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(18/11)n+ O(1) ≈ (1.6363)n.
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1. Introduction

The problem of sorting with the minimum number of prefix reversals, known as the Pancake Problem, has applications
in the pancake network in parallel processing [1]. Improving the upper bound for the pancake problem has been a
subject of some interest. Gates and Papadimitriou [3] proved that all permutations of length n can be sorted using at
most (5n + 5)/3 ≈ (1.6666)n prefix reversal operations. We improve the upper bound for the pancake problem to
(18/11)n+ O(1) ≈ (1.6363)n. The current lower bound is (15/14)n ≈ (1.071)n [4]. The exact number of prefix reversals
needed to sort unsigned permutations of length n (for n < 18), and signed permutations (for n < 11) has also been
determined [2,4–7].
We denote a permutation π on Zn = {0, 1, . . . , n − 1} by a list π = π1, π2, . . . , πn, where each element of Zn occurs

once and only once. Symbols πi and πj in Zn are consecutive if πi−πj ≡ ±1(mod n). Note that this means that symbols n−1
and 0 are consecutive symbols. An adjacency occurs between πi and πi+1, whenever πi and πi+1 are consecutive symbols.
For example, in the permutation 4, 5, 6, 0, 2, 1, 3, there are adjacencies between 4 and 5, between 5 and 6, between 6 and
0, and between 2 and 1.
A block in a permutation π = π1, π2, . . . , πn is a maximal length sublist πr , πr+1, . . . , πs such that there is an adjacency

between πi and πi+1 for all i (r ≤ i < s). A block has a distinct initial and final element, which we call its endpoints. An
element not occurring in a block is called a singleton. Note that unless the permutation is a single block, there are two
unique consecutive elements outside a block, one for each of its endpoints. The consecutive element for each endpoint can
either be a singleton or an endpoint of another block.
A singleton also has two unique consecutive elements elsewhere in the permutation which can be singletons, endpoints

of different blocks, or one of each. For example, the permutation 4, 5, 6, 0, 2, 1, 3, has two blocks, namely 4, 5, 6, 0 and 2, 1,
and one singleton, namely 3. The block 4, 5, 6, 0 has endpoints 4 and 0. The endpoint 4 is consecutive to the singleton 3, and
the other endpoint 0 is consecutive to 1 which is an endpoint of another block.
For a permutation π , we denote the number of blocks by b(π) and the number of singletons by s(π). A prefix reversal

of size j transforms π = π1, π2, . . . , πj−1, πj, πj+1, . . . , πn into π ′ = πj, πj−1, . . . , π2, π1, πj+1, . . . , πn. We use the terms
prefix reversal, step, move and flip interchangeably.
For any permutation π , we define a potential function Φ(π) = (18/11)s(π) + (24/11)b(π) and use this function to

prove our new upper bound. Our proof contains 2220 cases and a complete solution with all flip sequences is given in [8].
We show that Φ(π) is an upper bound on the number of prefix reversal operations to transform π into a single block by
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Table 1
The nine Gates and Papadimitriou cases
Case Flip sequence Description Number of

flips
1(S) Excess (+) or

Deficiency (−)
(1) B _ A _

→_ BA _
Singleton B at the beginning of the permutation is
consecutive with a singleton A. Two singletons are
eliminated and one block is created in one step.

1 12/11 +1/11

(2) B _ A∼ _
→_ BA∼

Singleton B at the beginning of the permutation is
consecutive with the left endpoint A of a block A∼.
One singleton is eliminated in one step.

1 18/11 +7/11

(3) B _∼A _∼C _
→A∼ _ B _∼C _
→_∼AB _∼C _
→C∼ _ BA∼ _
→_∼CBA∼ _

Singleton B at the beginning of the permutation is
consecutive with the last elements (A and C) of 2
separate blocks ∼A and ∼C. One singleton and one
block are eliminated in 4 steps.

4 42/11 −2/11

(4) B∼ _ A _
→_∼BA _

Left endpoint B of block B∼ at the beginning of the
permutation is consecutive with a singleton A. One
singleton is eliminated in one step.

1 18/11 +7/11

(5) B∼ _ A∼ _
→_∼BA∼ _

Left endpoint B in block B∼ at the beginning of the
permutation is consecutive with A in block A∼. One
block is eliminated in one step.

1 24/11 +13/11

(6) B∼C _ D∼ _
→C∼B _ D∼ _
→_ B∼CD∼ _

Right endpoint C in block ∼C at the beginning is
consecutive with left endpoint D in block D∼. One
block is eliminated in two steps.

2 24/11 +2/11

(7) B∼C _∼D _
→D∼ _ C∼B _
→ _∼DC∼B _

Right endpoint C in block ∼C at the beginning is
consecutive with right endpoint D in block ∼D. One
block is eliminated in two steps.

2 24/11 +2/11

(8) B∼C _∼A _ D _
→D _ A∼ _ C∼B _
→_∼A _ D∼B _
→B∼D _ A∼ _
→_ D∼A∼ _

The block B∼C is at the beginning, left endpoint B is
consecutive with right endpoint A in block ∼A. The
endpoint C of B∼C is consecutive with a singleton D
occurring to the right of ∼A. One singleton and one
block are eliminated in 4 steps.

4 42/11 −2/11

(9) B∼C _ D _∼A _
→D _ C∼B _∼A _
→D∼B _∼A _
→A∼ _ B∼D _
→_∼A∼D _

The block B∼C is at the beginning, left endpoint B is
consecutive with right endpoint A in block ∼A. The
endpoint C of B∼C is consecutive with a singleton D
occurring between the block B∼C and the block ∼A.
One singleton and one block are eliminated in 4 steps.

4 42/11 −2/11

demonstrating that, for all of our flipping sequences that reduce the number of singletons and/or blocks, the reduction in the
value of the potential function is greater than or equal to the number of flips. The upper bound (18/11)n for permutations
of length n follows, as the functionΦ(π) is maximized over all permutations of length nwhen every element is a singleton,
as it takes two or more elements to make a block.
Gates and Papadimitriou [3] define an algorithm based on nine cases that describe the relative position and orientation of

certain blocks and singletons in permutations. We now give an overview of the nine cases. We apply our potential function
Φ to the nine cases.
The nine cases are categorized by whether the initial object is a singleton or a block and whether elements consecutive

with the initial object (or its endpoints) are singletons or blocks. Every permutation belongs to at least one of these nine
cases. To use the algorithm, one first determines which case(s) a given permutation belongs to and then performs the prefix
reversals indicated for the case. After performing the specified prefix reversals, one again has a permutation and the process
is repeated, although the new permutation may not belong to the same case(s) as before.
To describe the nine cases, we adopt the notation that consecutive letters are variables denoting consecutive symbols

and a block with indeterminate elements is represented by the symbol∼. A block with left (right) endpoint B is denoted by
B∼ (respectively,∼B), and a block with left and right elements B and C, respectively, is denoted by B∼C, although here the
consecutive letters B and C do not necessarily denote consecutive symbols in the permutation. An underscore denotes an
arbitrary sub-list of elements in the permutation that do not play a role in the flip sequence.
As noted earlier, if the initial object in a permutation, say B, is a singleton, then there are two elements somewhere in the

permutation, say A and C, that are consecutive with B. The first three cases of the Gates and Papadimitriou algorithm are for
permutations in which the initial object is such a singleton B. Case (1) applies when at least one of B’s consecutive elements
is a singleton,whichwe denote by A. Case (2) applieswhen at least one of B’s consecutive elements is the beginning endpoint
of a block, which we denote by A∼, and Case (3) applies when both of B’s consecutive elements are terminating endpoints
of distinct blocks, which we denote by∼A and∼C, respectively. Cases (1)–(3) are shown in Table 1. Every permutation with
an initial singleton element belongs to one of these three cases.
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Now consider a permutation whose initial element is a block, which we denote by B∼C. This gives rise to the remaining
six cases of the Gates and Papadimitriou algorithm. These cases are differentiated by the type of elements (i.e., singletons
or endpoints of blocks) that are consecutive with the endpoints B and C of the initial block. Case (4) applies when the
element consecutivewith the beginning endpoint B, whichwe denote by A, is a singleton. Case (5) applies when the element
consecutive with B is the beginning endpoint of another block, whichwe denote by A∼. That leaves permutations where the
element consecutive with B is the terminating endpoint of another block, which we denote by∼A. However, this situation
by itself is not good for constructing an efficient algorithm, because too many steps are required to make the beginning
endpoint B adjacent to its consecutive element A.
To resolve this issue, Gates and Papadimitriou consider the element, say D, consecutive with the terminating endpoint

C of the initial block. This gives rise to Cases (6) and (7). Case (6) applies when D is the beginning endpoint of another
block, which we denote by D∼. Case (7) applies when D is the terminating endpoint of another block, which we denote
by ∼D. Both of these cases can be resolved in an acceptable number of steps. The only remaining possibility is that D is a
singleton. That is, the only permutations not included in Cases (1) through (7) are those whose initial element is a block
B∼C, the element, A, consecutive with B is the terminating endpoint of another block, denoted by∼A, and the element, D,
consecutive with C is a singleton. Case (8) applies when∼A occurs to the left of D in the permutation. Case (9) applies when
∼A occurs to the right of D. These cases can also be resolved in an acceptable number of steps [3]. Cases (4)–(9) are shown in
Table 1.
It follows that, for every permutation π , at least one of the nine cases applies. The Gates and Papadimitriou algorithm

describes sequences of prefix reversals for each case that are sufficient to prove the indicated (5n+ 5)/3 upper bound [3].
Observe that, in the preceding discussion, Cases (6)–(9) deal with the situation where the initial object is a block B∼C

and B’s consecutive element is the terminating endpoint of another block, denoted by ∼A. This single configuration was
expanded in [3] to the four cases (6)–(9). Through this expansion,more information about the structure of the permutation is
available. In particular, by considering the position of the singleton D consecutive with C, a good sequence of prefix reversals
can be described.
For our improved upper bound, a similar strategy is used. We design an improved algorithm by examining cases in more

detail, which results in further division of the nine cases. Specifically, we start with the nine cases described above, which
provide a complete solution for the previous upper bound. From these nine cases, we construct a refined set of cases by
compoundingwhich we now describe.
Suppose that some Case (i), (1 ≤ i ≤ 9), applies to a permutation π . Then by applying the prefix reversals defined

by the Gates and Papadimitriou algorithm for Case (i), one obtains a new permutation π ′ and some Case (j) applies to π ′.
We call this two-case sequence a compound case, and we say compound Case (i)–(j) applies to π . As every permutation
belongs to such a compound case, this perspective also yields a complete set of cases. (The only exception would be when
π becomes a single block by the steps of the initial Case (i).) Furthermore, as we shall see, by considering such compound
cases we can design more efficient prefix reversal sequences. For example, there is a four-step flip sequence described
in [3] for Case (3). Therefore, a permutation in compound Case (3-3) would take eight steps following the algorithm of
[3]. Note that there are several compound (3-3) cases, because the objects that form the subsequent Case (3) can be in
different locations relative to the objects of the initial Case (3). Table 5 shows that seven steps are sufficient in all but
two of the compound (3-3) cases. This is our motivation to consider compound cases and the foundation of our improved
algorithm.
In fact, we have found shorter flip sequences for most, but not all, compound cases. There are compound cases for which

shorter sequences do not exist. We resolve these by additional expansion. Specifically, we consider additional elements in
positions adjacent to other already identified elements. For these additional elements,we then consider all possible positions
of objects consecutive with the new elements. We call this expansion by breadth.
For example, one of the difficult sub-cases of the compound case (3-3) is any permutation of the form B _ H∼ _ J∼ _∼A

