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Abstract 

Secondary structures of polynucleotides can be viewed as a class of planar vertex-labeled 

graphs. We compute recursion formulae for enumerating a variety sub-classes of and classes 

of sub-graphs (structural elements) of secondary structure graphs. First order asymptotics are 
derived and their dependence on the composition of the underlying nucleic acid sequences is 
discussed. 0 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

Presumably, the most important problem and the greatest challenge in present day 

theoretical biophysics deals with deciphering the code that transforms sequences of 

biopolymers into spatial molecular structures. A sequence is properly visualized as a 

string of symbols which together with the environment encodes the molecular architec- 

ture of the biopolymer. In case of one particular class of biopolymers, the ribonucleic 

acid (RNA) molecules, decoding of information stored in the sequence can be prop- 

erly decomposed into two steps. Transformation of the string into a planar graph, and 

folding of the string into a three-dimensional structure under conservation of the neigh- 

borhood relation determined by the graph. We are concerned here only with the first 

step, the transformation of the sequence into the graph (Fig. 1 ), which is much simpler 

than other known sequence-to-structure relations in biophysics. We are not concerned 

here with the physical rules that govern this transformation. Instead we are interested 

in the combinatorics of RNA secondary structures which in essence is an exercise in 

combining structural elements into valid structures under certain additional constraints. 
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Fig. 1. Representations of secondary structures. The notation A is common in biology. Structure elements 

are indicated as follows: H hairpin loops, I interior loops, B bulges, A4 multiloops; S stacks. The structure 

consists of four components, indicated as Cl-C4. B is the corresponding tree notation, and C is the linear 

encoding of this tree. For details see Section 2.2. D is a coarse grained representation obtained from B by 

contracting each stack to a single vertex and omitting the half-vertices representing the unpaired positions. 

E is the homeomorphically irreducible tree obtained from D. 

Previous results on combinatorial aspects of secondary structures of RNA molecules 

are due to Waterman and coworkers [21, 23, 28, 34-371. Particularly important for 

the work reported here are a recursion for the number of different secondary structures 

formed by strings of constant length [34] and the analytical expression for its asymptotic 

values [28]. Secondary structures are labeled planar graphs and as such they are closely 

related to the linked diagrams of Touchard [13, 14, 26, 27, 321. 

In Section 2 we introduce the basic definitions of secondary structures and recall 

their various representations. Section 3 presents the recursion formulas for the ex- 

act enumeration of various types of constrained secondary structures as well as their 

structural elements. Constrained secondary structures are of primary importance in bio- 

physics since not every conceivable element of a secondary structure will be found in 

reality. For example, hairpin loops containing one or two nucleotides are so strongly 

disfavored by the energetics that they do not occur in RNA secondary structures. In 

Section 4 first-order asymptotics to these recursions are devised. Although the class 

of graphs formed by secondary structures is interesting in its own rights, secondary 

structures in biology make sense only when they are related to sequences. Implications 

resulting from the condition that secondary structures have to be built on sequences are 

discussed in Section 5. The results reported here are particularly interesting in relation 

to the data which were obtained from RNA secondary structure statistics performed 

by folding large ensembles of sequences into minimum free energy structures [6-91. 

The asymptotic values show the influence of the logic of base pairing as expressed in 

terms of stickiness. Stickiness accounts for the possible base pairings supported by the 

nucleotide alphabet but ignores the energetic effect of different strengths of the base 

pairs. Numerically computed data based on empirical energetic parameters include both 
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effects, and the comparison allows to separate the influence of the pairing logic from 

the energetics. A detailed comparison can be found in Ref. [30]. 

2. Secondary structures and structural elements 

2.1. Definitions 

Definition 2.1 (Waterman [34]). A secondary structure is a vertex-labeled graph on 

n vertices with an adjacency matrix A fulfilling 

(i) a {,[+I = 1 for 1 <i<n - 1; 

(ii) For each i there is at most a single k # i - 1, i + 1 such that a;k = 1; 

(iii) If aij=ak/= 1 and i<k<j then i<l<j. 

We will call an edge (i, k), )i - kl # 1 a bond or base pair. A vertex i connected only 

to i - 1 and i + 1 will be called unpaired. A vertex i is said to be interior to the base 

pair (k, I) if k <i < 1. If, in addition, there is no base pair (p, q) such that k < p < i <q 

we will say that i is immediately interior to the base pair (k, 1). 

Definition 2.2. A secondary structure consists of the following structure elements: 

(i) A stack consists of subsequent base pairs (p - k, q + k), (p - k + 1,q + k - l), 

. ..) (p,q) such that neither (p-k - 1,q + k + 1) nor (p + 1,q - 1) is a base 

pair. k + 1 is the length of the stack, (p - k,q + k) is the terminal base pair of 

the stack. 

(ii) A loop consists of all unpaired vertices that are immediately interior to some base 

pair (p,4). 
(iii) An external vertex is an unpaired vertex which does not belong to a loop. 

A collection of adjacent external vertices is called an external element. If it con- 

tains the vertex 1 or n it is a free end, otherwise it is called joint. 

Lemma 2.3. Any secondary structure Y can he uniquely decomposed into stacks, 

loops, and external elements. 

Proof. Each vertex which is contained in a base pair belongs to a unique stack. Since 

an unpaired vertex is either external or immediately interior to a unique base pair the 

decomposition is unique: Each loop is characterized uniquely by its “closing” base 

pair. 0 

Definition 2.4. A stack [(p, q), . . , (p + k, q - k)] is called terminal if p - 1 = 0 or 

q + 1 = n + 1 or if the two vertices p - 1 and q + 1 are not interior to any base pair. 

The sub-structure enclosed by the terminal base pair (p, q) of a terminal stack will be 

called a component of 9. We will say that a structure on n vertices has a terminal 

base pair if (1, n) is a base pair. 
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Lemma 2.5. A secondary structure may be uniquely decomposed into components 

and external vertices. Each loop is contained in a component. 

The proof is trivial. Note that by definition the open structure has 0 components. 

The loops of a secondary structure graph form its unique minimal cycle basis [ 161. 

Definition 2.6. The degree of a loop is given by 1 plus the number of terminal base 

pairs of stacks which are interior to the closing bond of the loop. A loop of degree 1 

is called hairpin (loop), a loop of a degree larger than 2 is called multiloop. A loop 

of degree 2 is called bulge if the closing pair of the loop and the unique base pair 

immediately interior to it are adjacent; otherwise a loop of degree 2 is termed interior 

loop. 

Definition 2.7. Let Y be an arbitrary secondary structure. Denote by 0(Y) the 

unique secondary structure that is obtained from 9 by means of the following 

procedure: 

(i) For each hairpin, open its stack and add the corresponding bases to the hairpin 

loop. 

(ii) If a bulge or interior loop follows, then add its digits also to the hairpin and 

continue by opening its stack. 

(iii) If a multiloop or a joint follows, then add the now unpaired digits to the multiloop 

and stop. 

