

Discrete Mathematics 161 (1996) 87-100

DISCRETE MATHEMATICS

On values in relatively normal lattices

Alexandru Filipoiu^{a,*}, George Georgescu^b

^aDepartment of Mathematics 1, Univ. 'Politechnica' Bucharest, Str. Splaiul Independenpei 313, Bucharest, Romania ^bInstitute of Mathematics, Str. Academiei 14, Bucharest, Romania

Received 26 April 1995

Abstract

In [8, 11, 12] the class IRN was introduced in order to obtain the lattice-theoretic analogues of some results of Conrad (see e.g. [4]). The aim of these paper is to provide other useful constructions in the study of the structure of relatively normal lattices. The introduced notions and results are purely lattice-theoretic extensions of notions and results for lattice-ordered groups [2, 4, 5]. In the second section, the notion of plenary set of a member of the class IRN is introduced and the characterization of maximal plenary sets is given, extending a well-known theorem in *l*-groups. In the third section with any lattice in IRN is associated a tree and we investigate how the properties of this tree are reflected in the structure of the lattice. For the case of *l*-groups, one gets some of Conrad's results in [5].

1. Preliminaries

In this section we review some relevant concepts. For notions not defined here, we refer the reader to [6, 11].

Let A be an algebraic, distributive lattice with least element 0 and greatest element 1 and Com(A) the join-subsemilattice of compact elements of A.

An element p < 1 is meet-irreducible if $p = x \land y$ implies p = x or p = y; an element p < 1 is meet-prime if $x \land y \leq p$ implies $x \leq p$ or $y \leq p$. These definitions can be extended to arbitrary meets and we obtain the concepts of completely meet-irreducible and meet completely-prime elements. The dual notions of join-irreducible, join-prime, completely join-irreducible and completely join-prime elements are defined dually.

In an algebraic lattice every element is the meet of a set of completely meetirreducible elements [6].

A value of a compact element c of A is an element $p \in A$ which is maximal with respect to not exceeding c [11]. For any $c \in Com(A)$ we shall denote by Val(c) the set

^{*} Corresponding author.

of values of c. V(A) will denote the set of the values in A. Thus, V(A) is exactly the set of completely meet-irreducible elements in A, so every element of A is a meet of a set of values.

In [11] there was proved that an element is completely join-prime iff it is compact and has a unique value; an element is completely meet-prime iff it is the unique value of a compact element.

A root-system is a poset (P, \leq) for which the principal order filter $[p) = \{x \in P \mid p \leq x\}$ is a chain for all $p \in P$. A root is a maximal chain in (P, \leq) . We shall denote by IRN the class of the algebraic, distributive lattices A such that Com(A) is a sublattice of A and the meet-primes element in A form a root system (see [11, 12]).

Lemma 1.1 (Snodgrass and Tsinakis [11]). For an algebraic, distributive lattice A such that Com(A) is a sublattice of A, the following are equivalent:

(1) A is a member of IRN;

(2) For all c, $d \in \text{Com}(A)$ there exist $c', d' \in \text{Com}(A)$ such that $c \lor d' = c' \lor d = c \lor d$ and $c' \land d' = 0$.

We remark that if c, d, c', d' are as in (2), then $c' \leq c, d' \leq d$. Further if c and d are incomparable, then 0 < c', d'.

Remark. If G is an *l*-group then the set C(G) of all its convex *l*-subgroups is a member of IRN (see [2,4]). The set of the ideals in a relatively normal lattice, in an MV-algebra [3] or in a bounded commutative BCK-algebra [9] is also a member of IRN. Thus, the results of this paper can be applied for all these cases.

Throughout this paper A will denote a member of IRN.

An element $x \neq 0$ is linear if $(x] = \{y \in A \mid y \leq x\}$ is a chain. If $a \leq b$, then we shall say that b is an ordinal extension of a if (b] - (a] is a chain and every element of (b] - (a] exceeds a. An ordinal element is a proper ordinal extension of some element. All these notions are defined in [12] as natural extensions of some notions in *l*-groups [1,2,4]. We remark that a linear element is also an ordinal element and a non-zero compact element below a linear element is completely join-prime [12].