I _∼C _, shown as (3-3a) in Table 5. This denotes a sub-case involving an initial Case (3), with the initial singleton denoted
by B, and B’s two consecutive elements are the terminal endpoints of blocks, denoted by∼A and∼C, the subsequent Case
(3) involves a singleton I next to ∼A and somewhere between the singleton B and the block ∼A are the blocks H∼ and J∼
containing the elements, namely H and J, consecutive with I.
To find an efficient sequence of flips for this case we consider an expansion of the permutation into several sub-cases,

represented by the generating string B _ H∼ _ J∼ _ ∼A I _ S∼C _ T*. The generating string denotes all sub-cases, where the
beginning endpoint of the block∼C is denoted by the symbol S and the element consecutive to S is denoted by the symbol
T, where all possible positions of T, both as a singleton or endpoint of a block, are considered. That is, the compact notation
T* indicates all sub-cases based on possible positions of the element T.
Note that there must be an initial element S of such a block and its consecutive element T must be somewhere in the

permutation, so the indicated expansion gives again a complete set of sub-cases. That is, every permutation of the compound
(3-3a) case B _ H∼ _ J∼ _∼A I _∼C _ is covered by one of the indicated sub-cases.
Although the flip sequences are not shown here, Table 15 in the Appendix indicates that there is an efficient flip sequence

for all but one of these sub-cases. The exception is the sub-case denoted by B _ H∼ _ J∼ _ ∼A I _ S∼C _ ∼T _, where the
element T is the terminating endpoint of a block that appears after the block S∼C. To find a good flip sequence for this
exceptional sub-case, we consider a further expansion into B _ H∼ _ J∼ _ U∼A I _ S∼C _∼T _ V*.
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Table 2
(3-1) compound cases
Case and excess (+) or Deficiency (−) of1(S) Description Flip sequence

(not given for deficiencies)
(3-1a)
Deficiency:−1/11

B _ H _∼A I _∼C _ (Deficiency)

(3-1b)
Deficiency:−1/11

B _∼A I _ H _∼C _ (Deficiency)

(3-1c)
Deficiency:−1/11

B _∼A I _∼C _ H _ (Deficiency)

Table 3
(8-1) compound cases
Case and excess (+) or Deficiency (−) of1 (S) Description Flip sequence

(not given for deficiencies)
(8-1a)
Excess:+3/11

B∼C _ H _∼A I _ D _ B∼C _ H|_∼A I _ D _
→H _ C∼B _∼A|I _ D _
→A∼ _|B∼C _ H∼I _ D _
→_∼C _ H∼I _ D _

(8-1b)
Deficiency:−1/11

B∼C _∼A I _ H _ D _ (Deficiency)

(8-1c)
Deficiency:−1/11

B∼C _∼A I _ D _ H _ (Deficiency)

Table 4
(9-1) compound cases
Case and excess (+) or Deficiency (−) of1(S) Description Flip sequence

(not given for deficiencies)
(9-1a)
Deficiency:−1/11

B∼C _ G _ D F _∼A _ (Deficiency)

(9-1b)
Deficiency:−1/11

B∼C _ D F _ G _∼A _ (Deficiency)

(9-1c)
Deficiency:−1/11

B∼C _ D F _∼A _ G _ (Deficiency)

This is another example of a generating string, and it is interpreted as follows. The beginning endpoint of the block∼A is
identified as the symbol U. V denotes the element outside the block that is consecutive with U. We have sub-cases based on
all possible positions of the element V in the permutation. Note that, once again, there must be an initial element U of the
∼A block and U’s consecutive element must be somewhere in the permutation, so this expansion again gives a complete
set of cases. As indicated in Table 15 there are efficient flip sequences for each of these sub-cases, so no further expansion is
required.
For a given sequence of steps S that transforms a permutation π into a permutation π ′, let1(S) denote Φ(π) − Φ(π ′).

For a sequence S of k prefix reversals, for some k ≥ 1, let the excess of S, denoted by excess(S), be1(S)− k. If excess(S)≥0,
then S is called a good sequence. If excess(S)<0, then the excess of S will be called the deficiency of S and the sequence S is
bad. Column 6 of Table 1 shows this value for each of the nine Gates and Papadimitriou cases.
The preceding paragraphs describe our expansions in the number of cases. Note that only three of the nine cases of

Gates and Papadimitriou need expansion when using our potential function Φ(π) = (18/11)s(π) + (24/11)b(π) . This is
recorded in Table 1, where a deficiency (indicated by a negative1(S)) shows when an expansion is necessary. In particular,
expansions are only necessary for Cases (3), (8), and (9). So, we only need to consider compound cases of the form (3-y),
(8-y), (9-y), where y is a case number between 1 and 9. Moreover, we do not need to look for good sequences for compound
cases (3-y), (8-y), or (9-y), where y∈{2, 4, 5, 6, 7}, as the flip sequences of [3] are sufficient for our potential function. This can
be seen by observing that the deficiency for the initial cases (3), (8), and (9) is offset by the excess (indicated by a positive
1(S)) for the subsequent cases y∈{2, 4, 5, 6, 7}, so that the cumulative1(S) for these compound cases is positive. Hence, we
only need to find good flip sequences for compound cases (3-y), (8-y), and (9-y), where y∈{1, 3, 8, 9}.
We have identified 93 compound cases which require expansion. For example, for the (3-3) compound cases there are

nine ways that the objects in a succeeding case (3) can be arranged relative to the initial case (3). These are labeled as
(3-3a), (3-3b), . . . , (3-3i) and are shown in Table 5. Tables 2–4 and Tables 6–13 show the other compound cases which
require expansion.
Among the 93 compound cases where good sequences must be found, and which are described in Table 2 through

Table 13, eleven fail. That is, for eleven of the 93 sub-cases, no flip sequence exists that is sufficient to satisfy our potential
function. These are indicated by theword deficiency in the tables. In particular, the compound cases denoted by (3-1a), (3-1b),
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Table 5
(3-3) compound cases
Case and excess (+) or Deficiency (−) of1(S) Description Flip sequence

(not given for deficiencies)
(3-3a) B _ H∼ _ J∼ _∼A I _∼C _ (Deficiency)
Deficiency:−2/11

(3-3b)
Excess= +7/11

B _ J∼ _∼A I _∼C _∼H _ B _ J∼ _∼A|I _∼C _∼H _
→A∼ _∼J _|B I _∼C _∼H _
→_ J∼ _∼B I _∼C _∼H|_
→H∼ _ C∼ _|I B∼ _∼J _ _
→_∼C _∼I B∼ _∼J|_ _
→J∼ _∼B|I∼ _ C∼ _ _ _
→B∼ _∼ _|C∼ _ _ _
→_∼ _∼ _ _ _

(3-3c)
Excess= +7/11

B _ H∼ _∼A I _∼J _∼C _ B _ H∼ _∼A I _∼J|_∼C _
→J∼ _|I A∼ _∼H _ B _∼C _
→_∼I A∼ _∼H|_ B _∼C _
→H∼ _∼A|I∼ _ _ B _∼C _
→A∼ _∼ _ _|B _∼C _
→_ _∼ _∼B _∼C|_
→C∼ _|B∼ _∼ _ _ _
→_∼ _∼ _ _ _

(3-3d)
Excess= +7/11

B _∼A I _∼H _∼J _∼C _ B _∼A I _∼H|_∼J _∼C _
→H∼ _|I A∼ _ B _∼J _∼C _
→_∼I A∼ _ B _∼J|_∼C _
→J∼ _ B _∼A|I∼ _ _∼C _
→A∼ _|B _∼ _ _∼C _
→_∼B _∼ _ _∼C|_
→C∼ _ _∼ _|B∼ _ _
→_∼ _ _∼ _ _

(3-3e)
Excess= +7/11

B _∼A I _∼J _∼C _∼H _ B _∼A I _∼J|_∼C _∼H _
→J∼ _|I A∼ _ B _∼C _∼H _
→_∼I A∼ _ B _∼C _∼H|_
→H∼ _ C∼ _ B _∼A|I∼ _ _
→A∼ _|B _∼C _∼ _ _
→_∼B _∼C|_∼ _ _
→C∼ _|B∼ _ _∼ _ _
→_∼ _ _∼ _ _

(3-3f)
Excess= +7/11

B _∼A I _∼C _∼H _∼J _ B _∼A|I _∼C _∼H _∼J _
→A∼ _|B I _∼C _∼H _∼J _
→_∼B I _∼C _∼H|_∼J _
→H∼ _ C∼ _|I B∼ _ _∼J _
→_∼C _∼I B∼ _ _∼J|_
→J∼ _ _∼B|I∼ _ C∼ _ _
→B∼ _ _∼ _|C∼ _ _
→_∼ _ _∼ _ _

(3-3g)
Excess= +7/11

B _ H∼A I _∼J _∼C _ B _ H∼A I _∼J|_∼C _
→J∼ _|I A∼H _ B _∼C _
→_∼I A∼H|_ B _∼C _
→H∼A|I∼ _ _ B _∼C _
→A∼ _ _|B _∼C _
→_ _∼B _∼C|_
→C∼ _|B∼ _ _ _
→_∼ _ _ _

(3-3h)
Deficiency:−2/11

B _ H∼ _ J∼A I _∼C _ (Deficiency)

(3-3i)
Excess= +7/11

B _ J∼A I _∼C _∼H _ B _ J∼A|I _∼C _∼H _
→A∼J _|B I _∼C _∼H _
→_ J∼B I _∼C _∼H|_
→H∼ _ C∼ _|I B∼J _ _
→_∼C _∼I B∼J|_ _
→J∼B|I∼ _ C∼ _ _ _
→B∼ _|C∼ _ _ _
→_∼ _ _ _
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Table 6
(3-8) compound cases
Case and excess (+) or Deficiency (−) of1(S) Description Flip sequence

(not given for deficiencies)
(3-8a)
Excess= +7/11

B _ K _ H∼ _∼A I∼J _∼C _ B _ K _ H∼ _∼A I∼J|_∼C _
→J∼I A∼ _∼H _|K _ B _∼C _
→_ H∼ _∼A I∼K _ B _∼C|_
→C∼ _|B _ K∼I A∼ _∼H _ _
→_∼B _ K∼I A∼ _∼H|_ _
→H∼ _∼A|I∼K _ B∼ _ _ _
→A∼ _∼K _|B∼ _ _ _→ _ K∼ _∼ _ _ _

(3-8b)
Excess= +7/11

B _ H∼ _∼A I∼J _∼C _ K _ B _ H∼ _∼A|I∼J _∼C _ K _
→A∼ _∼H _|B I∼J _∼C _ K _
→_ H∼ _∼B I∼J _∼C _ K|_
→K _ C∼ _|J∼I B∼ _∼H _ _
→_∼C _ K∼I B∼ _∼H|_ _
→H∼ _∼B|I∼K _ C∼ _ _ _
→B∼ _∼K _|C∼ _ _ _→ _ K∼ _∼ _ _ _

