Unshellable Triangulations of Spheres

W. B. R. Lickorish

Abstract

A direct proof is given of the existence of non-shellable triangulations of spheres which, in higher dimensions, yields new examples of such triangulations.

This paper produces a way of constructing triangulations of the n-sphere S^{n}, for each $n \geqslant 3$, that are not shellable. A triangulation is said to be shellable if its n-simplexes can be ordered $A_{0}, A_{1}, \ldots, A_{N}$ and each A_{r} can be expressed as the join $B_{r} C_{r}$ of two of its faces (either of which may be empty) so that, for each $r \geqslant 0, A_{r} \cap \bigcup_{i=r+1}^{N} A_{i}=$ $\left(\partial B_{r}\right) C_{r}$. Most of the concepts that will be used here were familiar to those working in combinatorial topology some years ago [1,5], but more recently the possibility of unshellable triangulations of spheres has been of some interest to others [2,7]. It seems that a proof of the existence of such triangulations has never been explicitly recorded. A proof is implicit in [5] but it is overgrown with so much irrelevant material as to render it inaccessible. The proof given here is a generalisation of ideas of Bing [1]. It consists of a distinct simplification of some of the ideas of [5] and is intended to be short and direct. For $n \geqslant 4$ it does produce, via suspensions, some triangulations of S^{n} not previously known to be unshellable (because in [5] interesting submanifolds were required to be locally unknotted). Note that a triangulation of S^{n} is just a simplicial complex the geometric realisation of which is homeomorphic to S^{n}; it does not necessarily have the property that it is isomorphic to a subdivision of the boundary of an ($n+1$)-simplex. The triangulations considered here do have subdivisions with this latter property, but those subdivisions might be shellable.

The notation ' $A \leqslant B$ ' will mean that the simplex A is a face of the simplex B; ' $A<B$ ' will mean that A is a proper face of B. If B and C are disjoint faces of $A, B C$ will denote the join of B and C, namely the face having vertices the union of those of B and those of C. If K is a finite simplicial complex, $|K|$ will denote the geometric realisation of K. An elementary collapse of K consists of the removal of two simplexes A and B from K, where $A<C \in K$ if and only if $C=B . K$ is collapsible if a finite sequence of elementary collapses reduces K to just a single vertex. Note that if K triangulates S^{n} and K is shellable, then for some n-simplex A_{0} of K the complex $K-A_{0}$ is collapsible. It will be shown that this is not so for some triangulations of S^{n}.

The first derived subdivision $K^{(1)}$ of a simplicial complex K is the complex consisting of all simplexes $\hat{A}_{0} \hat{A}_{1} \cdots \hat{A}_{r}$, where $A_{0}<A_{1}<\cdots<A_{r} \in K$ and \hat{A}_{i} is the barycentre of A_{i}. If L is a subcomplex of K let $U\left(L^{(1)}, K^{(1)}\right)$ be defined by

$$
U\left(L^{(1)}, K^{(1)}\right)=\left\{\hat{A}_{0} \hat{A}_{1} \cdots \hat{A}_{r}: A_{0}<A_{1}<\cdots<A_{r} \in K \text { and } A_{0} \in L\right\}
$$

This is not a simplicial complex (it is not closed under facing) but L^{c}, its complement in $K^{(1)}$, is the subcomplex of $K^{(1)}$ consisting of all simplexes that have no face in $L^{(1)}$.

Lemma 1. If L is a subcomplex of a finite simplicial complex K, then $\left|L^{c}\right|$ is a deformation retract of (and hence is homotopy equivalent to) $|K|-|L|$.

Proof. If $A \in K^{(1)}, A$ can be written as a join $A=B C$, where $B \in L^{(1)}$ and $C \in L^{c}$ (sometimes this is expressed as ' $L^{(1)}$ is a full subcomplex of $K^{(1) '}$); either of B or C may
be empty. The required deformation retraction consists of a deformation retraction of every $|A|-|B|$ to $|C|$, shrinking along the lines of the join.