For $x \in A$ we shall denote by x^* the pseudo-complement of x in A. The set of meet-prime elements of A will be denoted by Spec A and the set of minimal meet-prime elements of A by Min A.

For any $a \in A$, $(a] = \{x \in A \mid x \leq a\}$ is a member of IRN and $Com(a] = Com(A) \cap (a]$ (see [12]). It is easy to prove that for $a \in A$ the mapping $\varphi : \{p \in \text{Spec } A \mid a \leq p\} \to \text{Spec}(a]$ defined by $\varphi(p) = p \land a$ is an order preserving bijection and its inverse, given by $\varphi^{-1}(q) = a \to q$, is also order preserving.

Lemma 1.2. Let $c \in \text{Com}(a]$. Then $m \in \text{Val}(c)$ iff $\varphi(m) \in \text{Val}_{(a]}(c)$, where $\text{Val}_{(a]}(c)$ is the set of values of c in (a].

Proof. Suppose $m \in Val(c)$; then $m \in Spec A$ and $a \leq m$, so we can compute $\varphi(m)$. Since, $c \leq m \wedge a$ there exists $k \in Val_{(a]}(c)$ such that $m \wedge a \leq k$. First note that $c \leq \varphi^{-1}(k)$ since otherwise $c \wedge a \leq k$, $c \leq k$ imply $a \leq k$, contradicting $c \leq k$. Thus, $m \leq \varphi^{-1}(k)$, $c \leq \varphi^{-1}(k)$ and $m \in Val(c)$ imply $m = \varphi^{-1}(k)$, that is $\varphi(m) = k \in Val_{(a]}(c)$.

We next assume $k \in \operatorname{Val}_{(a]}(c)$ and we shall establish that $\varphi^{-1}(k) \in \operatorname{Val}(c)$. It follows that $c \leq \varphi^{-1}(k)$ since otherwise $c \wedge a \leq k$ and $c \leq k$ imply $a \leq k$, contradiction. Hence there exist $m \in \operatorname{Val}(c)$ such that $\varphi^{-1}(k) \leq m$; then $k \leq \varphi(m)$, $c \leq \varphi(m)$ and $k \in \operatorname{Val}_{(a]}(c)$ imply $k = \varphi(m)$, so $\varphi^{-1}(k) = m \in \operatorname{Val}(c)$. \Box

Remark. The mapping φ realizes an order preserving bijection between Val(c) and Val_{(al}(c), for any $c \in \text{Com}(a]$.

Lemma 1.3. The mapping φ induces an order preserving bijection between $\{p \in V(A) | a \leq p\}$ and V((a]).

Proof. Suppose $m \in V(A)$, $a \leq m$ and we establish that $\varphi(m) \in V((a])$. Since $a \leq m$ there exist a compact y such that $y \leq a$, $y \leq m$ and because $m \in V(A)$ there exists a compact x such that $m \in Val(x)$. Then $x \wedge y$ is a compact, $x \wedge y \leq m$ and $m \in Val(x \wedge y)$, since for m < n we obtain $x \leq n$, using $m \in Val(x)$, so $x \wedge y \leq n$. Using Lemma 1.2 it follows that $\varphi(m) \in Val_{(a]}(x \wedge y) \subseteq V((a])$.

Conversely, for $k \in V((a])$ there exist a compact $x \leq a$ such that $k \in Val_{(a]}(x)$, hence $\varphi^{-1}(k) \in Val(x)$ using Lemma 1.2. \Box

Lemma 1.4. Let $a \in A$ and $p \in V(A)$. Then $a \leq p$ iff there exists $c \in Com(A)$ such that $c \leq a$ and $p \in Val(c)$.

Proof. Using Lemmas 1.2 and 1.3, for any $p \in V(A)$, the following equivalences hold: $a \leq p$ iff $\varphi(p) \in V((a])$ iff $\varphi(p) \in \operatorname{Val}_{(a]}(c)$ for some $c \in \operatorname{Com}(a]$ iff $p \in \operatorname{Val}(c)$ for some compact element $c \leq a$. \Box

2. Minimal plenary sets

Definition 2.1. A nonempty subset D of V(A) will be called a *plenary set* of A if the following conditions are satisfied:

(1)
$$\wedge D = 0$$
,

(2) If $p \in D$, $q \in V(A)$, $p \leq q$ then $q \in D$.