(3-8c)
Excess= 0

B _ K _∼A I∼J _∼H _∼C _ B _ K _∼A I∼J|_∼H _∼C _
→J∼I A∼ _ K _ B _∼H|_∼C _
→H∼ _ B _ K _∼A|I∼J _∼C _
→A∼ _ K _|B _∼J _∼C _
→_ K _∼B _∼J _∼C|_
→C∼ _ J∼ _|B∼ _ K _ _→ _∼J _∼ _ K _ _

(3-8d)
Excess= 0

B _∼A I∼J _∼H _ K _∼C _ B _∼A I∼J|_∼H _ K _∼C _
→J∼I A∼ _ B _∼H|_ K _∼C _
→H∼ _ B _∼A|I∼J _ K _∼C _
→A∼ _|B _∼J _ K _∼C _
→_∼B _∼J _ K _∼C|_
→C∼ _ K _ J∼ _|B∼ _ _→ _∼J _ K _∼ _ _

(3-8e)
Excess= 0

B _∼A I∼J _∼H _∼C _ K _ B _∼A I∼J|_∼H _∼C _ K _
→J∼I A∼ _ B _∼H|_∼C _ K _
→H∼ _ B _∼A|I∼J _∼C _ K _
→A∼ _|B _∼J _∼C _ K _
→_∼B _∼J _∼C|_ K _
→C∼ _ J∼ _|B∼ _ _ K _→ _∼J _∼ _ _ K _

(3-8f)
Excess= +7/11

B _∼A I∼J _∼C _∼H _ K _ B _∼A|I∼J _∼C _∼H _ K _
→A∼ _|B I∼J _∼C _∼H _ K _
→_∼B I∼J _∼C _∼H _ K|_
→K _ H∼ _ C∼ _|J∼I B∼ _ _
→_∼C|_∼H _ K∼I B∼ _ _
→C∼ _ _∼H _ K∼I|B∼ _ _
→I∼K _|H∼ _ _∼ _ _→ _ K∼ _ _∼ _ _

(3-8g)
Excess= +7/11

B _ M _ H∼ _ L∼A I∼C _ B _|M _ H∼ _ L∼A I∼C _
→_ B M _ H∼ _ L∼A I∼C|_
→C∼I A∼L _∼H _ M|B _ _
→M _ H∼ _|L∼A I∼B _ _
→_∼H _ M∼A I∼B|_ _
→B∼I|A∼M _ H∼ _ _ _
→I∼M _|H∼ _ _ _→ _ M∼ _ _ _

(3-8h)
Excess= 0

B _ H∼ _ L∼A I∼C _ M _ B _ H∼ |_ L∼A I∼C _ M _
→∼H|_ B _ L∼A I∼C _ M _
→H∼ _ B _ L∼A|I∼C _ M _
→A∼L _|B _∼C _ M _
→_ L∼B _∼C|_ M _
→C∼ _|B∼L _ _ M _→ _∼L _ _ M _

(3-8i)
Excess= 0

B _ L∼A I∼C _∼H _ M _ B _ L∼A I∼C|_∼H _ M _
→C∼I A∼L _ B _∼H|_ M _
→H∼ _ B _ L∼A|I∼C _ M _
→A∼L _|B _∼C _ M _
→_ L∼B _∼C|_ M _
→C∼ _|B∼L _ _ M _→ _∼L _ _ M _

(continued on next page)
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Table 6
(continued)
Case and excess (+) or Deficiency (−) of1(S) Description Flip sequence

(not given for deficiencies)
(3-8j)
Excess= +7/11

B _ K _ H∼A I∼J _∼C _ B _ K _ H∼A I∼J|_∼C _
→J∼I A∼H _|K _ B _∼C _
→_ H∼A I∼K _ B _∼C|_
→C∼ _|B _ K∼I A∼H _ _
→_∼B _ K∼I A∼H|_ _→ H∼A|I∼K _ B∼ _ _ _
→A∼K _|B∼ _ _ _→ _ K∼ _ _ _

(3-8k)
Excess= +7/11

B _ H∼A I∼J _∼C _ K _ B _ H∼A|I∼J _∼C _ K _
→A∼H _|B I∼J _∼C _ K _
→_ H∼B I∼J _∼C _ K|_
→K _ C∼ _|J∼I B∼H _ _
→_∼C _ K∼I B∼H|_ _
→H∼B|I∼K _ C∼ _ _ _
→B∼K _|C∼ _ _ _→ _ K∼ _ _ _

Table 7
(3-9) compound cases
Case and excess (+) or Deficiency (−) of1(S) Description Flip sequence

(not given for deficiencies)
(3-9a)
Excess= 0

B _ H∼ _ K _∼A I∼J _∼C _ B _ H∼ |_ K _∼A I∼J _∼C _
→∼H|_ B _ K _∼A I∼J _∼C _
→H∼ _ B _ K _∼A|I∼J _∼C _
→A∼ _ K _|B _∼J _∼C _
→_ K _∼B _∼J _∼C|_
→C∼ _ J∼ _|B∼ _ K _ _→ _∼J _∼ _ K _ _

(3-9b)
Excess= +7/11

B _ K _∼A I∼J _∼C _∼H _ B _ K _∼A I∼J|_∼C _∼H _
→J∼I A∼ _|K _ B _∼C _∼H _
→_∼A I∼K _ B _∼C|_∼H _
→C∼ _|B _ K∼I A∼ _ _∼H _
→_∼B _ K∼I A∼ _ _∼H|_
→H∼ _ _∼A|I∼K _ B∼ _ _
→A∼ _ _∼K _|B∼ _ _→ _ K∼ _ _∼ _ _

(3-9c)
Excess= +7/11

B _ H∼ _∼A I∼J _ K _∼C _ →B _ H∼ _∼A I∼J _ K|_∼C _
→K _|J∼I A∼ _∼H _ B _∼C _
→_ K∼I A∼ _∼H|_ B _∼C _
→H∼ _∼A|I∼K _ _ B _∼C _
→A∼ _∼K _ _|B _∼C _
→_ _ K∼ _∼B _∼C|_
→C∼ _|B∼ _∼K _ _ _→ _∼ _∼K _ _ _

(3-9d)
Excess= +7/11

B _∼A I∼J _ K _∼H _∼C _ B _∼A I∼J _ K|_∼H _∼C _
→K _|J∼I A∼ _ B _∼H _∼C _
→_ K∼I A∼ _ B _∼H|_∼C _
→H∼ _ B _∼A|I∼K _ _∼C _
→A∼ _|B _∼K _ _∼C _
→_∼B _∼K _ _∼C|_
→C∼ _ _ K∼ _|B∼ _ _→ _∼K _ _∼ _ _

(3-9e)
Excess= +7/11

B _∼A I∼J _ K _∼C _∼H _ B _∼A I∼J _ K|_∼C _∼H _
→K _|J∼I A∼ _ B _∼C _∼H _
→_ K∼I A∼ _ B _∼C _∼H|_
→H∼ _ C∼ _ B _∼A|I∼K
→A∼ _|B _∼C _∼K _ _
→_∼B _∼C|_∼K _ _
→C∼ _|B∼ _ _∼K _ _→ _∼ _ _∼K _ _

(3-9f)
Excess= +7/11

B _∼A I∼J _∼C _ K _∼H _ B _∼A|I∼J _∼C _ K _∼H _
→A∼ _|B I∼J _∼C _ K _∼H _
→_∼B I∼J _∼C _ K|_∼H _
→K _ C∼ _|J∼I B∼ _ _∼H _
→_∼C _ K∼I B∼ _ _∼H|_
→H∼ _ _∼B|I∼K _ C∼ _ _
→B∼ _ _∼K _|C∼ _ _→ _ K∼ _ _∼ _
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Table 7
(continued)
Case and excess (+) or Deficiency (−) of1(S) Description Flip sequence

(not given for deficiencies)
(3-9g)
Excess= 0

B _ H∼ _ M _ L∼A I∼C _ B _ H∼ |_ M _ L∼A I∼C _
→∼H|_ B _ M _ L∼A I∼C _
→H∼ _ B _ M _ L∼A|I∼C _
→A∼L _ M _|B _∼C _
→_ M _ L∼B _∼C|_
→C∼ _|B∼L _ M _ _→ _∼L _ M _ _

(3-9h)
Excess= 0

B _ M _ L∼A I∼C _∼H _ B _ M _ L∼A I∼C|_∼H _
→C∼I A∼L _ M _ B _∼H|_
→H∼ _ B _ M _ L∼A|I∼C _
→A∼L _ M _|B _∼C _
→_ M _ L∼B _∼C|_
→C∼ _|B∼L _ M _ _→ _∼L _ M _ _

(3-9i)
Excess= 0

B _ L∼A I∼C _ M _∼H _ B _ L∼A I∼C|_ M _∼H _
→C∼I A∼L _ B _ M _∼H|_
→H∼ _ M _ B _ L∼A|I∼C _
→A∼L _|B _ M _∼C _
→_ L∼B _ M _∼C|_
→C∼ _ M _|B∼L _ _→ _ M _∼L _ _

(3-9j)
Excess= +7/11

B _ H∼A I∼J _ K _∼C _ B _ H∼A I∼J _ K|_∼C _
→K _|J∼I A∼H _ B _∼C _
→_ K∼I A∼H|_ B _∼C _
→H∼A|I∼K _ _ B _∼C _
→A∼K _ _|B _∼C _
→_ _ K∼B _∼C|_
→C∼ _|B∼K _ _ _→ _∼K _ _ _

(3-1c), (8-1b), (8-1c), (9-1a), (9-1b), (9-1c), (3-3a), (3-3h), and (8-8c) need further expansion. For each of these eleven failures
we investigate sub-cases based on expansion by breadth.
Expansion by breadth increases the number of total cases dramatically, because it introduces new elements, andwemust

consider all possible positions for their consecutive elements. The number of possible arrangements increases significantly.
Consequently, our description in the paper does not explicitly list all of the sub-cases. Instead, we use generating strings in
Tables 15–17 in the Appendix, to describe expansions that are sufficient to obtain a complete set of cases.
Generating strings can be used to describe a complete list of all 2220 casesmore succinctly. We have verified the correct-

ness of our potential functionΦ(π) = (18/11)s(π)+ (24/11)b(π) in all cases. A reader may wish to independently verify
the correctness. Thework of such an interested readermay bemade easier through the use of a Java tool available at ourweb
site [8]. The tool can be used by copying any of the generating sequences given in Tables 15–17 in the Appendix, together
with an upper bound for the lengths of flip sequences to be considered. The tool will give each of the derived sub-cases and a
good flip sequence when one can be found, and indicate which sub-cases fail. As indicated in Tables 15–17 in the Appendix,
all failed sub-cases have been resolved. We include these tables in the paper rather than at our web site in order to provide
a permanent archival record. Readers are invited to visit our website [8] to see the complete record with all flip sequences.
The remainder of the paper describes our algorithm in detail. Section 2 enumerates the original Gates and Papadimitriou

cases and gives the results of our potential function on these cases. Section 3 shows howwe systematically form compound
cases from the original cases and gives our flip sequences for these compound cases. Section 4 describes further expansions
by breadth to resolve all sub-cases remaining from Section 3. Section 5 discusses further research and open problems.