If $A \in K$ the dual A^{*} of A is the subcomplex of $K^{(1)}$ defined by

$$
A^{*}=\left\{\hat{A}_{0} \hat{A}_{1} \cdots \hat{A}_{r}: A \leqslant A_{0}<A_{1}<\cdots<A_{r} \in K\right\} .
$$

This is a cone with vertex \hat{A}; the base of the cone will be denoted ∂A^{*}. Note that $\partial A^{*}=\cup\left\{B^{*}: A<B\right\}$. Intuitively, A^{*} is the intersection of $|K|$ with a small cut through \hat{A} perpendicular to A. A complex is a $P . L .(n-1)$-sphere if it has some subdivision isomorphic to a subdivision of the boundary of an n-simplex. Any triangulation of S^{3} is a P.L. 3-sphere and the suspension of a P.L. $(n-1)$-sphere is a P.L. n-sphere. A closed combinatorial n-manifold is a complex in which the link of every vertex is a P.L. ($n-1$)-sphere. Any subdivision of such a complex has the same property, and the link of every r-simplex is a P.L. $(n-r-1)$-sphere. These standard results of combinatorial topology are not difficult and can be found in [4]. If A is an r-simplex in a combinatorial n-manifold then ∂A^{*} is a P.L. $(n-r-1)$-sphere, for it is the link of A in the subdivision of K consisting of

$$
\left\{B \hat{A}_{s+1} \hat{A}_{s+2} \cdots \hat{A}_{t}: B<A_{s+1}<A_{s+2}<\cdots<A_{t} \in K, \operatorname{dim} B \leqslant r<\operatorname{dim} A_{s+1}\right\} .
$$

Thus A^{*} is a P.L. $(n-r)$-ball, being the cone on ∂A^{*}. (The correspondence between A and A^{*} is the genesis of the Poincare duality isomorphisms between the homology and cohomology groups of a manifold.)

Lemma 2. Suppose that a non-empty subcomplex L of a closed combinatorial n-manifold K has $v_{r} r$-simplexes. Suppose that $K-A_{0}$ is collapsible, where A_{0} is some n-simplex in $K-L$. Then $\left|L^{c}\right|$ is homotopy equivalent to a cell complex having at most $1+v_{n-1} 0$-cells and at most $v_{r}(n-r-1)$-cells for $0<r+1<n$.

Proof. (The collapsing property implies that K is a P.L. n-sphere, but that will not be used.) The simplexes of $K-A_{0}$ can be ordered $A_{1}, A_{2}, \ldots, A_{2 N+1}$, where $A_{2 N+1}$ is a vertex, $A_{2 i-1}<A_{2 i}$ and $A_{2 i-1} \leqslant A_{j}$ implies that $j \leqslant 2 i$. Define X_{j}, a subcomplex of $K^{(1)}$, by

$$
X_{j}=\cup\left\{A_{i}^{*}: 0 \leqslant i \leqslant 2 j, A_{i} \notin L\right\} .
$$

The ordering can be chosen so that $A_{2 N+1}$ is in L. Then X_{0} is the single vertex A_{0}^{*} and $X_{N}=L^{c}$. Consider how X_{j} differs from X_{j-1}. There are three cases to investigate.
(i) If $A_{2 j-1} \notin L$ then $A_{2 j-1}^{*}$ and $A_{2 j}^{*}$ are both in X_{j}. If $\operatorname{dim} A_{2 j-1}=r$ then $A_{2 j-1}^{*}$ is an ($n-r$)-cell with $A_{2 j}^{*}$ an $(n-r-1)$-cell in its boundary. But $\left|X_{j-1} \cap A_{2 j-1}^{*}\right|$ is the closure of $\left|\partial A_{2 j-1}^{*}-A_{2 j}^{*}\right|$ and so is also an $(n-r-1)$-cell by Newman's theorem [4]. Thus $\left|X_{j}\right|$ is just $\left|X_{j-1}\right|$ with an $(n-r)$-cell attached via a cell in its boundary, and such an attaching does not change the homotopy type.
(ii) If $A_{2 j-1} \in L$ but $A_{2 j} \notin L$ then, if $\operatorname{dim} A_{2 j-1}=r,\left|X_{j}\right|$ is $\left|X_{j-1}\right|$ with the $(n-r-1)$ cell $A_{2 j}^{*}$ attached via its whole boundary.
(iii) If $A_{2 j} \in L$ then $\left|X_{j}\right|=\left|X_{j-1}\right|$.