Waterman [34] used the above procedure to define the order o(9) of a secondary 

structure as the smallest number of repetitions of Q necessary to obtain the open 

structure. Of course, the open structure has order o = 0 and any structure without a 

multiloop has order o = 1. 

2.2. Representation of secondary structures 

A secondary structure Y can be translated into a rooted ordered tree (linear tree) 

2” by introducing an additional root and representing a base pair (p, q) by a vertex 

x such that the sons ~1,. . . , yk of x correspond to the base pairs (pl, 41). . . (pk,qk) 

immediately interior to (p, q) [6, 71. For each unpaired vertex z a half-vertex is added 

to the vertex representing the closing pair of the loop containing z. (For external 

digits this is the root.) The tree-representation of a secondary structure is shown 

in Fig. 1B. 

A string representation S can by obtained by the following rules: 

(i) If vertex i is unpaired then Si = “.“. 

(ii) If (p, q) is a base pair and p <q then S, = “(” and S, = “)“. 

These rules yield a sequence of matching brackets and dots [33] (cf. Fig. 1C). A 

related representation is derived in Ref. [ 111. 
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Waterman’s definition of secondary structures implies that each branch of the cor- 

responding tree representation Y has at least one terminal half-vertex, or equivalently, 

each matching pair of brackets contains at least one dot. In biological applications the 

number of unpaired positions is at least 3, implying at least 3 dots within each pair 

of matching brackets. From the combinatorial point of view it makes perfect sense to 

consider the general problem with a minimum number m 20 of unpaired vertices in 

each hairpin loop. In fact, for m = 0 one recovers three well-known Motzkin families 

[5, 281. 
For some applications it is useful to work with simplified representations [24, 251. A 

tree T is obtained by denoting a stack by single vertex. In terms of the representation Y 

this means that each vertex of degree 2 not carrying a half-vertex (except for the root) 

is merged with its son and then the half-vertices are removed (cf. Fig. 1D). The number 

of vertices in T is then just the number of stacks in Y, the number of components 

of .V coincides with the number of sons of the root in T. An alternative “coarse 

grained” representation of secondary structures is the homeomorphically irreducible 

tree .%’ corresponding to r which is obtained by removing all vertices of degree 2 

(except for the root) and all half-vertices. Again the number of components of .Y 

equals the number of sons of the root. Waterman’s degree CL) coincides with the height 

of .Y (cf. Fig. 1E). 

2.3. The basic recursion 

A secondary structure on n + 1 digits may be obtained from a structure on n digits 

either by adding a free end at the right-hand end or by inserting a base pair (1, k + 2). 

In the second case the substructure enclosed by this pair is an arbitrary structure on k 

digits, and the remaining part of length n - k - 1 is also an arbitrary valid secondary 

structure. Therefore, we obtain the following recursion formula for the number S,, of 

secondary structures: 

n-l 

S n+l- n+ -s c SkS,z-k-l, n3m + 1, 
k=m (1) 

&=S,= ... =&+,=l. 

Eq. (1) has first been derived by Waterman [34]; m denotes the minimum number of 

unpaired digits in a hairpin loop. Note that our definition of S, differs from Waterman’s 

for n <m: he used S, = 0. 

The above recursion can be used to develop an algorithm for generating random 

secondary structures with a uniform distribution 

Prob{Y} = l/S, (2) 

in the shape spaw of all secondary structures over a given chain length, see [30]. 
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3. Recursions 

3.1. Structures with certain properties 

Let J,(b) denote the number of structures on n vertices with exactly b components. 

The derivation of the recursion relations parallels the argument leading to Eq. (1): 

n-l 

J,+l(b)=J,,(b) + ~&.&-k-l(b - l), b>O, n>m + 1, 
k=m 

J,(b)=O, b>O, n<m+ 1, J,(O)= 1, nB0 

(3) 

because adding an unpaired digit to a structure on n digits does not change the number 

of components, while introducing an additional bracket makes the bracketed part of 

length k a single component and does not affect the remainder of the sequence. 

Let H,(b) denote the number of structures with exactly b base pairs (bonds) on n 

vertices. The recursion 

n-l b-l 

H,+i(b)=H,(b)+~~Hk(d)Hltk-,(b-P- I), b>O, n>m+ 1, 
k=m P=O (4) 

H,(b)=O, b>O, n<m+ 1, F&(0)=1, n20 

is also immediate. One just has to observe that an additional sum over the number of 

unpaired digits in the newly bracketed part of the structure has to be introduced. This 

recursion has also been considered in Ref. [ 121. Recently, Schmitt and Waterman [23] 

obtained the closed expression 

for the special case m = 1. Analogously, we obtain 

n-l 

E,+,(b)=E,(b- l)+~SkEnk-l(b), b>O, n2m-t 1, 
k=m 

n-l 

&+1(o)= csk'%-k-do), 
k=m 

E,(n)=l, E,(b)=0 b#n, ndm+l 

(5) 

for the number E,(b) of structures with b external digits. 

It is a bit more tricky to find a recursion for the number N,(b) of structures with a 

given number of stacks. We introduce the auxiliary variable Z,,(b) counting the number 

of secondary structures with exactly b stacks given that the 3’ and 5’ ends are paired. 
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We obtain then 

n-l h 

k=m I=0 

Nl(O) = 1, N,(b)=O, b>O, n<m + 1. 

(6) 

For the auxiliary variably we find 

Z,*(b) =2,_*(b) + N,_z(b - 1) - Zn-2(b - I>, Zofb) = G(b) =o (7) 

by enclosing structures on n - 2 digits by a base pair. 

Let A,(b) denote the number of structures with exactly b hairpins. Since the number 

of hairpins is unchanged by enclosing a substructure which already contains a base 

pair in an additional base pair we get 

A,+,(b) =A,(b) + ~Ak(t)An-k-i@ - 0 +A-k-l(b - 1) 
1 

9 

(8) 

A(b) = 60.h, n<m + 1, 

where &jb is Kronecker’s 6, i.e. 60,o = 1 and 80,b = 0, b # 0. 