2. Applying the potential functionΦ to the Gates and Papadimitriou cases

For a given sequence of steps S that transforms a permutation π into a permutation π ′, let1(S) denoteΦ(π)−Φ(π ′). To
show thatΦ(π) is an upper bound on the number of steps to sort a permutation,we need to prove that for every permutation
π , there is a sequence S of k prefix reversals, for some k > 0, that reduces the number of singletons and/or blocks, such that
1(S)≥ k. That is, we show that the potential functionΦ always decreases by at least as much as the number of steps taken.
From this it follows by a simple inductive argument that Φ(π) is an upper bound for the number of prefix reversals to
transform π into a single block.
Consider again the nine cases used in the upper bound proof by Gates and Papadimitriou [3]. In Table 1, we provide a

description of each of the nine cases using the notation defined in the previous paragraph. The first column gives the case
number. The second column gives a flip sequence, that is, a sequence of permutations starting with the initial permutation
π that defines the case, followed by one or more permutations where each permutation is transformed into the next by a
prefix reversal, culminating in the final permutation π ′ of the sequence. These are the flip sequences described in [3]. The
third column gives a verbal description of the initial permutation for each case, in terms of the initial object, and the position
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Table 8
(8-3) compound cases
Case and excess (+) / Deficiency (−) of1(S) Description Flip sequence
(8-3a)
Excess:+5/11

B∼C _ H∼ _ J∼ _∼A I _ D _ B∼C|_ H∼ _ J∼ _∼A I _ D _
→C∼B _ H∼ _ J∼ _∼A I _|D _
→_ I A∼ _∼J|_∼H _ B∼D _
→J∼ _∼A|I _ _∼H _ B∼D _
→A∼ _∼I _ _∼H _|B∼D _
→_ H∼ _ _ I∼ _∼D _

(8-3b)
Excess:+7/11

B∼C _ J∼ _∼A I _ D _∼H _ B∼C _ J∼ _∼A I _ D|_∼H _
→D _ I A∼ _∼J _|C∼B _∼H _
→_ J∼ _∼A I _ D∼B _∼H|_
→H∼ _ B∼D _|I A∼ _∼J _ _
→_ D∼B _∼I A∼ _∼J|_ _
→J∼ _∼A|I∼ _ B∼D _ _ _
→A∼ _∼ _|B∼D _ _ _
→_∼ _∼D _ _ _

(8-3c)
Excess:+5/11

B∼C _ H∼ _∼A I _∼J _ D _ B∼C|_ H∼ _∼A I _∼J _ D _
→C∼B _ H∼ _∼A I _∼J _|D _
→_ J∼ _ I A∼ _∼H|_ B∼D _
→H∼ _∼A|I _∼J _ _ B∼D _
→A∼ _∼I _∼J _ _|B∼D _
→_ _ J∼ _ I∼ _∼D _

(8-3d)
Excess: 0

B∼C _∼A I _∼H _∼J _ D _ →B∼C|_∼A I _∼H _∼J _ D _
→C∼B _∼A I _∼H|_∼J _ D _
→H∼ _|I A∼ _ B∼C _∼J _ D _
→_∼I A∼ _ B∼C _∼J|_ D _
→J∼ _ C∼B _∼A|I∼ _ _ D _
→A∼ _|B∼C _∼ _ _ D _
→_∼C _∼ _ _ D _

(8-3e)
Excess:+7/11

B∼C _∼A I _∼J _ D _∼H _ B∼C|_∼A I _∼J _ D _∼H _
→C∼B _∼A I _∼J _|D _∼H _
→_ J∼ _ I A∼ _ B∼D _∼H|_
→H∼ _ D∼B _∼A|I _∼J _ _
→A∼ _|B∼D _∼I _∼J _ _
→_∼D _∼I _∼J|_ _
→J∼ _|I∼ _ D∼ _ _ _
→_∼ _ D∼ _ _ _

(8-3f)
Excess:+7/11

B∼C _∼A I _ D _∼H _∼J _ B∼C|_∼A I _ D _∼H _∼J _
→C∼B _∼A I _|D _∼H _∼J _
→_ I A∼ _ B∼D _∼H|_∼J _
→H∼ _ D∼B _∼A|I _ _∼J _
→A∼ _|B∼D _∼I _ _∼J _
→_∼D _∼I _ _∼J|_
→J∼ _ _|I∼ _ D∼ _ _
→_ _∼ _ D∼ _ _

(8-3g)
Excess:+5/11

B∼C _ H∼A I _∼J _ D _ B∼C|_ H∼A I _∼J _ D
→C∼B _ H∼A I _∼J _|D
→_ J∼ _ I A∼H|_ B∼D
→H∼A|I _∼J _ _ B∼D
→A∼I _∼J _ _|B∼D
→_ _ J∼ _ I∼D

(8-3h)
Excess:+5/11

B∼C _ H∼ _ J∼A I _ D _ B∼C|_ H∼ _ J∼A I _ D _
→C∼B _ H∼ _ J∼A I _|D _
→_ I A∼J|_∼H _ B∼D _
→J∼A|I _ _∼H _ B∼D _
→A∼I _ _∼H _|B∼D _
→_ H∼ _ _ I∼D _

(8-3i)
Excess:+7/11

B∼C _ J∼A I _ D _∼H _ B∼C _ J∼A I _ D|_∼H _
→D _ I A∼J _|C∼B _∼H _
→_ J∼A I _ D∼B _∼H|_
→H∼ _ B∼D _|I A∼J _ _
→_ D∼B _∼I A∼J|_ _
→J∼A|I∼ _ B∼D _ _ _
→A∼ _|B∼D _ _ _
→_∼D _ _ _
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Table 9
(8-8) compound cases
Case and excess (+) / Deficiency (−) of1(S) Description Flip sequence

(not given for deficiencies)
(8-8a)
Excess:+11/11

B∼C _ K _ H∼ _∼A I∼J _ D _ B∼C|_ K _ H∼ _∼A I∼J _ D _
→C∼B _ K _ H∼ _∼A I∼J _|D _
→_ J∼I A∼ _∼H|_ K _ B∼D _
→H∼ _∼A|I∼J _ _ K _ B∼D _
→A∼ _∼J _ _ K _|B∼D _
→_ K _ _ J∼ _∼D _

(8-8b)
Excess:+11/11

B∼C _ H∼ _∼A I∼J _ D _ K _ B∼C|_ H∼ _∼A I∼J _ D _ K _
→C∼B _ H∼ _∼A I∼J _|D _ K _
→_ J∼I A∼ _∼H|_ B∼D _ K _
→H∼ _∼A|I∼J _ _ B∼D _ K _
→A∼ _∼J _ _|B∼D _ K _
→_ _ J∼ _∼D _ K _

(8-8c)
Deficiency:−2/11

B∼C _ K _∼A I∼J _∼H _ D _ (Deficiency)

(8-8d)
Excess: 0

B∼C _∼A I∼J _∼H _ K _ D _ B∼C _∼A I∼J _∼H _ K|_ D _
→K _ H∼ _|J∼I A∼ _ C∼B _ D _
→_∼H _ K∼I A∼ |_ C∼B _ D _
→∼A I∼K _ H∼ _ _ C∼B|_ D _
→B∼C _ _∼H _ K∼I|A∼ _ D _
→I∼K _|H∼ _ _ C∼ _ D _
→_ K∼ _ _ C∼ _ D _

(8-8e)
Excess: 0

B∼C _∼A I∼J _∼H _ D _ K _ B∼C _∼A I∼J _∼H _ D _ K|_
→K _ D _ H∼ _|J∼I A∼ _ C∼B _
→_∼H _ D _ K∼I A∼ |_ C∼B _
→∼A I∼K _ D _ H∼ _ _ C∼B|_
→B∼C _ _∼H _ D _ K∼I|A∼ _
→I∼K _ D _|H∼ _ _ C∼ _
→_ D _ K∼ _ _ C∼ _

(8-8f)
Excess:+11/11

B∼C _∼A I∼J _ D _∼H _ K _ B∼C|_∼A I∼J _ D _∼H _ K _
→C∼B _∼A I∼J _|D _∼H _ K _
→_ J∼I A∼ _ B∼D _∼H|_ K _
→H∼ _ D∼B _∼A|I∼J _ _ K _
→A∼ _|B∼D _∼J _ _ K _
→_∼D _∼J _ _ K _

(8-8g)
Excess:+9/11

B∼C _ K _ E∼ _ J∼A D _ B∼C|_ K _ E∼ _ J∼A D _
→C∼B _ K _ E∼ _ J∼A|D _
→A∼J _∼E _ K _|B∼D _
→_ K _ E∼ _ J∼D _

(8-8h)
Excess:+9/11

B∼C _ E∼ _ J∼A D _ K _ B∼C|_ E∼ _ J∼A D _ K _
→C∼B _ E∼ _ J∼A|D _ K _
→A∼J _∼E _|B∼D _ K _
→_ E∼ _ J∼D _ K _

(8-8i)
Excess:+9/11

B∼C _ J∼A D _∼E _ K _ B∼C|_ J∼A D _∼E _ K _
→C∼B _ J∼A|D _∼E _ K _
→A∼J _|B∼D _∼E _ K _
→_ J∼D _∼E _ K _

(8-8j)
Excess:+11/11

B∼C _ K _ H∼A I∼J _ D _ B∼C|_ K _ H∼A I∼J _ D _
→C∼B _ K _ H∼A I∼J _|D _
→_ J∼I A∼H|_ K _ B∼D _
→H∼A|I∼J _ _ K _ B∼D _
→A∼J _ _ K _|B∼D _
→_ K _ _ J∼D _

(8-8k)
Excess:+11/11

B∼C _ H∼A I∼J _ D _ K _ B∼C|_ H∼A I∼J _ D _ K _
→C∼B _ H∼A I∼J _|D _ K _
→_ J∼I A∼H|_ B∼D _ K _
→H∼A|I∼J _ _ B∼D _ K _
→A∼J _ _|B∼D _ K _
→_ _ J∼D _ K _
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Table 10
(8-9) compound cases
Case and excess (+) / Deficiency (−) of1(S) Description Flip sequence

(not given for deficiencies)
(8-9a)
Excess:+11/11

B∼C _ H∼ _ K _∼A I∼J _ D _ B∼C|_ H∼ _ K _∼A I∼J _ D _
→C∼B _ H∼ _ K _∼A I∼J _|D _
→_ J∼I A∼ _ K _∼H|_ B∼D _
→H∼ _ K _∼A|I∼J _ _ B∼D _
→A∼ _ K _∼J _ _|B∼D _
→_ _ J∼ _ K _∼D _

(8-9b)
Excess:+11/11

B∼C _ K _∼A I∼J _ D _∼H _ B∼C|_ K _∼A I∼J _ D _∼H _
→C∼B _ K _∼A I∼J _|D _∼H _
→_ J∼I A∼ _ K _ B∼D _∼H|_
→H∼ _ D∼B _ K _∼A|I∼J _ _
→A∼ _ K _|B∼D _∼J _ _
→_ K _∼D _∼J _ _

