A concavity inequality for symmetric norms
 Jean-Christophe Bourin
 Dépt. de Mathématiques, Université de Cergy-Pontoise, 2 rue Adolphe Chauvin, 95302 Pontoise, France

Received 8 July 2005; accepted 1 September 2005
Available online 25 October 2005
Submitted by C.-K. Li

Abstract

We review some recent convexity results for Hermitian matrices and we add a new one to the list: Let A be semidefinite positive, let Z be expansive, $Z^{*} Z \geqslant I$, and let $f:[0, \infty) \longrightarrow$ $[0, \infty)$ be a concave function. Then, for all symmetric norms $$
\left\|f\left(Z^{*} A Z\right)\right\| \leqslant\left\|Z^{*} f(A) Z\right\| .
$$

This inequality complements a classical trace inequality of Brown-Kosaki. © 2005 Published by Elsevier Inc.

AMS classification: 47A30; 47A63
Keywords: Hermitian operators; Eigenvalues; Operator inequalities; Jensen’s inequality

Introduction

A good part of matrix analysis consists in establishing results for Hermitian operators considered as generalized real numbers. In particular several results are matrix versions of inequalities for convex functions f on the real line, such as

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leqslant \frac{f(a)+f(b)}{2} \tag{1}
\end{equation*}
$$

for all reals a, b and

E-mail: bourinjc@club-internet.fr
0024-3795/\$ - see front matter © 2005 Published by Elsevier Inc.
doi:10.1016/j.laa.2005.09.007

$$
\begin{equation*}
f(z a) \leqslant z f(a) \tag{2}
\end{equation*}
$$

for convex functions f with $f(0) \leqslant 0$ and scalars a and z with $0<z<1$.
In this brief note we first review some recent matrix versions of (1), (2) and next we give the matrix version of the companion inequality of (2):

$$
\begin{equation*}
f(z a) \leqslant z f(a) \tag{3}
\end{equation*}
$$

for concave functions f with $f(0) \geqslant 0$ and scalars a and z with $1<z$.
Capital letters A, B, \ldots, Z mean n-by- n complex matrices, or operators on a finite dimensional Hilbert space $\mathscr{H} ; I$ stands for the identity. When A is positive semidefinite, respectively positive definite, we write $A \geqslant 0$, respectively $A>0$.

1. Some known convexity results

The following are well known trace versions of elementary inequalities (1) and (2).
1.1. von Neumann's trace inequality: For convex functions f and Hermitians A, B,

$$
\begin{equation*}
\operatorname{Tr} f\left(\frac{A+B}{2}\right) \leqslant \operatorname{Tr} \frac{f(A)+f(B)}{2} \tag{4}
\end{equation*}
$$

equivalently $\operatorname{Tr} \circ f$ is convex on the set of Hermitians.
1.2. Brown-Kosaki’s Trace Inequality [5]: Let f be convex with $f(0) \leqslant 0$ and let A be Hermitian. Then, for all contractions Z,

$$
\begin{equation*}
\operatorname{Tr} f\left(Z^{*} A Z\right) \leqslant \operatorname{Tr} Z^{*} f(A) Z \tag{5}
\end{equation*}
$$

1.3. Hansen-Pedersen's Trace Inequality [7]: Let f be convex and let $\left\{A_{i}\right\}_{i=1}^{n}$ be Hermitians. Then, for all isometric columns $\left\{Z_{i}\right\}_{i=1}^{n}$,

$$
\operatorname{Tr} f\left(\sum_{i} Z_{i}^{*} A_{i} Z_{i}\right) \leqslant \operatorname{Tr} \sum_{i} Z_{i}^{*} f\left(A_{i}\right) Z_{i}
$$

Here isometric column means that $\sum_{i} Z_{i}^{*} Z_{i}=I$. Hansen-Pedersen's result contains (1) and (2).