3.2. Structure elements 

The total number U,,+i of unpaired bases in the set of all structures with n + 1 bases 

can be computed as follows: adding an unpaired base to each structure on n digits we 

obtain their U,, unpaired digits plus the S,, newly added ones. Introducing a base pair 

(1, k + 2) we have Sk times all the unpaired digits in the reminder of the sequence plus 

all the unpaired digits in the newly bracketed part of length k times the the number 

of structures that can be formed from the reminder of the structure. Summing over k 

we find 

Un=nn, n,<m + 1. (9) 

Denote the total number of base pairs by P,. It is clear that 2P, + U,, = nS,. For sake 

of completeness we state the recursion for P,: 

,,- 1 

P,+1 =P,+C(SkPn-k-l +sn-k-,(Pk+&)}, p,=o, n<m+ 1. 
I=m 
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By an analogous reasoning we find for the total number 1, of components in the set 

of all secondary structures on 12 vertices: 

n-1 

I n+l- n+ -I c ML-k-1 +&-k-11, z,=o n<m+l. (11) 
k=m 

The number N,+t of stacks in the set of structures on n + 1 digits consists of all 

stacks on n digits plus all stacks in the tail times the number of structures with the 

newly introduced base pair plus all stacks within the newly formed base pair times the 

number of structures in the tail. The newly formed base pair introduces an additional 

stack for all the Sk - Sk-2 structures in its interior without a terminal base pair. (For 

the Sk-2 structures with terminal base pair a stack is elongated.) Therefore 

n-l n-1 

N n+l = N, + c{s,N,-k-, + Sn-k-l(Nk + Sk)} - c Sk-ZSn-k-l 

k=m k=m+2 

for n>,m+ 1 and N,,=O, n<m+ 1. (12) 

Let en(b) denote the number of loops with b unpaired digits in the set of all 

secondary structures. For n + 1 vertices we retain all loops from the set of loops on n 

digits by adding a vertex to the 3’ end. In addition, we have to count all loops in the 

tail-substructure for each possible structure that lies interior to the new base pair. The 

third contribution consists of all loops interior to the new base pair times all possible 

structures in the tail. A loop with b unpaired vertices remains unchanged and each 

structure with exactly b external vertices within the new base pair gives rise to an 

additional loop with b unpaired digit: 

n-1 

Qn+l(b> = Qn(b) + c {Qn-k-l(b)& + Sn-k-l[Qdb) +&(b)l}, 
k=m 

n3m + 1, b>O, (13) 

Qn(b)=O, n6m + 1. 

The recursion for loops without unpaired digits is slightly different because structures 

without external digits located within the new base pair do not lead to a loop if they 

consist of a single component, i.e., if they end in base pair. (In this case the terminal 

stack is elongated.) There are Sk-2 such structures on k vertices: 

Qn+l<o> = Qn<o> + c {Qn-k-l(o)sk + Sn-k-l[Qk(O) +Ek(o)l} 

k=m 
n-l 

-c Sn-k-lsk-2, na??I + 1: 

k=m+2 

(14) 

Qn(0)=O, n<m + 1. 
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Let W,(b) denote the number of stacks with exactly b base pairs in the set of secondary 

structures. From a stack with b base pairs in a structure of length n, one can produce 

a stack of with b + 1 pairs in a structure of length n + 2 by inserting a new base pair 

immediately exterior of the existing stack. Therefore, we have 

K+2(b+ 1)-W,(b), b>l, n>m, 

Ct’,(b)=O, ndm + 1. 
(15) 

For b = 1 we have to construct a recursion in the usual way. There are Sk - Sk-2 

structures that will form a new stack of length 1 when enclosed by a new base pair 

(1, k + 2). Conversely, for Sk-2 - Sk-4 StrtdurCS an enClOSing stack of length 1 Will 

be elongated by the new pair. We therefore have 

n-l 

w,+l(l)=w,(l)+~[w,-k-l(l)& -Sn-k-l&(l)] 

k=i?l 
n-l n-l 

+ c&S,&, - 2 1 Sk-&-k-, (16) 
k=m 

n-1 
k=m+2 

+ 1 Sk--4Sn-k-1, 

k=m+4 

W,(l)=0 for n<m+ 1. 

Let L,(d) denote the number of loops of degree d in the set of all secondary structures. 

By K and B,, resp., we will denote the number of interior loops and bulges. Let us 

start with bulges and interior loops: The number of structures that yield an interior loop 

at their “end” when they are inclosed by an additional base pair equals the number 

Jn__2( 1) of structures having a free end on both sides, because structures with zero 

components would yield a hairpin while structures with more than one components 

would give rise to a multi-loop. In order to compute the number X,* of structures that 

form a bulge when enclosed by an additional base pair we observe that a bulge is 

formed if and only the enclosed structure has only a single component and neither a 

base pair connecting the ends (for these the terminal stack is elongated) nor free ends 

on both sides. There are S-2 structures resulting in a stack elongation if n 3m + 2 

(and none otherwise). Consequently, we have 

X,,*=J,(1)-~n_2(1)-Sn~2 n>m+2. (17) 

The recursions for loops of degree 2 are now straightforward: 

n-l 
B n+i =B, + c {&Bn--k-l + &-,!-I[& +&?I}, 

k=m 

n-l 

r,+l=r,+~{Sk~-k-1 +Sn-k-I[Yk +&2(l)]}, 

k=m 
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k=m 
n-l (18) 

-c Sn-k-lsk-2, 

k=m+2 

B,=Y,=L,(2)=0, n<m+ 1. 

Hairpins are generated either by stack-elongation of a structure with a single hairpin 

or by enclosing the open structure into the additional bracket. Thus, 

n-1 

~,+~(l)=Ln(l)+C{SkLn-k-l(l)+Sn-k-l[Lk(l)+ II> Ham+ 1, 

k=m 

L,(l)=0 ndm+ 1. 

(19) 

For multi-loops, finally, we obtain the recursion 

n-1 

L,,+,(d)=&(d) + c {Sk-&-k-l(d) + Sn-k-l[Lk(d) +Jk(d - l)l) 

k=m 

for d32, nam+ 1, 

L,(d)=0 for n<m + 1. 

(20) 

Summing over all loop degrees d we recover the recursion for the total number of 

stacks, since for each stack there is exactly one loop. 

The total number of external digits, E,,, can be obtained directly as Cb bE,,(b). For 

sake of completeness, we mention that it fulfills the recursion 

n-1 

E n+i=E.+S,+~SkEnk_~r nam+l, 
k=m 

(21) 

E,=n n<m+l. 

3.3. Secondary structures of a given order 

Let &(c, w) be the number of secondary structures with c components and order cc). 

Furthermore, let D:(o) be the number of structures which yield a structure of order cc) 

when enclosed by an additional base pair. The numbers Dn(c, w) satisfy the recursion 

n-l 

Dn+l(C, w) = &(C, 0) + c 

k=m I 

w-l 

@(@ c Dn-k--1(C - 1, e) 

f=O 
co-1 (22) 

+&-k-_1(C - l,(u)~~:(t) +D;(w)D,-k-,(c - 1,m) , 

f=O 

ado, 0) = 1, D,(O,d)=D,(c,O)=O, ndm + 1 
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because a structure with a base pair (1, k + 2) has order d and c components iff either 

the bracketed part has order o and the tail has a order at most o and c - 1 components 

or the bracketed part has a degree smaller than o and the tail has c - 1 components 

and order o. It remains to calculate D,*(o). By inspection we find for n > m 

D,*(O) =o, 

D:(l) = 1 -tD,(l, l), 

m 
(23) 

D:(4 =D,(l,o) + &(&w - l), w32, 
/=2 

while for n <m we have D,*(o) = 0. There is no structure of order 0 with a bracket in 

it; order o = 1 is obtained by either bracketing the open structure or by bracketing a 

structure with a single component and order 1. If the bracketed part has only a single 

components its order is preserved by adding a terminal bracket. If it consists of more 

than one components, the addition of the multiloop increases the order by one. 