This notion extends a notion in *l*-groups (see [2,4]). Condition (2) of the previous definition can be stated: D is an increasing subset (or an order-filter) of V(A). The main result of this section is the characterization of minimal plenary sets of A, extending a well-known theorem in *l*-groups [2,4].

By Zorn's lemma, for any nonzero compact element $c \in A$, the set $D(c) = D \cap Val(c)$ is nonempty.

If $a, b \in A$ are incomparable we shall write $a \| b$.

Lemma 2.2. If $q, q_1, \ldots, q_n \in A$ are such that q is meet-prime and $q || q_i$ for $i = 1, \ldots, n$, then there exist two compact elements c, d such that $c \leq q, c \leq q_i$ for $i = 1, \ldots, n, d \leq q$, $d \leq \bigwedge \{q_i/i = 1, \ldots, n\}$ and $c \land d = 0$.

Proof. We can find compact elements x_i, y_i such that $x_i \leq q, x_i \leq q_i$ and $y_i \leq q_i, y_i \leq q$ for i = 1, ..., n. Denoting $x = \bigvee \{x_i | i = 1, ..., n\}$ and $y = \bigwedge \{y_i | i = 1, ..., n\}$ we have $x \leq q, y \leq q$ and $x \leq q_i, y \leq q_i$ for any i = 1, ..., n. Since, x and y are incomparable, using Lemma 1.1, there exist two compact elements c and d such that $c \lor y = d \lor x = x \lor y, c \land d = 0$ and $0 \leq c \leq x, 0 < d \leq y$. It is obvious that $c \leq q$ and $d \leq \bigwedge \{q_i | i = 1, ..., n\}$. If $c \leq q_i$ for some i, then $x \leq d \lor x = c \lor y \leq q_i$, contradiction. Similarly, one can verify that $d \leq q$. \Box

Lemma 2.3. If D is a plenary set in A, $x \in Com(A)$ and D(x) is finite then D(x) = Val(x).

Proof. Let $D(x) = \{q_1, \ldots, q_n\}$ and $q \in Val(x)$. Suppose $q \notin D$, then q, q_1, \ldots, q_n are pairwise incomparable meet-prime elements in A, so one can find two compact elements c, d as in the previous lemma. Since $d \nleq q, x \nleq q$ it follows that $d \land x \lll q$, so $d \land x \neq 0$, hence there exists an element $p_0 \in D(d \land x)$. Thus $x \lll p_0$, so there is $p \in D(x)$ such that $p_0 \leqslant p$, therefore $p = q_i$ for some $i \in \{1, \ldots, n\}$. Hence, $c \lll p_0$ and $d \land x \lll p_0$. But p_0 is meet-prime and $c \land d \land x = 0$, contradiction; so $q \in D$. \Box

Lemma 2.4. Let D be a plenary set in A, $x \in \text{Com}(A) - \{0\}$ and $p \in V(A)$ such that $\bigvee D(x) \leq p$. Then $p \in D$ and $\bigvee \text{Val}(x) \leq p$.

Proof. It is obvious that $p \in D$, because $D(x) \neq \emptyset$ and D is plenary set. If $p \in Val(x)$ then $p \in D(x)$ therefore, using the hypothesis $\bigvee D(x) \leq p$, it follows that $D(x) = \{p\}$ and by Lemma 2.3, $Val(x) = \{p\}$.

Suppose $p \notin Val(x)$ and $q \notin p$ for some $q \in Val(x)$. If $x \notin p$ there is $p_0 \in D(x)$ such that $p < p_0$, hence $p = p_0$, which contradicts $p \notin Val(x)$. Thus, $x \notin p$. Since, $q \notin p$ there exists $f \in Com(A)$, $f \notin q$ and $f \notin p$. By Lemma 1.1, $c \lor f = d \lor x = f \lor x$ and $c \land d = 0$ for two compact elements $c \notin x$, $d \notin f$. If c = 0 then $f = d \lor x$ so $x \notin f \notin q$ which contradicts $q \notin Val(x)$. Thus, $c \neq 0$ and there is $m \in D(c)$. We shall consider two cases:

(a) $m \leq p$; since $c \leq m$ and $c \wedge d = 0$, one gets $d \leq m \leq p$, so $c \vee f = d \vee x \leq p$, which contradicts $f \leq p$.