When f is convex and monotone, we showed [2] that the above trace inequalities can be extended to operator inequalities up to a unitary congruence. Equivalently we have inequalities for eigenvalues. Let us give the precise statements corresponding to von Neumann and Brown-Kosaki trace inequalities.
1.4. Let A, B be Hermitians and let f be a monotone convex function. Then, there exists a unitary U such that

$$
\begin{equation*}
f\left(\frac{A+B}{2}\right) \leqslant U \cdot \frac{f(A)+f(B)}{2} \cdot U^{*} . \tag{6}
\end{equation*}
$$

1.5. Let A be a Hermitian, let Z be a contraction and let f be a monotone convex function with $f(0) \leqslant 0$. Then, there exists a unitary U such that

$$
\begin{equation*}
f\left(Z^{*} A Z\right) \leqslant U Z^{*} f(A) Z U^{*} . \tag{7}
\end{equation*}
$$

Statements 1.4 and 1.5 can break down when the monotony assumption is dropped. But we recently obtained [4] substitutes involving the mean of two unitary congruences. Let us recall the precise result corresponding to inequalities (1) and (6).
1.6. Let f be a convex function, let A, B be Hermitians and set $X=f(\{A+B\} / 2)$ and $Y=\{f(A)+f(B)\} / 2$. Then, there exist unitaries U, V such that

$$
X \leqslant \frac{U Y U^{*}+V Y V^{*}}{2}
$$

Another substitute of (6) for general convex functions f would be a positive answer to the following still open problem [2]: Given Hermitians A, B, can we find unitaries U, V such that

$$
f\left(\frac{A+B}{2}\right) \leqslant \frac{U f(A) U^{*}+V f(B) V^{*}}{2} ?
$$

We turn to a Brown-Kosaki type inequality involving expansive operators Z, that is $Z^{*} Z \geqslant I$. We showed the following trace version of the elementary inequality (3).
1.7. Let f be convex with $f(0) \leqslant 0$ and let $A \geqslant 0$. Then, for all expansive operators Z,

$$
\begin{equation*}
\operatorname{Tr} f\left(Z^{*} A Z\right) \geqslant \operatorname{Tr} Z^{*} f(A) Z \tag{8}
\end{equation*}
$$

It is interesting to note [2] that, contrarily to the contractive case (5), the assumption $A \geqslant 0$ cannot be dropped. Also, still contrarily to (5), this result cannot be extended to eigenvalues inequalities like (7). Nevertheless, we have:
1.8. Let f be nonnegative convex with $f(0)=0$, let $A \geqslant 0$ and let Z be expansive. Then, for all symmetric norms

$$
\begin{equation*}
\left\|f\left(Z^{*} A Z\right)\right\| \geqslant\left\|Z^{*} f(A) Z\right\| \tag{9}
\end{equation*}
$$

Here, by symmetric norm we mean a unitarily invariant one, that is $\|A\|=\|U A V\|$ for all operators A and all unitaries U, V.

2. A new concavity result

Of course if f is concave with $f(0) \geqslant 0$ then inequality (8) is reversed and provides an extension of its scalar version (3). Assuming furthermore f nonnegative we tried to extend it to all symmetric norms but, besides the trace norm, we only got the operator norm case. Here we may state:

Theorem 2.1. Let $f:[0, \infty) \longrightarrow[0, \infty)$ be a concave function. Let $A \geqslant 0$ and let Z be expansive. Then, for all symmetric norms

$$
\left\|f\left(Z^{*} A Z\right)\right\| \leqslant\left\|Z^{*} f(A) Z\right\|
$$

Proof. It suffices to prove the theorem for the Ky Fan k-norms $\|\cdot\|_{k}$ (cf. [1]). This shows, since Z is expansive, that we may assume that $f(0)=0$. Note that f is
necessarily nondecreasing. Hence, there exists a rank k spectral projection E for $Z^{*} A Z$, corresponding to the k-largest eigenvalues $\lambda_{1}\left(Z^{*} A Z\right), \ldots, \lambda_{k}\left(Z^{*} A Z\right)$ of $Z^{*} A Z$, such that

$$
\left\|f\left(Z^{*} A Z\right)\right\|_{k}=\sum_{j=1}^{k} \lambda_{j}\left(Z^{*} A Z\right)=\operatorname{Tr} E f\left(Z^{*} A Z\right) E
$$