Summing over the number of components we obtain the number of structures with 

given order &(o). Let us further introduce the number DA< 1) of structures of order at 

most one. It is easy to derive the following system of recursions from the above ones: 

n-l OI- 1 

&+,(w)=&(co) + c D:(o) ~&-k-G’) +&-r-&&$(0 
k=m i /=o /=o 

~~(~)=~k(O-l)+~k(l,~)-_k(l,~-ll), n>m+& 

n-l 

&+1(l,O)=&(LW) + Cm@. 

k=m 

(24) 

&(O) = 1, b’,(o)=0 for 031, n6m+ 1. 

For the number of structures with a degree at most one we find 

n-l 

D' nfl =D:, + ~D,*cl)D:-,_,, 
k=m 

D,*t,(l)= -&(l). 

k=m 

3.4. Secondary structures with minimum stack length 

(25) 

Let Y,,(I) be the number of structures with minimal stack length 1, and let Y:(I) 

be the number of structures on n digits which have only stacks of length at least 1 if 

an additional terminal base pair is attached. Furthermore, let Yn**(Z) be the number of 

structures on n digits with all stacks of length at least 1 for which (1, n) is not a base 

pair. 
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These three numbers fulfill for I> 1 the coupled recursions 

n-1 

(26) 

‘y**(l) = ‘y,(l) - Y3l>, 

'y,(l)= Yny,(l)= 1 n<m+21: 

Y,*(l)=O, m + 21- 2. 

The first recursion is obvious. A structure which has only stacks of length at least 1 

after addition of the terminal base pair must have a terminal stack of length p > I- 1. 

The remaining part of the structure must have stacks of length at least 1 without a 

terminal base pair. Of course, there is no such structure if IZ - 2p < m. For the numbers 

Yn**(Z) we obtain the explicit recursion: 

n-2 

lu,*,*,(l) = ‘y,(l) + c y,*(l)%-k-,(l), 

k=m+21-2 

(27) 

Yfl** = 1 n-cm+21, 

because structures without a terminal base pair and stacks of length at least 1 are ob- 

tained by adding a new base pair to structures which including this base pair have 

stacks of sufficient length (first factor in the sum) provided the structures in the re- 

maining part of the structure have also sufficient stack length. Of course, there may 

not by a terminal base pair by construction. Comparing the sum in (27) and in the 

recursion for Yn(l) yields the final result. We have of course ‘kr,( 1) = S, for all IZ and 

YU(l + 1)~ Yn(I) for all I and sufficiently large n. 

Remark. It is possible, of course, to obtain recursions of the above type for the number 

of structure elements or the number of structures with particular properties also for 

Z>l. If Eti is the counting series of interest one has to replaCe &En-k_, by Y,*E,,_k_i 

and E&-k-i by $ Yn-k_l, where E* counts the objects of interest subject to the 

restriction that the secondary structure has a terminal stack of length at least 1. 

4. Asymptotics 

The symbol N has its usual meaning: 

f(n) -g(n) means f(n)/g(n) + 1 as it + co. 

If not explicitly stated, asymptotic formulae assume n -+ ce. 



I.L. Hofacker et al. IDiscrete Applied Mathematics 88 11998) 207-237 219 

4.1. Asymptotics from generating functions 

Most of the published work on the asymptotic behavior of RNA-related counting 

series makes use of a proposition by E.A. Bender [I, Theorem 51, which was found 

to be true only under more restrictive conditions than the published ones. It follows 

from the counterexamples discussed in [2, 181 that Bender’s result cannot be applied 

directly to the RNA problem. Nevertheless, the published expressions for the RNA 

counting series are correct, as we shall show below. We start from a simplified version 

of Darboux’ theorem [4], see also [29, p. 2051. 

Theorem 4.1. Suppose yn 3 0 and y(x) = Cz, y,x” is of the form 

y(x)=B(x)+g(x) (1 - %)“‘, (28) 

where x>O is real, b’(x) and g(x) are analytic near IX, and w is real but not a non- 

negative integer. If y(x) is analytic for 1x1 <x and x = x is the only singularity of y 

on its circle of convergence, then 

Y(E) -1-w ’ n 
YJl - r(_wjn 0 _ 

z 
(29) 

Corollary 4.2. Let @(x, y) be a polynomial in y and analytic in x for 1x1 i CI + 6, 

6 > 0. Suppose v fuells the conditions of Theorem 4.1 with 

y(x) = p(x) t (1 - :)I:* g(x). (30) 

Let the generating function z(x) = Czoznxn be of the form z = @(x, y). Then 

(31) 

Proof. In the following, we will use the short hand fi for /I(a). Expanding @(.x, y) 

around y = /3(a) one obtains 

@kY(X)) = @kP(x>> + @&B(X))(Y - K-f>> + O((Y - P(x))*) 
= @P(4B(x>> + @&,B(x)>s(x>(l -xw* + O((Y - B(xN2) (32) 

where the O((y ~- B(x))~) term does not introduce additional singularities. Darboux’ 

theorem therefore applies and yields 

(33) 

Corollary 4.3. Let @(x, y) and y(x) have the same properties as in the previous 
corollary. Assume the coeflcients y, are nonnegative and positive for st&iciently 
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large n. Let z(x) = C,“=, z,,x” be a generating function of the form 

z(x) = 
1 

~ @(x, Y), 
aP-xY 

(34) 

where p = P(U). Then 

(35) 

Proof. First note that c+xY can be written in the form cp(x)( 1 -x/a)-xg(x)( 1 -~/a)‘/~, 

where q(x) is analytic near a. Therefore, 

1 cp(x) -l/2 
p= 
t$ - xy c&x)2( 1 - X/IX) - x2g(x)2 

+ 
x9(x) 

p(x)2( 1 - X/N) - x2g(x)2 ( > 
1-X 

. LX 

(36) 

Since the Yn are positive Y(jxj) <Y(a) = p f or x < CI, with equality only for x = c(. 1 ) 

Hence there are no additional zeros of c$ - xy and z is analytic for 1x1~ c( with 

x = c1 the only singularity on the circle of convergence. Eq. (36), therefore, fulfills the 

requirements of Theorem 4.1. Multiplying Eq. (36) with @(x, Y) and applying Darboux’ 

theorem yields 

-@(4P) -lp-” 

zk N ag(cc)r( 1/2)n . (37) 

Using r( $) = - ir( -i ) completes the proof. 0 

Corollary 4.4. Let y as in the previous corollary and let u,v be of the same form as 

z above. Suppose there is an analytic function @(x, y) such that u = @(x, y)v. Then 

lim !?I = @(a, p). 
n+w 21, 

Proof. Assuming that both u and v are of the form (34) 

that u,/v, = W(c(, P)/@“(a, p). The conditions of Corollary 

exists and @ = @“/@“. 0 

4.2. The number of secondary structures 

(38) 

we find from equation (35) 

4.3 ensure that this quotient 

The series S,, has been extensively studied in [34]. Consider the series !P” of sec- 

ondary structures with a prescribed minimum stack length 2 and minimum size m for 

hairpin loops. Denote by 

(39) 
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the generating functions. We shall use the notation 

m-l 

bdx) = c Xk, 
k=O 

m-1 

z,(x) = 1 kx” =x;&(x) 
k=l 

(40) 

Theorem 4.5. The generating function $, 4 and 6’ ful$ll the coupled functional equa- 

tions 

@=l +x~+x2~$, 
9-l) 

C$=- , _ x* (0 - Mx)h (41) 

0 = * - x2$. 

