2 is predominantly
located in the basolateral membranes of S2 and S3 seg-
ments [35]. Although the renal collecting duct is not the
primary location of renal side effects in cisplatin therapy,
tight epithelia derived from this segment are a versatile
model for studying differentially sorted transporters in
apical and basolateral membranes.

The organic cation transporter OCT-2 has been iden-
tified in the basolateral, but not in the apical membrane
of MDCK-cells [17, 35, 36]. MDCK cells consist of at
least two subclones [20], and OCT-2 is located in the C7
clone used in the present study. For OCT-2 in MDCK
cells, an IC50 of 6.3 lmol/L for cimetidine (5 lmol/L
[14C]TEA) has been found [36]. Accordingly, the OCT
inhibitor cimetidine delayed TEER breakdown after ad-
dition of platinum complexes to the basolateral medium.
Concentrations (100 lmol/L) of platinum complexes are
commonly used for in vitro studies [15, 37]. In vivo, local
concentrations of platinum drugs are too different to be
determined due to reabsorption and secretion processes.
In a pharmacokinetic study of cisplatin, the peak plasma
levels varied from 0.2 up to 14 lmol/L [38]. Erdlenbruch
et al [38] found concentrations higher than 300 lmol/L
for unbound platinum in urine after chemotherapy. In
rat models, plasma concentrations of 55 lmol/L and re-
nal tissue concentrations of 57 lmol/L of unmodified cis-
platin have been measured after bolus injection [39]. In
patients with normal renal function receiving 130 mg/m2

oxaliplatin as a 2-hour infusion without hydration, the
maximum total plasma concentration of oxaliplatin was
6.5 lmol/L with 42% unbound platinum complex [40]. In
similar studies peak plasma concentrations higher than
12 lmol/L were observed [41]. A broad, mean termi-
nal half-life (t1/2b) of oxaliplatin ranging from 30 up to
240 hours has been determined [41, 42]. There are no
reports about plasma levels in the current high-dose ox-

aliplatin treatment trials so far. High-dose therapeutic
regimens (i.e., 500 mg/m2 over 1 hour for 3 consecu-
tive days) have been established for carboplatin. The
platinum complex concentration in patients was up to
65 lmol/L in plasma and 61 lmol/L in ultrafiltrated
plasma [43].

The observed differences between the platinum com-
plexes in our in vitro system match their clinical proper-
ties. Carboplatin is a very attractive drug compared with
cisplatin because of its very low nephrotoxicity [44].

CONCLUSION

The differences between basolateral and apical sus-
ceptibility of renal epithelia together with the different
pharmacokinetic properties of platinum drugs are cru-
cial determinants of nephrotoxic adverse effects. Addi-
tionally, further investigation of polarization and protein
sorting of renal epithelia could contribute to a bet-
ter understanding of the basic mechanisms of platinum
complex–induced nephrotoxic cell injury.

Taken together, our in vitro model provides a system
that is enabled to continuously study the effects of drugs
in sufficiently separated media, and nearly eliminates
problems of diffusion between medium compartments.
The high TEER of the C7 clone is a sensitive and easy
to measure parameter. It is therefore a valuable tool for
studying basic mechanisms of platinum complex–induced
toxicity in polarized epithelia.
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