(8-9c)
Excess:+11/11

B∼C _ H∼ _∼A I∼J _ K _ D _ B∼C|_ H∼ _∼A I∼J _ K _ D _
→C∼B _ H∼ _∼A I∼J _ K _|D _
→_ K _ J∼I A∼ _∼H|_ B∼D _
→H∼ _∼A|I∼J _ K _ _ B∼D _
→A∼ _∼J _ K _ _|B∼D _
→_ _ K _ J∼ _∼D _

(8-9d)
Excess: 0

B∼C _∼A I∼J _ K _∼H _ D _ B∼C|_∼A I∼J _ K _∼H _ D _
→C∼B _∼A I∼J _ K|_∼H _ D _
→K _|J∼I A∼ _ B∼C _∼H _ D _
→_ K∼I A∼ _ B∼C _∼H|_ D _
→H∼ _ C∼B _∼A|I∼K _ _ D _
→A∼ _|B∼C _∼K _ _ D _
→_∼C _∼K _ _ D _

(8-9e)
Excess:+11/11

B∼C _∼A I∼J _ K _ D _∼H _ B∼C|_∼A I∼J _ K _ D _∼H _
→C∼B _∼A I∼J _ K _|D _∼H _
→_ K _ J∼I A∼ _ B∼D _∼H|_
→H∼ _ D∼B _∼A|I∼J _ K _ _
→A∼ _|B∼D _∼J _ K _ _
→_∼D _∼J _ K _ _

(8-9f)
Excess:+11/11

B∼C _∼A I∼J _ D _ K _∼H _ B∼C|_∼A I∼J _ D _ K _∼H _
→C∼B _∼A I∼J _|D _ K _∼H _
→_ J∼I A∼ _ B∼D _ K _∼H|_
→H∼ _ K _ D∼B _∼A|I∼J _ _
→A∼ _|B∼D _ K _∼J _ _
→_∼D _ K _∼J _ _

(8-9g)
Excess:+9/11

B∼C _ E∼ _ K _ J∼A D _ B∼C|_ E∼ _ K _ J∼A D _
→C∼B _ E∼ _ K _ J∼A|D _
→A∼J _ K _∼E _|B∼D _
→_ E∼ _ K _ J∼D _

(8-9h)
Excess:+9/11

B∼C _ K _ J∼A D _∼E _ B∼C|_ K _ J∼A D _∼E _
→C∼B _ K _ J∼A|D _∼E _
→A∼J _ K _|B∼D _∼E _
→_ K _ J∼D _∼E _

(8-9i)
Excess:+9/11

B∼C _ J∼A D _ K _∼E _ B∼C|_ J∼A D _ K _∼E _
→C∼B _ J∼A|D _ K _∼E _
→A∼J _|B∼D _ K _∼E _
→_ J∼D _ K _∼E _

(8-9j)
Excess:+11/11

B∼C _ H∼A I∼J _ K _ D _ B∼C|_ H∼A I∼J _ K _ D _
→C∼B _ H∼A I∼J _ K _|D _
→_ K _ J∼I A∼H|_ B∼D _
→H∼A|I∼J _ K _ _ B∼D _
→A∼J _ K _ _|B∼D _
→_ _ K _ J∼D _

of symbols which are consecutive with the endpoint symbols of the initial object. The fourth column gives the length of the
flip sequence. The fifth column gives1(S), the change in the value of the potential function after completing the prescribed
flip sequence. The final column gives the excess (or deficiency) of S, i.e.1(S) minus the length of the flip sequence.
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Table 11
(9-3) compound cases
Case and excess (+) / Deficiency (−) of1(S) Description Flip sequence

(not given for deficiencies)
(9-3a)
Excess: 0

B∼C _ H∼ _ J∼ _ D I _∼A _ B∼C _|H∼ _ J∼ _ D I _∼A _
→_ C∼B H∼ _ J∼ _ D I _∼A|_
→A∼_ I D _∼J _∼H|B∼C _ _
→H∼ _ J∼ _ D|I _∼C _ _
→D _∼J _∼I|_∼C _ _
→I∼ _|J∼ _ D _∼C _ _
→_∼ _ D _∼C _ _

(9-3b)
Excess:+7/11

B∼C _ J∼ _ D I _∼A _∼H _ →B∼C _ J∼ _ D|I _∼A _∼H _
→D _∼J _|C∼B I _∼A _∼H _
→_ J∼ _ D∼B I _∼A _∼H|_
→H∼ _ A∼ _|I B∼D _∼J _ _
→_∼A _∼I B∼D _∼J|_ _
→J∼ _ D∼B|I∼ _ A∼ _ _ _
→B∼D _∼ _|A∼ _ _ _
→_∼ _ D∼ _ _ _

(9-3c)
Excess:+7/11

B∼C _ H∼ _ D I _∼J _∼A _ B∼C _ H∼ _ D I _∼J|_∼A _
→J∼_|I D _∼H _ C∼B _∼A _
→_∼I D _∼H|_ C∼B _∼A _
→H∼ _ D|I∼_ _ C∼B _∼A _
→D _∼_ _|C∼B _∼A _
→_ _∼ _ D∼B _∼A|_
→A∼ _|B∼D _∼_ _ _
→_∼D _∼_ _ _

(9-3d)
Excess:+7/11

B∼C _ D I _∼H _∼J _∼A _ B∼C _ D I _∼H|_∼J _∼A _
→H∼_|I D _ C∼B _∼J _∼A _
→_∼I D _ C∼B _∼J|_∼A _
→J∼ _ B∼C _ D|I∼_ _∼A _
→D _|C∼B _∼_ _∼A _
→_ D∼B _∼_ _∼A|_
→A∼ _ _∼ _|B∼D _ _
→_∼_ _∼D _ _

(9-3e)
Excess:+7/11

B∼C _ D I _∼J _∼A _∼H _ B∼C _ D I _∼J|_∼A _∼H _
→J∼ _|I D _ C∼B _∼A _∼H _
→_∼G D _ C∼B _∼A _∼H|_
→H∼_ A∼ _ B∼C _ D|G∼ _ _
→D _|C∼B _∼A _∼ _ _
→_ D∼B _∼A|_∼ _ _
→A∼ _|B∼D _ _∼ _ _
→_∼D _ _∼ _ _

(9-3f)
Excess:+7/11

B∼C _ D I _∼A _∼H _∼J _ B∼C _ D|I _∼A _∼H _∼J _
→D _|C∼B I _∼A _∼H _∼J _
→_ D∼B I _∼A _∼H|_∼J _
→H∼ _ A∼ _|I B∼D _ _∼J _
→_∼A _∼I B∼D _ _∼J|_
→J∼ _ _ D∼B|I∼ _ A∼ _ _
→B∼D _ _∼ _|A∼ _ _
→_∼ _ _ D∼ _ _

Let us illustrate the information provided in the tables. For example, in Case (1), shown in Table 1, we have a permutation
π of the form B _ A _, where B and A denote consecutive singletons. By a sequence S consisting of a single prefix reversal
we make an adjacency by putting B next to A, thereby creating the permutation π ′ of the form _ BA _. This eliminates the
two singletons B and A, and creates a new block, namely BA. Therefore, the change in our potential function, going from
π to π ′, is a decrease in s(π) of 2 and an increase in b(π) of 1. That is, if Φ(π) = (18/11)s(π) + (24/11)b(π), then
Φ(π ′) = (18/11)(s(π) − 2) + (24/11)(b(π) + 1). So, 1(S) = Φ(π) − Φ(π ′) = 2(18/11) − (24/11) = 12/11. As
12/11 is greater than 1, the length of the sequence S, the flip sequence S is good and, in fact, has an excess of (12/11) − 1
= 1/11.
In Case (3) shown in Table 1, the flip sequence Shas length 4 andmakes the initial singleton adjacent to its two consecutive

elements that are endpoints of blocks. Thus, it reduces the number of singletons by one and reduces the number of blocks
by one. That is, 1(S) = Φ(π) − Φ(π ′), where π is the initial permutation and π ′ is the resulting permutation after the
sequence S, is (18/11) + (24/11) = 42/11. As this is less than 4, the flip sequence S is not good, and the deficiency is
(42/11)− 4 = −2/11.
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Table 12
(9-8) compound cases
Case and excess (+) / Deficiency (−) of1(S) Description Flip sequence

(not given for deficiencies)
(9-8a)
Excess:+7/11

B∼C _ K _ H∼ _ D I∼J _∼A _ B∼C _ K _ H∼ _ D I∼J|_∼A _
→J∼I D _∼H _|K _ C∼B _∼A _
→_ H∼ _ D I∼K _ C∼B _∼A|_
→A∼ _|B∼C _ K∼I D _∼H _ _
→_∼C _ K∼I D _∼H|_ _
→H∼ _ D|I∼K _ C∼ _ _ _
→D _∼K _|C∼ _ _ _
→_ K∼ _ D∼ _ _ _

(9-8b)
Excess:+7/11

B∼C _ H∼ _ D I∼J _∼A _ K _ B∼C _ H∼ _ D|I∼J _∼A _ K _
→D _∼H _|C∼B I∼J _∼A _ K _
→_ H∼ _ D∼B I∼J _∼A _ K|_
→K _ A∼_ |J∼I B∼D _∼H _ _
→_∼A _ K∼I B∼D _∼H|_ _
→H∼ _ D∼B|I∼K _ A∼_ _ _
→B∼D _∼K _|A∼_ _ _
→_ K∼ _ D∼_ _

(9-8c)
Excess: 0

B∼C _ K _ D I∼J _∼H _∼A _ B∼C _ K _ D I∼J|_∼H _∼A _
→J∼I D _|K _ C∼B _∼H _∼A _
→_ D I∼K _ C∼B _∼H _∼A|_
→A∼ _ H∼ _|B∼C _ K∼I D _ _
→_∼H _∼C _ K∼I|D _ _
→I∼K _ C∼ _|H∼ _ D _ _
→_∼C _ K∼ _ D _ _

(9-8d)
Excess: 0

B∼C _ D I∼J _∼H _ K _∼A _ B∼C _ D I∼J|_∼H _ K _∼A _
→J∼I D _ C∼B _∼H|_ K _∼A _
→H∼ _ B∼C _ D|I∼J _ K _∼A _
→D _|C∼B _∼J _ K _∼A _
→_ D∼B _∼J _ K _∼A|_
→A∼ _ K _ J∼ _|B∼D _ _
→_∼J _ K _∼D _ _

(9-8e)
Excess: 0

B∼C _ D I∼J _∼H _∼A _ K _ B∼C _ D I∼J|_∼H _∼A _ K _
→J∼I D _ C∼B _∼H|_∼A _ K _
→H∼ _ B∼C _ D|I∼J _∼A _ K _
→D _|C∼B _∼J _∼A _ K _
→_ D∼B _∼J _∼A|_ K _
→A∼ _ J∼ _|B∼D _ _ K _
→_∼J _∼D _ _ K _