Proof. The first and third line are obvious. The second line is obtained from 

(p = -gxn y* lu,*-* 

il=O p-1 

ZZ cc x2 p Yn*-*2px n-*P _ Cx2P c y~~2pxn-*P 

n=O p=o p=o n=O 

nt* cc 1-2 03 

- c x2P c yJ;_*2px*-=P f c x*P c y** x”-2P 
n-2p 

n--m 
P’2 

n=O n--m 
P>T 

n=O 

(42) 

Corollary 4.6. The generating function $ is analytic in a neighbourhood of 0 and 

fuljills 

x2'+(x) = [( 1 - x)( 1 - x2 +x2/) + x*[tm(x)] 

- J[( 1 - x)( 1 - x2 + x21) + x2’tm(x)]2 - 4x2’( 1 - x= + x2[). (43) 

Proof. From (41) we obtain a quadratic equation for $, the correct sign of the solution 

follows from SO = $(O) = 1. Taylor expansion shows that $ has an analytic continuation 

at the origin. 0 

The same generating function has recently been derived by Rtgnier and Tahi [22, 3 11. 
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Corollary 4.7. For I = 1 we recover the generating function s(x) = C,“=, &xk for the 

number of secondary structures. It fulfills the functional equation 

Theorem 4.8. 

-da) -3/2 0 
n 

ly,N-n 1 

2v5 c? ' 

(44) 

(45) 

where u is the smallest positive solution of 

p(x) = [( 1 - x)( 1 - X2 + x21) + X2’tm(X)]2 - 4x2/( 1 - x2 +x21) = 0 (46) 

that satisjes 

(47) 

Proof. From Eq. (43) it is clear that the singularities of $(x) are branch points which 

occur when Eq. (46) is fulfilled. With M as given in Eq. (46) t/j can be written in the 

form required by Theorem 4.1: 

,(x)d_!pEp (l_x)1’2; 
u 

(48) 

where p,(x) and p2(x) are polynomials and pf(a) can be obtained by differentiation 

of p(x) to yield Eq. (47). It remains to be shown that $ can have no other singularity 

for x <c(. Recall that there is no singularity at 0 despite the form of Eq. (48), see 

Corollary 4.6. 

Suppose u # a, Iu/ < c( is another singularity, i.e., another solution of (46), and let 

v = $(u). Consider the function 

cp($,x) = Qj2 - 1)x2’ +x2, (49) 

and let 

P=*(u)=$FTz (50) 

By comparison with Eqs. (43) and (46) we have cp(v, u) = cp@‘, LX) = 1. The coefficients 

of the power series for ($(x)* - 1) are strictly positive, except the first one which is 0. 

Therefore, / $(x)~ - 1 1 < t+b( 1x1 )2 - 1 d fi2 - 1 with equality only for x = TV. Furthermore, 
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Table 1 
Coefficients for the asymptotics of Yy, 

I m=O I 2 3 5 00 

2 

3 

4 

5 

IO 

20 

100 

cx 

3 

0.3333 

0.4836 

0.5672 

0.6227 

0.6629 

0.7704 

0.8713 

0.3820 0.4142 0.4369 0.4658 0.5000 

0.5081 0.5266 0.5409 0.5610 0.5958 

0.5828 0.5952 0.6053 0.6204 0.6537 

0.6336 0.6428 0.6504 0.6623 0.6938 

0.6712 0.6783 0.6843 0.6941 0.7237 

0.7737 0.7766 0.7793 0.7840 0.8066 

0.8518 0.8530 0.8540 0.8559 0.8713 

0.9520 0.9521 0.9522 0.9523 0.9525 0.9571 

I .oooo 1.0000 1 .oooo 1.0000 1.0000 1.0000 

-cl(rWJ;;) 
I 3.4658 

2 2.7155 

3 3.9640 

4 5.2305 

5 6.5194 

IO 13.309 

20 28.365 

100 189.31 

1.1044 0.8766 0.7131 0.4880 0.0000 

2.1614 1.7742 1.4848 1.0769 0.0000 

3.2711 2.7558 2.3561 I.7741 0.0000 

4.4238 3.7990 3.3003 2.5537 0.0000 

5.6142 4.8923 4.3033 3.4009 0.0000 

12.026 IO.921 9.962 8.3820 0.0000 

26.557 24.913 23.414 20.787 0.0000 

185.30 181.41 177.63 170.40 0.0000 

we have 

Iq?(v,u)l+* - 11 lU211 + /U21 qp2 - l)a2’ + Cx2 = 1, (51) 

which together with cp(u, u) = 1 can only be fulfilled for u = K 0 

Corollary 4.12. For I= 1 the above equations simplify to fl = 1 la and x is the smallest 

positive solution of 

mtl 

c Xk - 4c(=o. (52) 
k -0 

We therejore recover the results from Rej.’ [28]. Numerical values are given in 

Table 1. 

Throughout the remainder of this paper we will assume I= 1 if 1 is not mentioned 

explicitly, while x and /I will denote the solutions of Eqs. (46) and (50), respectively. 

4.3. Average number of structure elements 

Denote by Z,, the number of structural elements. From the biological point of view 

it is very interesting to determine the average number of structural elements in a single 

structure, i.e. the asymptotic behavior of E,,/S,,. It is clear that the counting series for 

the total number of structure elements, including the total number of base pairs and 

unpaired digits is bounded from above by nS,. 
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Lemma 4.9. Let a be the smallest positive solution of Eq. (52). Then 

3a- 1 
t,(a) = 7’ Ma) = 

3a- 1 (1 - 242 

G((1-m cG(1 - a)’ 

g*(a) = 
(1 - 2c1)(2 + m - 2ma) 

(1 -a)& 

Theorem 4.10. The number of components, I,,, fulfills 

jGrir$=2/?(1 -a)- 1=2/a-3. 
n 

(53) 

Proof. Let i(x) = C,“=, Zkxk be the generating function for the number of components. 

The recursion can be brought to the form 

n-1 n-l m-l 

I n+l- n+ -I CskIn-k-l +xSk&-k-, - x[I+k_, +Sn-k-,]. (55) 

k=O k=O k=O 

Multiplying by x”+’ and summing over n yields 

i(x) =xi(x) + x*s(x)i(x) + x2s2(x) - x2tM(x)[s(x) + i(x)]. 