Thus only in the second case does the homotopy type of $\left|X_{j}\right|$ change at all, and it is by the adding of an $(n-r-1)$-cell, one $(n-r-1)$-cell occurs for each relevant r-simplex.

A few remarks about knot theory are now in order. A (classical) knot is just a simple closed curve in the 3 -sphere, and a tame knot is one that can be regarded as some subcomplex of a triangulation of the 3 -sphere. The group G of a knot k is the
fundamental group of the knot's complement, $G=\Pi_{1}\left(S^{3}-k\right)$. The easiest knot to envisage is the trefoil knot which has a well-known diagram with three crossings, but knots can be made to be very complicated. In particular, consider the simple closed curve that is the sum of m copies of the trefoil knot (obtained by placing m trefoils one after the other in the same loop of string). This, of course, is a tame knot. It is known that the group of this knot has no group presentation with fewer than $(m+1)$ generators. A proof appears in [3]. The idea of that proof is as follows. The Alexander module of the knot is the first homology of the universal abelian cover of the knot's complement viewed as a module over the Laurent polynomial ring $\mathbb{Z}\left[t^{-1}, t\right]$. Direct calculation shows that, for the sum of m trefoils, the m th elementary ideal of this module is not the whole ring. However, that ideal would be the whole ring if there were a group presentation with fewer than $(m+1)$ generators.

The next result (probably originally due to Bing [1]) shows that a tame knot in S^{3} can be complicated without having many simplexes.

Lemma 3. If k is a tame knot in S^{3} there is a simplicial complex T, containing a subcomplex κ, such that κ has just three vertices and three 1 -simplexes and $(|T|,|\kappa|)$ is P.L. homeomorphic to $\left(S^{3}, k\right)$.

Proof. Let L be a subcomplex of K such that ($|K|,|L|)$ is homeomorphic to (S^{3}, k). The closed simplicial neighbourhood of $L^{(2)}$ (the second derived subdivision of $L)$ in $K^{(2)}$ is a solid torus. If A_{1}, A_{2} and A_{3} are distinct 1 -simplexes of $L^{(1)}$ then $\left|A_{1}^{*}\right|$, $\left|A_{2}^{*}\right|$ and $\left|A_{3}^{*}\right|$ are (meridian) discs that divide the solid torus into three cylinders. Because a cylinder is a convex subset of \mathbb{R}^{3}, it is easy to re-triangulate the cylinders as cones with vertices \hat{A}_{1}, \hat{A}_{2} and \hat{A}_{3} respectively, without changing the triangulation on the boundary of any cylinder. Let T be $K^{(2)}$ with the triangulation of the solid torus changed in this way. The solid torus now has a core that is a simple closed curve triangulated with \hat{A}_{1}, \hat{A}_{2} and \hat{A}_{3} as its only vertices.

These results can now be assembled to give the promised theorem.

Theorem. There exists, for each $n \geqslant 3$, a triangulation K of the n-sphere such that for no n-simplex $A_{0} \in K$ is $K-A_{0}$ collapsible. K can be chosen to be a P.L. n-sphere.