(9-8f)
Excess:+7/11

B∼C _ D I∼J _∼A _∼H _ K _ B∼C _ D|I∼J _∼A _∼H _ K _
→D _|C∼B I∼J _∼A _∼H _ K _
→_ D∼B I∼J _∼A _∼H _ K|_
→K _ H∼ _ A∼ _|J∼I B∼D _ _
→_∼A|_∼H _ K∼I B∼D _ _
→A∼ _ _∼H _ K∼I|B∼D _ _
→I∼K _|H∼ _ _∼D _ _
→_ K∼ _ _∼D _ _

(9-8g)
Excess:+5/11

B∼C _ E _ H∼ _ D I∼A _ B∼C|_ E _ H∼ _ D I∼A _
→C∼B _ E _ H∼ _|D I∼A _
→_∼H|_ E _ B∼D I∼A _
→H∼ _ _ E _ B∼D|I∼A _
→D∼B _|E _ _∼A _
→_ B∼E _ _∼A _

(9-8h)
Excess: 0

B∼C _ H∼ _ D I∼A _ E _ B∼C|_ H∼ _ D I∼A _ E _
→C∼B _ H∼ _|D I∼A _ E _
→_∼H|_ B∼D I∼A _ E _
→H∼ _ _ B∼D|I∼A _ E _
→D∼B _ _∼A|_ E _
→A∼ _ _|B∼D _ E _
→_ _∼D _ E _

(9-8i)
Excess: 0

B∼C _ D I∼A _∼H _ E _ B∼C _ D I∼A|_∼H _ E _
→A∼I D _ C∼B _∼H|_ E _
→H∼ _ B∼C _ D|I∼A _ E _
→D _|C∼B _∼A _ E _
→_ D∼B _∼A|_ E _
→A∼ _|B∼D _ _ E _
→_∼D _ _ E _
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Table 13
(9-9) compound cases
Case and excess (+) / Deficiency (−) of1(S) Description Flip sequence

(not given for deficiencies)
(9-9a)
Excess:+4/11

B∼C _ H∼ _ K _ D I∼J _∼A _ B∼C _|H∼ _ K _ D I∼J _∼A _
→_ C∼B H∼ _ K _ D I∼J _∼A|_
→A∼_ J∼I D _ K _∼H|B∼C _ _
→H∼ _ K _ D|I∼J _∼C _ _
→D _ K _∼J _∼C _ _

(9-9b)
Excess:+7/11

B∼C _ K _ D I∼J _∼A _∼H _ B∼C _ K _ D I∼J|_∼A _∼H _
→J∼I D _|K _ C∼B _∼A _∼H _
→_ D I∼K _ C∼B _∼A|_∼H _
→A∼ _|B∼C _ K∼I D _ _∼H _
→_∼C _ K∼I D _ _∼H|_
→H∼ _ _ D|I∼K _ C∼ _ _
→D _ _∼K _|C∼ _ _
→_ K∼ _ _ D∼ _ _

(9-9c)
Excess:+7/11

B∼C _ H∼ _ D I∼J _ K _∼A _ B∼C _ H∼ _ D I∼J _ K|_∼A _
→I _|J∼I D _∼H _ C∼B _∼A _
→_ K∼I D _∼H|_ C∼B _∼A _
→H∼ _ D|I∼K _ _ C∼B _∼A _
→D _∼K _ _|C∼B _∼A _
→_ _ K∼ _ D∼B _∼A|_
→A∼ _|B∼D _∼K _ _ _
→_∼D _∼K _ _ _

(9-9d)
Excess:+7/11

B∼C _ D I∼J _ K _∼H _∼A _ B∼C _ D I∼J _ K|_∼H _∼A _
→K _|J∼I D _ C∼B _∼H _∼A _
→_ K∼I D _ C∼B _∼H|_∼A _
→H∼ _ B∼C _ D|I∼K _ _∼A _
→D _|C∼B _∼K _ _∼A _
→_ D∼B _∼K _ _∼A|_
→A∼ _ _ K∼ _|B∼D _ _
→_∼K _ _∼D _ _

(9-9e)
Excess:+7/11

B∼C _ D I∼J _ K _∼A _∼H _ B∼C _ D I∼J _ K|_∼A _∼H _
→K _|J∼I D _ C∼B _∼A _∼H _
→_ K∼I D _ C∼B _∼A _∼H|_
→H∼ _ A∼ _ B∼C _ D|I∼K _ _
→D _|C∼B _∼A _∼K _ _
→_ D∼B _∼A|_∼K _ _
→A∼ _|B∼D _ _∼K _ _
→_∼D _ _∼K _ _

(9-9f)
Excess:+7/11

B∼C _ D I∼J _∼A _ K _∼H _ B∼C _ D|I∼J _∼A _ K _∼H _
→D _|C∼B I∼J _∼A _ K _∼H _
→_ D∼B I∼J _∼A _ K|_∼H _
→K _ A∼ _|J∼I B∼D _ _∼H _
→_∼A _ K∼I B∼D _ _∼H|_
→H∼ _ _ D∼B|I∼K _ A∼ _ _
→B∼D _ _∼K _|A∼ _ _
→_ K∼ _ _ D∼ _ _

(9-9g)
Excess:+5/11

B∼C _ H∼ _ E _ D I∼A _ B∼C|_ H∼ _ E _ D I∼A _
→C∼B _ H∼ _ E _|D I∼A _
→_ E _∼H|_ B∼D I∼A _
→H∼ _ E _ _ B∼D|I∼A _
→D∼B _ _|E _∼A _
→_ _ B∼E _∼A _

(9-9h)
Excess: 0

B∼C _ E _ D I∼A _∼H _ B∼C _ E _ D I∼A|_∼H _
→A∼I D _ E _ C∼B _∼H|_
→H∼ _ B∼C _ E _ D|I∼A _
→D _ E _|C∼B _∼A _
→_ E _ D∼B _∼A|_
→A∼ _|B∼D _ E _ _
→_∼D _ E _ _

(9-9i)
Excess: 0

B∼C _ D I∼A _ E _∼H _ B∼C _ D I∼A|_ E _∼H _
→A∼I D _ C∼B _ E _∼H|_
→H∼ _ E _ B∼C _ D|I∼A _
→D _|C∼B _ E _∼A _
→_ D∼B _ E _∼A|_
→A∼ _ E _|B∼D _ _
→_ E _∼D _ _
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Table 14
All arrangements represented by the generating sequence B S* _ H _∼A I _∼C _ T*
Case Initial permutation Case Initial permutation
(3-1a-a) B S _ T _ H _∼A I _∼C _ (3-1a-p) B S∼ _ T∼ _ H _∼A I _∼C _
(3-1a-b) B S _ T∼ _ H _∼A I _∼C _ (3-1a-q) B S∼ _∼T _ H _∼A I _∼C _
(3-1a-c) B S _∼T _ H _∼A I _∼C _ (3-1a-r) B S∼ _ H _ T _∼A I _∼C _
(3-1a-d) B S _ H _ T _∼A I _∼C _ (3-1a-s) B S∼ _ H _ T∼ _∼A I _∼C _
(3-1a-e) B S _ H _ T∼ _∼A I _∼C _ (3-1a-t) B S∼ _ H _∼T _∼A I _∼C _
(3-1a-f) B S _ H _∼T _∼A I _∼C _ (3-1a-u) B S∼ _ H _ T∼A I _∼C _
(3-1a-g) B S _ H _ T∼A I _∼C _ (3-1a-v) B S∼ _ H _∼A I _ T _∼C _
(3-1a-h) B S _ H _∼A I _ T _∼C _ (3-1a-w) B S∼ _ H _∼A I _ T∼ _∼C _
(3-1a-i) B S _ H _∼A I _ T∼ _∼C _ (3-1a-x) B S∼ _ H _∼A I _∼T _∼C _
(3-1a-j) B S _ H _∼A I _∼T _∼C _ (3-1a-y) B S∼ _ H _∼A I _ T∼C _
(3-1a-k) B S _ H _∼A I _ T∼C _ (3-1a-z) B S∼ _ H _∼A I _∼C _ T _
(3-1a-l) B S _ H _∼A I _∼C _ T _ (3-1a-aa) B S∼ _ H _∼A I _∼C _ T∼ _
(3-1a-m) B S _ H _∼A I _∼C _ T∼ _ (3-1a-ab) B S∼ _ H _∼A I _∼C _∼T _
(3-1a-n) B S _ H _∼A I _∼C _∼T _ (3-1a-ac) B H _∼A I _∼C _
(3-1a-o) B S∼ _ T _ H _∼A I _∼C _

3. Compound cases

As Table 1 indicates, the sequences of prefix reversals given by Gates and Papadimitriou [3] are good for our potential
functionΦ in all cases except for cases (3), (8), and (9). Specifically, for each of the sequences S in cases (3), (8), and (9) there
are four prefix reversals, but since 1(S) = 42/11 < 4, resulting in a deficiency of −2/11, these cases are bad for Φ . So,
to prove that the potential function Φ(π) is an upper bound for the number of steps to sort π , it is sufficient to find good
sequences for cases (3), (8), and (9) or expanded replacements.
We resolve cases (3), (8), and (9) by considering compound cases and alternate flip sequences for them. Using arithmetic

based on the1(S) values of Table 1, we see that the potential functionΦ(π) and the Gates and Papadimitriou sequences of
prefix reversals works for all compound cases, except (3-y), (8-y), and (9-y), where y∈{1, 3, 8, 9}. That is, if one adds 1(S)
for any sequence S given in Table 1 to the−2/11 deficiency given for cases (3), (8), and (9), one obtains a positive number,
except when the second case in a compound case is either (1), (3), (8), or (9). Therefore, one needs to exhibit good sequences
for these compound cases.
Tables 2 and 5–7 show all sub-cases of (3-y) compound cases, Tables 3 and 8–10 show all sub-cases of (8-y) compound

cases, and Tables 4 and 11–13 show all sub-cases of (9-y) compound cases. These tables show good sequences for the sub-
cases, when they exist, and also indicate when good sequences do not exist. The sub-cases for which good sequences do not
exist will be handled by a breadth expansion in Section 4.
Note that each compound case (x-y) actually describes a set of sub-cases as shown in Tables 2–13. The reason is that in a

permutation, the blocks and singletons of the y portion of the case may be positioned in several different spots with respect
to the components of x portion of the case. To illustrate, consider the compound (3-9) case. Let the letters X, Y, and Z denote
arbitrary sub-lists. Using this notation, the initial permutation for case (3) can be represented by the string w = B X ∼A Y
∼C Z. Application of the sequence of prefix reversals S for case (3) given in Table 1 yields the string w′ = Y ∼C B A∼ XR Z,
where XR denotes the reversal of the sub-list X.
This means two things: (a) that the object that appears at the beginning of the permutation represented by the string

w′ is the object which is at the beginning of the sub-list Y and, therefore, is immediately after the block ∼A in the original
permutation and (b) the sub-list X is reversed after the completion of the flip sequence S and, hence, any blocks within
X will have reversed orientation. This tells us where to place the singleton and blocks of the subsequent case (9) of the
compound case (3-9). That is, one must consider all of the sub-cases shown in Table 7. Sub-cases (3-9a) through (3-9f) are
straightforward inter-leavings of the case (9) components into the case (3) portion. Sub-cases (3-9g) through (3-9j) have
to be included as well, but the reason might not be so obvious. To see why these latter cases are necessary, consider, for
example, sub-case (3-9j). This sub-case takes care of the situation in which the unspecified endpoint at the other end of
the ∼H block for the case (9) portion of the permutation is also the endpoint of the ∼A block for the case (3) portion of
the permutation. Sub-cases (3-9g), (3-9h), (3-9i) take care of similar situations where some of the case (9) components are
merged with some of the case (3) components. Each of Tables 2–13 contain several such cases as needed for a complete
enumeration of all arrangements.
In the tables, the vertical bar (|) in each permutation in the flip sequence column identifies the prefix which will be

reversed to arrive at the next permutation in the sequence.
Tables 2–13 indicate good flip sequences for several compound cases, but for the cases marked as deficiencies, no good

sequences exist. In particular, sub-cases (3-1a, b, c), (3-3a, h), (8-1b, c), (8-8c), and (9-1a, b, c) need further expansion.
Expansion by looking deeper, i.e. additional compounding, such as (3-3-1), (3-3-3), (3-3-8), and (3-3-9), results in a very
large number of sub-cases. Consequently, we choose to resolve these cases by expanding by breadth, as described in the
next section.
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4. Expanding cases by breadth