Using twice the functional equation for s(x) we find 

i(x) = 
x%2(x) - s(x)x*tm(x) 

1 - x - x%(x) + x%,(x) 
= s(x)x*s(x)[s(x) - t&x)]. 

(56) 

(57) 

=2(x)( 1 - x) - s(x). 

Application of Corollary 4.2 immediately yields the desired result. 0 

The first equality in Eq. (54) holds for arbitrary minimal stack length I, too. 

Theorem 4.11. The number of external digits, E,,, fuljills 

Proof. The functional equation for the generating function reads e(x) =x . s*(x). 

Corollary 4.2 completes the proof. I3 

Theorem 4.12. The number of unpaired digits, U,,, furfills 

u, 
s,” 

2a+m(l -2a)n. 

2+m(l-2a) (59) 

Proof. Let u(x) = C,“=, U,,x” be the generating function of the number of unpaired 

digits. From recursion (9) we find immediately the functional equation 

u =xu + xs + 2x*us - x22&(x) - X*Srm(x). (60) 
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Using the functional equation for s, some computations yield 

1 
u(x) = ~ 

1 -12.9 
s2x( 1 - xr, ). (61) 

Application of Corollary 4.3 completes the proof. 0 

Let p(n) be the generating function for the number of base pairs. Since U, + 

2P, = nS,, we have u(x) + 2p(x) =x$‘(x). 

Theorem 4.13. The number of’stucks or loops, N,, fuljills 

N, (1-a)2(l+cc)n 

s,” 2$m-2mci ’ 
(62) 

Proof. Let v(x) = C,“=, N,,x” be the generating function of the number of stacks. 

Observe that 

n-l n-p-l 

c Sk-&-k-l= c Sk&-p-k-l (63) 
k =m+p k=m 

and, therefore, gives rise to a term xP+’ [(s2 -&(x)] =xP[( 1 -x)s - I] in the functional 

equation for the generating function. Thus, recursion ( 12) translates to 

v=xl?+2x2sv-x%t,(x)+(l -x2)[s(l -x)- l] (64) 

or, after some simple rearrangements, 

1 
v= 1-*2s?s(l -x2)[s(l -x) - 11. 

The proof is completed by Corollary 4.3. 0 

4.4. The number of structures with certain properties 

Theorem 4.14. The number of secondury structures with b base pairs is 

1 
H’(b) N (b + 1 )!b! n2h’ 

Proof. From recursion (4) we obtain the functional equation 

h-l 

hh=Xh~+X2Z)hh_k_,hk -X2t&)h&,, b>O 

k=O 

h 

(65) 

(66) 

= Xh/, + x2 c hkhb-k_, + xm+2hh_, 
k=l 

(67) 
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and ho(x) = l/( 1 - x). With the ansatz 

hb(X) = qb(x) ~ 
we find that the functions qb(X) must be polynomials fulfilling 

b-l 

Yb(X)= ~~k(X)~b-k-,(-X) +xmvb-I(x), qO(x)= 1. 

k=l 

Theorem 4.1 assures now that 

H,(b)- vlb(l) .2b. 
r(2b + 1) 

(68) 

(69) 

(70) 

Since VO( 1) = 1, Eq. (69) reduces to the well known recursion for the Catalan numbers 

%(l)=cb=L 2b . 
0 b+l b 

0 

Theorem 4.15. The number of structures with exactly b stacks is 

N,(b) - cb 3b 

2b(3b)!n. 

(71) 

(72) 

Proof. Let vb(X) = c,“=, N,,(b)x” be the generating function for the number of struc- 

tures with exactly b stacks and denote by [b(x) the generating function for the auxiliary 

variable Z,(b). It is straightforward to derive the functional equations 

X2 
ib= (1 _x)(l +x) [%I - Yb-11, 

x2 b 
vb = (1 _ x) I=, il - vb-l. c 

One easily verifies that these generating functions are of the form 

1 1 
vb(x)= Pb(x)(X + l)b (x _ 1)3b+l ’ 

[b(X) = ‘tb(X)- 
(x;l)b(X- ;)sb+t’ 

(73) 

(74) 

where ,&(X) and (b(X) are polynomials. We cannot use the simplified version of 

Darboux’ Theorem 4.1 in this case since there are two singularities on the circle of 

convergence. Expanding by partial fractions we have the identity 

(x -: 1)b (x - :),,+I 
4x1 

=(x+ 
B(x) 

(x _ 1)36+1’ (75) 

where A(x) and B(x) are polynomials of degree 36 and b - 1, respectively, satisfying 

B(x)(x + 1>6 + A(x)(x - 1) 3b+1 = 1 and, hence, B( 1) = 2Yb and A( - 1) = ( -2)-3b-‘. 
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A more general version of Darboux’ theorem, for instance [20, Theorem 11.71, now 

shows that 

N,(b) - L Pdl) n3h + 
1 h-1) 

2h z(3b + 1) 
nh-l(_l)“. 

(-2)3h+’ T(h) 
(76) 

Clearly, the second term is ~(n~~) and hence does not contribute to the asymptotic 

behavior. The coefficients pb( 1) and &,( 1) satisfy the recursions 

h h-l 

Ml)=Ph-l(l)> r%(l)= ~~,u)Pb-i(l)= ~Pi(l)Pb-l-l(l). (77) 
/=I I=0 

Again, the coefficients /~b( 1) are the Catalan numbers. 0 

Theorem 4.16. The number of structures with b hairpins fu(fills 

A,(b) N 
4 

2(3+“)6b!(b - l)! 
n2(h- 1’2” 

(78) 

Proof. Let ah(x) = C A,(b)x” denote the generating function. From recursion (8) we 

obtain after some simple rearrangements 

b 

ah =xah +x2 
c 

aiah_i + x2t,ah_ 1, b>O 
i=l 

and so(x) = l/( 1 - x). Collecting all terms containing ah(x) yields 

h-l 

(1 - 2x)ab=x m+2ab_l + X2 C ajah_i. 

1=l 

With the ansatz 

1 

(1 - 2x)2h-1 
qb(x), 

we find the following recursion for the polynomials qh(x): 

b-l 

ylh(x)=(l p2x)(1 -x)l?b-l +X2Cili(Xhb-l, IIl(X)=1. 

i=I 

Theorem 4.1 now implies that the relevant singularity occurs at x : 

the recursion 

It is easy to verify that recursion (82) is solved by 

Y/J(;)= &-I. 

= 

(79) 

(80) 

(81) 

(82) 

i leaving us with 

(83) 

(84) 
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From Theorem 4.1 we find now that 

cb-1 

“@)- 22(b-‘)2b(m+‘)q2b + 1) 

n2(b-1)2n. 