Proof. Let T be a simplicial complex containing a subcomplex κ that is a simple closed curve with just three vertices and three 1 -simplexes, such that T triangulates S^{3} and κ corresponds to a knot for which the knot group has no presentation with fewer than $3\left(2^{n-3}\right)+1$ generators. This is possible by Lemma 3 and the remarks preceding that lemma. Let K be $\Sigma^{n-3} T$, the $(n-3)$-fold suspension of T, obtained by starting with T and performing $(n-3)$ times the operation of joining to a pair of points. Let L be the subcomplex $\Sigma^{n-3} \kappa$. Now, $|K|-|L|$ deformation retracts to $|T|-|\kappa|$. Hence $\Pi_{1}(|K|-|L|)$ is isomorphic to the chosen knot group and so has no presentation with fewer than $3\left(2^{n-3}\right)+1$ generators; thus $\Pi_{1}\left(\left|L^{c}\right|\right)$ also has this property, by Lemma 1. If there were an n-simplex $A_{0} \in K$ with $K-A_{0}$ collapsible then, by Lemma $2,\left|L^{c}\right|$ would be homotopy equivalent to a cell complex with at most $3\left(2^{n-3}\right) 1$-cells (that being the number of ($n-2$)-simplexes in L). But this leads to a contradiction, because homotopy equivalent spaces have isomorphic fundamental groups, and the algorithm that presents the fundamental group of a connected complex gives one generator for each 1 -cell not in a fixed maximal tree, and a relator for each 2-cell.

One might note that the complexity of the required knot can be reduced if, rather than using suspensions, K is taken to be the join of T to the boundary of an ($n-3$)-simplex. For $n=3$ the above procedure shows that there is a triangulation of S^{3} that is not shellable because it contains a subcomplex, of only three vertices and three 1 -simplexes, that is knotted in the sum of three trefoil knots. The proof shows that if one 3 -simplex is removed the remainder does not collapse. Contrary to popular belief, a triangulation is known that contains a simple closed curve of three vertices and three 1 -simplexes knotted in a single trefoil, such that a 3 -simplex can be removed leaving a collapsible remainder. The triangulation is a cone added to the boundary of the example given in [6] of a collapsible triangulation of the 3-ball with a knotted spanning 1 -simplex. Using that example and a little ingenuity, a similarly collapsible triangulation can be constructed involving the sum of two trefoils. It is not clear whether either of these two triangulations of S^{3} is shellable.

The referee has pointed out that, for $n \geqslant 4$, the join of any triangulation of S^{n-4} to a non-shellable triangulation of S^{3} produces a non-shellable triangulation of S^{n} (because in a shellable triangulation the link of any simplex is shellable); this economises on the number of simplexes required for a non-shellable S^{n}.

References

1. R. H. Bing, Some aspects of the topology of 3-manifolds related to the Poincaré conjecture, in: Lectures on Modern Mathematics, Volume 2, John Wiley New York, 1964, 93-128.
2. A. Björner, Topological methods, in: Handbook of Combinatorics, R. Graham, M. Grötschel and L. Lovász (eds) (to appear).
3. R. Goodrick, Non-simplicially collapsible triangulations of I^{n}, Proc. Camb. Phil. Soc., 64 (1968), 31-36.
4. J. F. P. Hudson, Piecewise Linear Topology, Benjamin, New York 1969.
5. C. Kearton and W. B. R. Lickorish, Piecewise linear critical levels and collapsing, Trans. Am. Math. Soc., 170 (1972), 415-424.
6. W. B. R. Lickorish and J. M. Martin, Triangulations of the 3-ball with knotted spanning 1 -simplexes and collapsible r th derived subdivisions, Trans. Am. Math. Soc., 137 (1969), 451-458.
7. A. Vince, A non-shellable 3-sphere, Europ. J. Combin., 6 (1985), 91-100.

Received 18 June 1990 and accepted in revised form 15 July 1991
W. B. R. Lickorish

Department of Pure Mathematics, 16, Mill Lane,
Cambridge, CB2 1SB, U.K.