As mentioned in the introduction, the richer structure revealed by compound cases allows us to find good flip sequences
for many compound cases. However, further structure is needed to resolve the remaining cases and to arrive at a complete
proof. We now give a detailed analysis of the expansion of cases by breadth.We start with an example of another compound
case.
Consider sub-case (3-1a), denoted by B _H _∼A I _∼C _, described in Table 2, and forwhich there is no good sequence.We

expand it further by considering an element, either a singleton S or a block S∼, which occurs just after the initial singleton
B, and all positions where an element consecutive to S, either a singleton T, a block beginning with T, or a block ending with
T, may be located. This set of sub-cases, denoted by the generating string B S* _ H _∼A I _∼C _ T*, is given in Table 14. We
also need to include the case when the element immediately after the initial singleton B is a singleton H from the case (1)
portion of the compound case (3-1), rather than some new element S. This specific sub-case is included as the last sub-case
(3-1a-ac) in Table 14, namely B H _∼A I _∼C _.
There are good sequences for all but four of the expanded sub-cases of (3-1a) shown in Table 14. The exceptions are

(3-1a-c), (3-1a-j), (3-1a-n), and (3-1a-ac). These four sub-cases, where no good sequenceswere found, are further expanded,
as indicated in Table 15 in the Appendix. For example, sub-case (3-1a-c), namely B S _ ∼T _ H _ ∼A I _ ∼C, is resolved by
considering permutations denoted by the generating string B S _∼T _ H _∼A I _∼C _ R*. Here, the R* represents an element
consecutive to the singleton S, which may be a singleton R, or a block beginning with R or a block ending with R, placed
in all possible positions within the permutation. This generates a set of sub-cases, denoted in Table 15 in the Appendix by
(3-1a-c) a-r. Every one of these sub-cases has a good sequence, so no further expansion is necessary.
The example of the expansion by breadth of the compound case (3-1a-c) is indicative of the manner in which all other

compound cases are resolved. That is, we expand by considering additional elements either as part of an existing block or
as a singleton next to an existing element and consider all possible positions where consecutive elements may be placed. In
general, we create generating strings in three ways:

(a) by placing a singleton, say S, in some position and adding a consecutive letter, either R or T, with an asterisk, at the end
of the string;

(b) by placing a singleton with an asterisk, say S*, in some position and adding a consecutive letter, either R or T, with an
asterisk, at the end of the string;

(c) by placing a singleton with an asterisk, say *S, in some position and adding a consecutive letter, either R or T, with an
asterisk, at the end of the string.

In (a) the singleton S is fixed in the chosen position, while the consecutive symbol T is moved to every possible position
either as a singleton, or as a right or left endpoint of a block. In (b) the symbol S* is replaced in the indicated position first
with a singleton and second with a block in which S is the left endpoint, while the consecutive symbol T is moved to every
possible position either as a singleton, or as a right or left endpoint of a block. Similarly, in (c) the symbol S* is replaced in
the indicated position first with a singleton and second with a block in which S is the right endpoint, while the consecutive
symbol T is moved to every possible position either as a singleton, or as a right or left endpoint of a block.
To illustrate the creation of generating strings, refer again to Table 14. The situations where S is a singleton are shown in

Table 14 in sub-cases (3-1a-a) through (3-1a-n). The situations where S is the left endpoint of a block are shown in Table 14
in sub-cases (3-1a-o) through (3-1a-ab). This includes the cases, shown in Table 14 as sub-cases (3-1a-g), (3-1a-k), (3-1a-u),
(3-1a-y), where T is added as an endpoint of an existing block. It also includes the sub-case (3-1a-ac), where the element
immediately following the initial element is not new, but is an existing element (in this case it is a singleton from case (1)
of the compound (3-1a) case).
Due to the fact that there are 2220 sub-cases each requiring flip sequences, we do not include an exhaustive list of sub-

cases and good sequences. Instead, in Tables 15–17 in the Appendix, we list all generating strings used to form the sub-cases.
These give the structure of our solution. A reader can verify its correctness or go to [8] where a file contains all cases and
good flip sequences.
Tables 15–17 (in the Appendix) can be viewed as trees. Sub-cases that need further expansion are followed in the table

by an indented list of further generating strings for additional sub-cases. In these tables, every sub-case that is not followed
by an indented list represents a case where every sub-case has a good sequence.
We used programs to automate the process of verifying the large number of cases and the search for good sequences. For

example, the Java program we used is available for download at our website [8]. The input to the program is a generating
string of the form given in Table 15 in the Appendix. Given such a string, the program systematically generates each
implied permutation and searches for a good sequence for it. The website has a readme file with instructions for using the
program. The program tries all possible flip sequences up to a user specified maximum sequence length, with branch-and-
bound pruning of the search tree. That is, it deletes from consideration sequences that can not possibly create enough new
adjacencies to satisfy the potential function within the remaining number of steps. For each permutation generated by the
generating string, the program output consists of a good flip sequence S (if one is found), the value of1(S), the length of the
flip sequence and the excess or deficiency of 1(S). The complete solution [8] is arranged in the order of cases as indicated
in Tables 15–17 in the Appendix.
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5. Conclusion

Wehave improved the upper bound for the pancake problem to (18/11)n ≈ (1.6363)n. Our proof required a subdivision
of the nine basic cases defined in [3] into several additional cases. We conjecture that a further improvement on the
upper bound is possible by further subdivisions and several additional cases. This could be done, for example, by defining
a different potential function, with different constants as multipliers of the number of singletons and blocks, and then
developing cases with good flip sequences to justify it. Of course, the number of cases may be much larger than what
we have used. Evidence that the actual upper bound may be lower is suggested by the computed values for the worst
case number of flips for all permutations of length 14, 15, 16, etc. [5,6]. The computed numbers are 16, 17, and 18
steps for permutations of length 14, 15, and 16, respectively, which is smaller than the current asymptotic upper bound
values. Although we believe that the upper bound can be further improved, we currently only see possibilities of a proof
based on further case subdivision or proving a conjecture [2] for which we, unfortunately, currently have no special
insight.
The lower bound is currently (15/14)n [4]. This was proved by a small change in the technique used in [3] to prove a

(17/16)n lower bound. Specifically, consider the permutation P(0) = 1, 7, 5, 3, 6, 4, 2 and, for all i (i ≥ 1), the permutations
P(i) = 1 + 7i, 7 + 7i, 5 + 7i, 3 + 7i, 6 + 7i, 4 + 7i, 2 + 7i. Define a permutation πn on the symbols in {1, 2, . . . , 7n}
by P(0), P(1), P(2), . . . , P(n − 1). A waste is a move that does not create a new adjacency. The lower bound argument
is that there must be at least one waste for every two of the P(i)’s. We conjecture that a larger number of wastes must
occur, perhaps even nearly as much as one waste for every P(i), and that the lower bound can be improved by proving the
conjecture.
In this paper, we have restricted our discussion to the problem of sorting unsigned permutations. The problem of sorting

signedpermutations (or ‘‘burnt pancakes’’) has also been studied [2–4]. Cohen andBlum [2] showed a (23/14)n ≈ (1.6429)n
upper bound for the signed permutation –In = −1,−2, . . . ,−n, which they conjectured to be the hardest signed
permutation to sort using prefix reversals. The upper bound for –In was improved to 3(n+1)/2 ≈ (1.5)n+O(1) by Heydari
and Sudborough [4]. Since (unsigned) permutations are no harder to sort than signed permutations, it follows that if –In
were indeed the hardest signed permutation, then 3(n + 1)/2 would also be an upper bound for sorting all permutations
of length n. It is also known that 3n/2 prefix reversals are necessary to sort –In [2,3]. The current upper bound for sorting
signed permutations by prefix reversals [2] is 2n− 3.
The authors would like to thank the referees for their helpful comments.

Appendix. Tables 15–17

Table 15
Generating strings for the solution of (3-y) expanded cases, for y∈{1, 3}

(3-y) Expanded cases for y∈{1, 3} Generating string
(3-1a) a-ac B S* _ H _∼A I _∼C _ T*
(3-1a-c) a-r B S _∼T _ H _∼A I _∼C _ R*
(3-1a-j) a-r B S _ H _∼A I _∼T _∼C _ R*
(3-1a-n) a-r B S _ H _∼A I _∼C _∼T _ R*
(3-1a-ac) a-k B H _∼A I _∼C _ G*
(3-1b) a-ac B S* _∼A I _ H _∼C _ T*
(3-1b-c) a-r B S _∼T _∼A I _ H _∼C _ R*
(3-1b-g) a-r B S _∼A I _∼T _ H _∼C _ R*
(3-1b-n) a-r B S _∼A I _ H _∼C _∼T _ R*
(3-1b-ac) a-j B Y∼A I _ H _∼C _ X*
(3-1c) a-ac B _∼A I _∼C _ S H _ T
(3-1c-c) a-r B _∼T _∼A I _∼C _ S H _ G*
(3-1c-c-i) a-u B _∼T _∼A I _ G _∼C _ S H _ R*
(3-1c-c-k) a-v B _∼T _∼A I _∼G _∼C _ S H _ J*
(3-1c-c-p) a-u B _∼T _∼A I _∼C _ S H _ G _ R*