A simple calculation completes the proof. 0 

Theorem 4.17. The number of structures with b components, J,,(b), fuljills 

cx2 
lim J,(b)/& = cl _ aj3 b n+cc 

(85) 

(86) 

Proof. Let j&) = c,“=, JX(b)x” be the generating function for the number of sec- 

ondary structures with exactly b components. It is straightforward to derive 

jb(x)= 

[ 

f$-$s - t&>> 'jO(X), 1 621 (87) 

and from J,(O) = 1 we obtain j,(x) = l/( 1 -x). From Corollary 4.2 we find that 

lim J,(b)/& = & 
n-+cO 

b 

b(P - t&a))‘-‘. 0 (88) 

Theorem 4.18. The number of structures with b external digits, E,(b), furfills 

LrlEn(b),‘Sn=;(b+ l)(;)b. (89) 

Proof. Let eb(x) be the generating function of the number of secondary structures with 

exactly b external digits. Recursion (5) yields the functional equation 

eb - &b =Xeb_i f x2seb - x26?&(x). (90) 

Substituting the functional equation for s and some algebra finally yields ea = s/( 1 +xs) 

and eb = [xs/( 1 + Xs)]eb_ I. Therefore, 

b 
S 

1 +xs’ 
(91) 

Corollary 4.2 and observing c$ = 1 yields the desired expression. 0 

Theorem 4.19. For any finite order o there is a positive constant E, such that 

(92) 

Proof. We will need the generating functions 

A, = 2 L5n(o)x”, A; = 2 D,*(w)x’, A; = &n(l,o)x”. (93) 
IF0 II=0 n=O 
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Recursion (24) yields the following system of coupled functional equations for the 

above generating functions: 

w-l 01 

A,,, =xAo t-x*A,*,c Ai +x*A,,cA:, 
i=O i=O 

A,T, = &-I + A:, - A:_,, 0>2, 

1 
A’ =xA’ +x2A*- 01 w w1 -x’ 

For o = 0 we have A0 = l/( 1 - x) and for w = 1, we find explicitly 

AT(x) = sxm, 

1 
Al(*)=g; 1 _2x_Xm+2' 

Eliminating AL we find for 032 

A* = (1 -x1* X2 
Lo 1-2x-~ - - 1 _ 2x4-,~ 

A, = 
x2 A; C;=;’ A; 

1 -x-x’~~=~A;’ 

(94) 

(95) 

(96) 

Unfortunately these expressions become to involved to be of much practical use. Denote 

f&)=1 -x-x~~~~A~ and let 1 be the unique solution of 1 - 2x - xm+* in 

the interval [0, i]. Obviously, &(x) is strictly decreasing and has at least one zero in 

(0, CI* ), where X* denotes the position of the singularity with the smallest x value among 

the function A&), i<w. Therefore, A,(x) has a singularity c1,, <CC*. By induction, 

therefore, CI, < a,_1 for all o, since explicitly we have al = A and the first singularity 

in A: occurs at x = a,_~. By Theorem 4.1 we have A,(o) wclnC2az. The inequality 

l/aw > l/~~,_t completes the proof. 0 

Numerical estimates for the constants a, have been obtained by explicitly calculating 

A,(x) with the help of Mathematics and by solving numerically for the smallest zero 

of the denominator in (96,2). The results are compiled in Table 2. The case m = 1, 

o = 1 has already been treated by Waterman [34, 361, the generating function for m = 1 

has been derived in [33]. 

4.5. The distribution of structure elements 

Theorem 4.20. The number of loops with b unpaired digits, Q,,(b), fu@lls 

lim Q'(b) _ 
G2 1 

n-a, N,, (1 - a2)(1 - 2c() 2a2b 
- @(m - b)ab - (1 - 2c()& 1 . (97) 
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Table 2 

Secondary structures with order o. The base of the exponential 

part of the asymptotic is given 

0 m=O i?l=l m=3 

0 1 I I 
1 0.41421256 0.4533977 0.4863890 

2 0.37597060 0.4221456 0.4680050 

3 0.35978154 0.4076474 0.4577424 

Proof. Let qb(X) = c,“=, &(b)x” denote the generating function for the number of 

loops with b unpaired digits. From recursion (13) we find immediately 

qb =xqb + 2x=sqb + x2seb - x=&t, - @(m - b)& 

90 =x40 + 2x=sqo + x=seg - x%&J, - O(m) - x=[s( 1 - x) _ 11, 

(98) 

where O(n) denotes the Heavyside function, O(n) = 1 for IZ > 0 and O(n) = 0 for n 60. 

A simple calculation confirms 

qb = &x’“z[e/, - @(m - b)xb], b>O, 

&I = &x’s[% - s( 1 - x) + 1 - @(??I - O)]. 
(99) 

The substitution of eb from Eq. (91) and Corollary 4.3 prove the assertion. 0 

Theorem 4.21. The asymptotic distribution of stack lengths is geometric: 

,im Wn(b) 1 - E2 26 
n-03 N,, -=a2”. (100) 

Proof. Let W&) = CEO W,(b)x’ denote the generating function for the number of 

stacks of length b. From recursion (14) we find 

wb+,(x)=x2wb(x), b> 1. (101) 

Using V(X) = xb W&x) determines wl (x) and yields 

wb =x =h-*( 1 - x2) v(x). (102) 

Corollary 4.4 completes the proof. 0 
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4.6. Loop types 

Theorem 4.22. The distribution of loop degrees fuljills 

,im L,(d) x= 
- = 

nix N,, (1 - a2)(1 - 2%) 

Proof. Let {d(x) = C,“=OL,,(d)x” be the generating function for the number of loops 

with degree d. For hairpins one finds from recursion ( 19) 

r, =xe, + 2&s - x*&,(x) + cs. (104) 

Similar functional equations can be obtained for loops of higher degree from recursions 

( 19) and (20). They can be brought to the form 

f, = 

fd = 

Using the 

yields Eq. 

1 xm+= 2 

--S 
1 - x2.G 1 - x ’ 

1 
j-J#mx - (1 -x)1 +x24, (105) 

1 
~x2S2j~-~(n), d>2. 

explicit expressions for jd and Corollary 4.3, some tedious algebra finally 

(103). 0 

The average loop degree d can be most easily calculated from the balance equation 

c deg(i,) = 2#[stacks] - #[components], (106) 
loops i 

which holds for all secondary structures. From Eqs. (54) and (62) we find immediately 

that the average loop degree fulfills 

lim d, = 2. (107) I,-+rx) 

Theorem 4.23. The ratio of bulges and true interior loops fuljiirls 

(108) 

Proof. Denote by b(x) and v(x) the generating function for the number of bulges and 

interior loops, respectively. By construction they fulfil b(x) + y(x) = [Z(X). It is thus 
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sufficient to calculate Y(x) from recursion (18). We find 

Y(X) = 
1 

wS2X4ji (x) 

and, thus, 

b(x) = &(x) - y(x) = 
1 

-x2s[s( 1 - x*)ji - (1 - x)s + 11. 