Therefore, using a well known property of Ky Fan norms, it suffices to show that

$$
\operatorname{Tr} E f\left(Z^{*} A Z\right) E \leqslant \operatorname{Tr} E Z^{*} f(A) Z E
$$

This is the same as requiring that

$$
\begin{equation*}
\operatorname{Tr} E Z^{*} g(A) Z E \leqslant \operatorname{Tr} E g\left(Z^{*} A Z\right) E \tag{10}
\end{equation*}
$$

for all convex functions g on $[0, \infty)$ with $g(0)=0$. Any such function can be approached by a combination of the type

$$
\begin{equation*}
g(t)=\lambda t+\sum_{i=1}^{n} \alpha_{i}\left(t-\beta_{i}\right)_{+} \tag{11}
\end{equation*}
$$

for a scalar λ and some nonnegative scalars α_{i} and β_{i}. Here $(x)_{+}=\max \{0, x\}$. By using the linearity of the trace it suffices to show that (10) holds for $g_{\beta}(t)=(t-\beta)_{+}$, $\beta \geqslant 0$. We claim that there exists a unitary U such that

$$
\begin{equation*}
Z^{*} g_{\beta}(A) Z \leqslant U g_{\beta}\left(Z^{*} A Z\right) U^{*} \tag{12}
\end{equation*}
$$

This claim and a basic property of the trace then show that (10) holds for g_{β}. Indeed, we then have

$$
\begin{aligned}
\operatorname{Tr} E Z^{*} g_{\beta}(A) Z E & =\sum_{j=1}^{k} \lambda_{j}\left(E Z^{*} g_{\beta}(A) Z E\right) \\
& \leqslant \sum_{j=1}^{k} \lambda_{j}\left(Z^{*} g_{\beta}(A) Z\right) \\
& \leqslant \sum_{j=1}^{k} \lambda_{j}\left(g_{\beta}\left(Z^{*} A Z\right)\right) \quad(\text { by }(12)) \\
& =\sum_{j=1}^{k} \lambda_{j}\left(E g_{\beta}\left(Z^{*} A Z\right) E\right) \\
& =\operatorname{Tr} E g_{\beta}\left(Z^{*} A Z\right) E
\end{aligned}
$$

where the fourth equality follows from the fact that g_{β} is nondecreasing and hence E is also a spectral projection of $g_{\beta}\left(Z^{*} A Z\right)$ corresponding to the k largest eigenvalues.

The inequality (12) has been established in [2] in order to prove (8). Let us recall the proof of (12): We will use the following simple fact. If B is a positive operator with
$\operatorname{Sp} B \subset\{0\} \cup(x, \infty)$, then we also have $\operatorname{Sp}^{*} B Z \subset\{0\} \cup(x, \infty)$. Indeed $Z^{*} B Z$ and $B^{1 / 2} Z Z^{*} B^{1 / 2}$ (which is greater than B) have the same spectrum.

Let P be the spectral projection of A corresponding to the eigenvalues strictly greater than β and let $A_{\beta}=A P$. Since $Z^{*} A Z-\beta I \geqslant Z^{*} A_{\beta} Z-\beta I$ and $t \longrightarrow t_{+}$ is nondecreasing, there exists a unitary operator V such that

$$
\left(Z^{*} A Z-\beta I\right)_{+} \geqslant V\left(Z^{*} A_{\beta} Z-\beta I\right)_{+} V^{*}
$$