(3-1c-f) a-r B _∼A I _ T∼ _∼C _ S H _ G*
(3-1c-f-a) a-u B _ G _∼A I _ T∼ _∼C _ S H _ R*
(3-1c-f-e) a-u B _∼A I _ G _ T∼ _∼C _ S H _ R*
(3-1c-f-g) a-u B _∼A I _∼G _ T∼ _∼C _ S H _ J*
(3-1c-f-p) a-u B _∼A I _ T∼ _∼C _ S H _ G _ R*
(3-1c-h) a-m B _∼A I _ T∼C _ S H _ R*
(3-1c-h-c) a-q B _∼R _∼A I _ T∼C _ S H _ J*
(3-1c-h-f) a-q B _∼A I _ R∼ _ T∼C _ S H _ G*
(3-1c-h-f-g) a-u B _∼A I _∼G _ R∼ _ T∼C _ S H _ J*
(3-1c-h-i) a-q B _∼A I _ T∼C _ R∼ _ S H _ G*
(3-1c-j) a-r B _∼A I _∼C _ T∼ _ S H _ J*
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Table 15
(continued)
(3-y) Expanded cases for y∈{1, 3} Generating string
(3-1c-j-a) B _ J _∼A I _∼C _ T∼ _ S H _ (this is a (3-1a) case)
(3-1c-j-e) B _∼A I _ J _∼C _ T∼ _ S H _ (this is a (3-1b) case)
(3-1c-j-i) a-t B _∼A I _∼C _ J _ T∼ _ S H _ R*
(3-1c-j-i-c) B _ M∼R _∼A I _∼C _ J _ T∼ _ S H _ N*
(3-1c-j-i-f) B _∼A I _ R∼ _∼C _ J _ T∼ _ S H _ G*
(3-1c-j-i-h) B _ M∼A I _ R∼C _ J _ T∼ _ S H _ N*
(3-1c-j-i-m) B _∼A I _∼C _ J _ R∼ _ T∼ _ S H _ G*
(3-1c-j-p) a-u B _∼A I _∼C _ T∼ _ S H _ J _ R*
(3-1c-n) a-r B _∼A I _∼C _ S H _∼T _ R*
(3-1c-x) a-s B _∼A I _∼C _ T∼ _∼S H _ J*
(3-1c-x-a) B _ J _∼A I _∼C _ T∼ _∼S H _ (this is a (3-1a) case)
(3-1c-x-e) B _∼A I _ J _∼C _ T∼ _∼S H _ (this is a (3-1b) case)
(3-1c-x-i) a-u B _∼A I _∼C _ J _ T∼ _ R∼S H _ Q*
(3-1c-x-i-e) B _∼A I _ Q _∼C _ J _ T∼ _ R∼S H _ G*
(3-1c-x-i-i) B _∼A I _∼C _ Q _ J _ T∼ _ R∼S H _ G*
(3-1c-x-i-p) B _∼A I _∼C _ J _ T∼ _ Q _ R∼S H _ G*
(3-1c-x-i-s) B _∼A I _∼C _ J _ T∼ _ R∼S H _ Q _ G*
(3-1c-x-q) a-u B _∼A I _∼C _ T∼ _ R∼S H _ J _ Q*
(3-1c-x-q-i) B _∼A I _∼C _ Q _ T∼ _ R∼S H _ J _ G*
(3-1c-x-q-s) B _∼A I _∼C _ T∼ _ R∼S H _ J _ Q _ G*

(3-1c-ac) a-w B X* _∼A I _∼C H _ Y*
(3-1c-ac-c) B X _∼Y _∼A I _∼C H _ W*
(3-1c-ac-w) B U∼A I _∼C H _ V*
(3-3a) a-r B _ H∼ _ J∼ _∼A I _ S∼C _ T*
(3-3a-r) a-u B _ H∼ _ J∼ _ U∼A I _ S∼C _∼T _ V*
(3-3h) a-m B _ H∼ _ J∼A I _ S∼C _ T*
(3-3h-m) a-p B _ H∼ _ J∼A I _ S∼C _ V∼T _ W*

Table 16
Generating strings for the solution of (8-y) expanded cases, for y∈{1, 8}
(8-y) Expanded cases for y∈{1, 8} Generating string
(8-1b) a-aa B∼C P* _∼A I _ H _ D _ Q*
(8-1b-c) a-q B∼C P _∼Q _∼A I _ H _ D _ O*
(8-1b-e) a-ag B∼C P _∼A I _ Q _ *T H _ D _ S*
(8-1b-e-f) a-t B∼C P _∼A I _ S∼ _ Q _ T H _ D _ U*
(8-1b-e-i) a-t B∼C P _∼A I _ Q _ S∼ _ T H _ D _ U*
(8-1b-e-i-i) a-x B∼C P _∼A I _ Q _ U∼ _ S∼ _ T H _ D _ J*
(8-1b-e-i-i-u) B∼C P _∼A I _ Q _ U∼ _ S∼ _ T H _∼J _ D _ O*

(8-1b-e-i-m) B∼C P _∼A I _ Q _ S∼ _ U∼ _ T H _ D _
(8-1b-g) a-q B∼C P _∼A I _∼Q _ H _ D _ O*
(8-1b-h) a-af B∼C P _∼A I _ *T H _ Q _ D _ S*
(8-1b-h-b) a-t B∼C P _ S∼ _∼A I _ T H _ Q _ D _ U*
(8-1b-h-d) a-o B∼C P _ S∼A I _ T H _ Q _ D _ U*
(8-1b-h-f) a-t B∼C P _∼A I _ S∼ _ T H _ Q _ D _ U*
(8-1b-h-f-n) a-x B∼C P _∼A I _ S∼ _ T H _∼U _ Q _ D _ J*
(8-1b-h-f-n-e) B∼C P _ X∼A I _ J _ S∼ _ T H _∼U _ Q _ D _ W*

(8-1b-h-j) a-t B∼C P _∼A I _ T H _∼S _ Q _ D _ U*
(8-1b-h-j-f) a-x B∼C P _∼A I _ U∼ _ T H _∼S _ Q _ D _ J*
(8-1b-h-j-f-e) B∼C P _ X∼A I _ J _ U∼ _ T H _∼S _ Q _ D _ W*

(8-1b-h-j-j) a-x B∼C P _∼A I _ T H _∼U _∼S _ Q _ D _ J*
(8-1b-h-j-j-e) B∼C P _ X∼A I _ J _ T H _∼U _∼S _ Q _ D _ W*
(8-1b-h-j-j-s) B∼C P _ X∼A I _ T H _∼U _∼S _ Q _ J _ D _ W*

(8-1b-h-j-n) B∼C P _∼A I _ T H _∼S _∼U _ Q _ D _ (this is (8-1b-h-j-j))
(8-1b-h-m) a-t B∼C P _∼A I _ T H _ Q _∼S _ D _ U*
(8-1b-h-p) a-t B∼C P _∼A I _ T H _ Q _ D _∼S _ U*
(8-1b-j) a-q B∼C P _∼A I _ H _∼Q _ D _ O*
(8-1b-m) a-q B∼C P _∼A I _ H _ D _∼Q _ O*
(8-1b-aa) a-I B∼C U∼A I _ H _ D _ V*
(8-1c) a-aa B∼C P* _∼A I _ D _ H _ Q*
(8-1c-c) a-q B∼C P _∼Q _∼A I _ D _ H _ O*
(8-1c-g) a-q B∼C P _∼A I _∼Q _ D _ H _ O*
(8-1c-j) a-q B∼C P _∼A I _ D _∼Q _ H _ O*
(8-1c-m) a-q B∼C P _∼A I _ D _ H _∼Q _ O*
(8-1c-aa) a-I B∼C P∼A I _ D _ H _ O*
(8-8c) a-p B∼C _ K _ S∼A I∼J _∼H _ D _
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Table 17
Generating strings for the solution of (9-1) expanded cases
(9-1) Expanded cases Generating string
(9-1a) a-aa B∼C _ H S* _ D G _∼A _ T*
(9-1a-b) a-q B∼C _ T∼ _ H S _ D G _∼A _ R*
(9-1a-f) a-q B∼C _ H S _∼T _ D G _∼A _ R*
(9-1a-h) a-q B∼C _ H S _ D G _ T∼ _∼A _ R*
(9-1a-j) a-l B∼C _ H S _ D G _ T∼A _ R*
(9-1a-m) a-q B∼C _ H S _ D G _∼A _∼T _ R*
(9-1a-s) a-q B∼C _ H S∼V _∼T _ D G _∼A _ W*
(9-1a-aa) a-j B∼C _ H D G _∼A _ E*
(9-1b) a-z B∼C S* _ D I _ H _∼A _ T*
(9-1b-c) a-q B∼C S _∼T _ D I _ H _∼A _ R*
(9-1b-f) a-q B∼C S _ D I _∼T _ H _∼A _ R*
(9-1b-m) a-q B∼C S _ D I _ H _∼A _∼T _ R*
(9-1c) a-af B∼C _ D I _∼A _ *S H _ T*
(9-1c-i) a-r B∼C _ D I _∼A _ T∼ _∼S H _ J*
(9-1c-i-a) a-t B∼C _ J _ D I _∼A _ T∼V _∼S H _ W*
(9-1c-i-d) B∼C _ D I _ J _∼A _ T∼ _∼S H _
(9-1c-i-h) a-t B∼C _ D I _∼A _ J _ T∼ _ O∼S H _ N*
(9-1c-i-h-h) B∼C _ D I _∼A _ N _ J _ T∼ _ O∼S H _ G*
(9-1c-i-h-o) B∼C _ D I _∼A _ J _ T∼ _ N _ O∼S H _ G*
(9-1c-i-h-r) B∼C _ D I _∼A _ J _ T∼ _ O∼S H _ N _ G*

(9-1c-i-p) a-t B∼C _ D I _∼A _ T∼ _ O∼S H _ J _ N*
(9-1c-i-p-h) a-w B∼C _ D I _∼A _ N _ T∼ _ O∼S H _ J _ G*
(9-1c-i-p-r) a-w B∼C _ D I _∼A _ T∼ _ O∼S H _ J _ N _ G*

(9-1c-s) a-q B∼C _∼T _ D I _∼A _ S H _ R*
(9-1c-s-i) a-u B∼C _∼T _ D I _ R∼ _∼A _ S H _ J*
(9-1c-s-k) a-p B∼C _∼T _ D I _ R∼A _ S H _ J*
(9-1c-s-m) a-u B∼C _∼T _ D I _∼A _ R∼ _ S H _ E*
(9-1c-u) a-q B∼C _ D I _ T∼ _∼A _ S H _ R*
(9-1c-u-c) a-u B∼C _∼R _ D I _ T∼ _∼A _ S H _ J*
(9-1c-w) a-l B∼C _ D I _ T∼A _ S H _ R*
(9-1c-w-c) a-p B∼C _∼R _ D I _ T∼A _ S H _ J*
(9-1c-y) a-q B∼C _ D I _∼A _ T∼ _ S H _ R*
(9-1c-y-c) a-u B∼C _∼R _ D I _∼A _ T∼ _ S H _ G*
(9-1c-y-i) a-u B∼C _ D I _∼A _ R∼ _ T∼ _ S H _ J*
(9-1c-y-i-a) B∼C _ J _ D I _∼A _ R∼ _ T∼ _ S H _
(9-1c-y-i-d) B∼C _ D I _ J _∼A _ R∼ _ T∼ _ S H _
(9-1c-y-i-h) B∼C _ D I _∼A _ J _ R∼ _ T∼ _ S H _ G*

(9-1c-y-m) B∼C _ D I _∼A _ T∼ _ R∼ _ S H _ (this is 9-1c-y-i)
(9-1c-y-i) B∼C _ D I _∼A _ T∼ _ R∼ _ S H _
(9-1c-ac) a-q B∼C _ D I _∼A _ S H _∼T _ R*
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