(109) 

(110) 

Corollary 4.4 and a simple calculation complete the proof. 0 

5. Secondary structures on a sequence 

So far we have neglected the fact that secondary structures are built on sequences. 

Not all secondary structures can be formed by a given biological sequence, since not 

all combinations of nucleotides form base pairs. The results of the previous sections 

will be generalized to this situation in the remaining part of the paper. 

Definition 5.1. Let d be some finite alphabet of size K, let Il be a symmetric Boolean 

K x rc-matrix and let C = [ai . . . a,] be a string of length it over d. A secondary structure 

is compatible with the sequence C if 17,p,.y = 1 for all base pairs (p,q). 

Following [12, 371 the number of secondary structures Y compatible with some 

string can be enumerated as follows: Denote by S,,, the number of structures compat- 

ible with the substring [op.. .oq]. Then 

SI,n+l =Js,n + c Sl,k-lSk+l,nnok,rr,+,. (111) 
k=l 

Consider a random sequence with a Bernoulli distribution of the characters. In this 

case the expected number 3, of compatible structures is then [38] 

n-m n-1 

Sri+++ =s, + p ~$-&,-k=&, + pi&&-,, (112) 
k=l k=m 

where 

(113) 

is called the stickiness [15]. Note that Eq. (112) is not true if the characters along 

the sequence are correlated as it is the case for instance in a Markov model of the 

sequence. In the following, we will write X, to mean the expected value of X on 

sequences of length n with Bernoulli distributed characters. 

A secondary structure compatible with a given sequence with maximal number of 

base pairs can be determined by a dynamic programming algorithm [ 191. This 
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observation was the starting point for the construction of reliable energy-directed 

folding algorithms (see, e.g., [35, 38, 17, lo]) and a recursive computation of the den- 

sity of states [3]. 

All recursions in Section 3 are sums of linear terms of the form A, and quadratic 

terms of the type 

n-l n--m 

1 BkCn_k-_, = 1 Ck-,Bn-k. (114) 
k-m k=l 

The corresponding recursions for structures compatible with a string can then be found 

by the rule 

n--m n--m 

c Ck_,&__k -+ c Cl,k-lBk+!,n&k,cr ,,/,’ (115) 
k-l k=l 

For expected numbers assuming Bernoulli distributed sequences these rules simplify to 

n-l n-l 

c BkCn-k-1 --+ P c BkCn-k-l. (116) 

k =m k=m 

As an example we compute the expected fraction of unpaired digits in a secondary 

structure compatible with a random sequence with stickiness p. Applying these rules 

to Eq. (9) leads to the recursion 

n-l 

u .+l=(U,+S,)+pC[Sku~-k-l+Sn-k-IUkl, nam+l, 

k=m 

Un=n, n<mf 1. (117) 

From Eqs. (112) and (117) we obtain the functional equations 

1 =s[l - x - px% + p&J (118) 

for the generating function s of the number of secondary structures, and 

u = xu + xs + p[2x%ls - At, - 2sz,] (119) 

for the generating function u of the number of unpaired digits. 

The asymptotics for So(p) can be calculated in analogy to Theorem 4.8. The func- 

tional equation for s(x) yields 

1 1 
Jis - 2-k -3 ~+$&&)=O. ( > (120) 
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Furthermore, we have the following generalization of 
p<l: 

Lemma 5.3. 

t 
m 

(u) = (1 +q/m- 1 
per= ) 

r,(co = 
u-1+2c(&Q-l+rfi)= 

ZP(l - a) dp(l -cc) ’ 

s2(a) = (1 - 0: - JIsa)(:! + m(l - 0: - J-p@)) 

fi’( 1 - N)!X3 . 

Combining Eqs. (119) and (118) u simplifies to 

u= SW - PW) 

1 - psv 

and Corollary 4.3 implies that 

(1998) 207-237 

Lemma 4.9 for arbitrary 

(121) 

(122) 

lim _Y!L = I 2a+m(l -cc-fia) 

n+oo nS, i 
1 

~ - fiG?dco 
V2(@)P @a 1 = 

2+m(1 -a-&%X)’ (123) 

Note that U,/S, refers to the fraction of the expected values of U,, and S,, not to the 

expected value of the fraction! 
The asymptotics of the most important series are given below without proofs which 

do not differ significantly from the proof of the p = I case. Some numerical values 
are given in Table 3. The stickiness value p = 0.5 corresponds to a binary alphabet 

of complementary bases, while p = 0.25 corresponds to a four letter alphabet with 
two pairs of complementary bases as in the (such as the biophysical AUCG with 
Watson-Crick pairing rules). Biological RNA structures frequently contain G-U pairs. 

Therefore they are best modeled by a value of p = i. 

Number of Loops and stacks: 

v= 
s( 1 - s( 1 - x))(pd - 1) 

1 - psv ’ 

lim Tf!! = (1 - cc)(l ~ CZQ?) 

n-cc s, 2fm(l-a-cc&I) 

Number of components: 

(124) 

i=s2(1 -x)-s, 

,‘lrnm $ =2p(l - tl) - 1. 
n 

(125) 
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Table 3 

Asymptotics of some structure elements as a function of stickiness 

P I 0.5 0.375 0.25 

GC GCAU GCXK 

a 

C/,I4i 
W&l 

NnlnSn 
Li& 

MI )/Nn 
LO)lN,, 
WY, 

Stacklength 

Loopsize 

ElIiS” 

0.4369 0.5092 0.539 I 0.5809 

0.5265 0.5897 0.6147 0.6487 

0.2368 0.205 1 0.1926 0.1756 

0.1915 0.1786 0.1717 

1.5776 I .7266 1.7918 

0.1608 

I .8855 

0.2769 0.3062 0.3183 0.3352 

0.5082 0.4692 0.4537 0.4325 

2.5776 I .9280 I .7096 I .4428 

1.2363 1.1487 1.1220 1.0924 
2.7493 3.3018 3.5801 4.0342 

2 2.828 3.266 4 

Loops with degree 2, i.e., interior loops and bulges: 

I 
2 

= psx2[( 1 -x)2 - s( 1 -x)3 + psx2(s - t,)] 

(1 - x)2( 1 - p.Gx2) 

lim M2) (2 - cc)c+ 
-ZY 

n+m N,, (1 - a)2(1 - a2p)’ 

Jirnm $ = 2/c( - 2. 
n 

Hairpins: 

I = PS2X2U - (1 -x)&l> 
’ (1 -x)(1 - ps2x2) ’ 

l im Ml) -= 
1-Cc-X&j 

n-33 N, 1 - c( - a2p + Gp’ 

(126) 

(127) 

A detailed comparison of the structure statistics derived here with numerical data 

obtained by energy directed folding of RNA molecules is discussed in [30]. As could 

be expected, structures obtained by energy minimization tend to contain longer stacks 

and as a consequence more base pairs. The distribution of loop sizes and loop degrees, 

on the other hand, seems to be dominated by the combinatorics. 
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