Since $Z^{*}(A-\beta I)_{+} Z=Z^{*}\left(A_{\beta}-\beta I\right)_{+} Z$ we may then assume that $A=A_{\beta}$. Now, the above simple fact implies

$$
\left(Z^{*} A_{\beta} Z-\beta I\right)_{+}=Z^{*} A_{\beta} Z-\beta Q
$$

where $Q=\operatorname{supp} Z^{*} A_{\beta} Z$ is the support projection of $Z^{*} A_{\beta} Z$. Therefore, using ($A_{\beta}-$ $\beta I)_{+}=A_{\beta}-\beta P$, it suffices to show the existence of a unitary operator W such that

$$
Z^{*} A_{\beta} Z-\beta Q \geqslant W Z^{*}\left(A_{\beta}-\beta P\right) Z W^{*}=W Z^{*} A_{\beta} Z W^{*}-\beta W Z^{*} P Z W^{*}
$$

But, here we can take $W=I$. Indeed, we have

$$
\operatorname{supp} Z^{*} P Z=Q(*) \quad \text { and } \quad \operatorname{Sp} Z^{*} P Z \subset\{0\} \cup[1, \infty)(* *),
$$

where $(* *)$ follows from the above simple fact and the identity $(*)$ from the observation below with $X=P$ and $Y=A_{\beta}$.

Observation. If X, Y are two positive operators with $\operatorname{supp} X=\operatorname{supp} Y$, then for every operator Z we also have $\operatorname{supp} Z^{*} X Z=\operatorname{supp} Z^{*} Y Z$.

To check this, we establish the corresponding equality for the kernels,

$$
\operatorname{ker} Z^{*} X Z=\left\{h: Z h \in \operatorname{ker} X^{1 / 2}\right\}=\left\{h: Z h \in \operatorname{ker} Y^{1 / 2}\right\}=\operatorname{ker} Z^{*} Y Z
$$

In the above proof, the simple idea of approaching convex functions as in (11) was fruitful. It is also useful to prove (see [2]) the Rotfel'd trace inequality: For concave functions f with $f(0) \geqslant 0$ and $A, B \geqslant 0$,

$$
\operatorname{Tr} f(A+B) \leqslant \operatorname{Tr} f(A)+\operatorname{Tr} f(B)
$$

If f is convex with $f(0) \leqslant 0$ the reverse inequality holds, in particular we have McCarthy's inequality

$$
\operatorname{Tr}(A+B)^{p} \geqslant \operatorname{Tr} A^{p}+\operatorname{Tr} B^{p}
$$

for all $p>1$.
Remark 2.2. Though scalars inequalities (2) and (3) or their concave anologous hold for a more general class than convex or concave functions, the corresponding trace inequalities need the convexity or concavity assumption (cf. [2]). A fortiori, Theorem 2.1 needs the concavity assumption.

Remark 2.3. When f is operator monotone, Theorem 2.1 extends to an operator inequality which can be rephrased for contractions as follows: For nonnegative operator monotone functions f on $[0, \infty)$, contractions Z and $A \geqslant 0$,
$Z^{*} f(A) Z \leqslant f\left(Z^{*} A Z\right)$.
This is the famous Hansen's inequality [6]. Similarly when f is operator convex, Hansen-Pedersen's trace inequality can be extended to an operator inequality [7] (see also [3]).

Extensions of Theorem 2.1 to infinite dimensional spaces will be considered in a forthcoming work.

Acknowledgment

The author is grateful to a referee for its valuable comments.

References

[1] R. Bhatia, Matrix Analysis, Springer, Germany, 1996.
[2] J.-C. Bourin, Convexity or concavity inequalities for Hermitian operators, Math. Ineq. Appl. 7 (4) (2004) 607-620.
[3] J.-C. Bourin, Compressions, Dilations and Matrix Inequalities, RGMIA monograph, Victoria University, Melbourne, 2004, Available from: http://rgmia.vu.edu.au/monograph.
[4] J.-C. Bourin, Hermitian operators and convex functions, J. Math. Ineq., in press.
[5] L.G. Brown, H. Kosaki, Jensen’s inequality in semi-finite von Neumann algebras, J. Operator Theory 23 (1990) 3-19.
[6] F. Hansen, An operator inequality, Math. Ann. 246 (1980) 249-250.
[7] F. Hansen, G.K. Pedersen, Jensen's operator inequality, Bull. London Math. Soc. 35 (2003) 553-564.