(b) $m \leq p$. If $x \leq m$ then there is $m_0 \in D(x)$, $m \leq m_0$, so by the hypothesis $\bigvee D(x) \leq p$, we have $m_0 \leq p$, which contradicts $m \leq p$. If $x \leq m$, then $c \leq m$, which contradicts $m \in Val(c)$.

In both cases we have obtained a contradiction, therefore $q \leq p$ for any $q \in Val(x)$. \Box

For any nonzero compact element x let us denote $r_x = \bigvee \operatorname{Val}(x)$. We shall say that $p \in V(A)$ is essential if there is $x \in \operatorname{Com}(A) - \{0\}$ such that $r_x \leq p$. If p is completely meet-prime then there is $c \in \operatorname{Com}(A) - \{0\}$ such that $\operatorname{Val}(c) = \{p\}$, therefore p is essential.

Let us denote by E(A) the set of essential values in A and $r(A) = \bigwedge \{r_x \mid x \in \text{Com}(A) - \{0\}\}.$

Lemma 2.5. If D is a plenary set in A then $E(A) \subseteq D$.

Proof. If $p \in E(A)$ then $r_x \leq p$ for some $x \in \text{Com}(A)$ - $\{0\}$. But $\bigwedge D = 0$ so $x \leq q$ for some $q \in D$. Thus $q \leq q'$ for some $q' \in \text{Val}(x)$, hence $q' \leq p$, so $p \in D$. \Box

Theorem 2.6. For any plenary set D in A the following are equivalent:

- (1) D is a minimal plenary set in A;
- (2) D = E(A);
- (3) D is the least plenary set in A.

Proof. (1) \Rightarrow (2). By Lemma 2.4, it suffices to prove that for any $d \in D$ there is $x \in \text{Com}(A) - \{0\}$ such that $\bigvee D(x) \leq d$. Suppose, for a proof by contradiction, there is $d \in D$ such that for any $x \in \text{Com}(A) - \{0\}$ there exists $q_x \in D(x), q_x \leq d$. Consider the following set: $D' = D - \{p \in V(A) \mid p \leq d\}$. Thus, $q_x \in D'$ for any $x \in \text{Com}(A) - \{0\}$. If $\bigwedge D' \neq 0$ then there is $a \in \text{Com}(A) - \{0\}$ such that $a \leq p$ for any $p \in D'$, in particular, $a \leq q_a$ which contradicts $q_a \in \text{Val}(a)$. It follows that $\bigwedge D' = 0$ and D' being increasing one gets that D' is a plenary set in $A, D' \subseteq D$ and $D' \neq D$, because $d \in D - D'$, which contradicts the minimality of D.

- (2) \Rightarrow (1). By Lemma 2.5.
- (1) \Leftrightarrow (3). By (1) \Rightarrow (2) and Lemma 2.5.

We shall say that A is *finite-valued* [11] if Val(x) is finite for any $x \in Com(A)$.

Proposition 2.7. (1) $r(A) = \bigwedge E(A)$.

- (2) For $c \in \text{Com}(A)$, $c \leq r(A)$ iff c has no essential values.
- (3) If A is finite-valued then r(A) = 0.

Proof. (1) Let us consider $c \in \text{Com}(A)$ such that $c \nleq \wedge \{r_x | x \in \text{Com}(A) - \{0\}\}$ so there is $x \in \text{Com}(A) - \{0\}$ such that $c \nleq r_x = \bigvee \text{Val}(x)$. Hence there is $m \in \text{Val}(c)$ such that $r_x \leqslant m$, so $c \nleq m$ and $m \in E(A)$. This yields $r(A) \ge \wedge E(A)$. On the other hand, for any $p \in E(A)$ there is $x(p) \in \text{Com}(A) - \{0\}$ such that $r_{x(p)} \leqslant p$, therefore $r(A) \le \wedge \{r_{x(p)} | p \in E(A)\} \le \wedge E(A)$.

(2) In the light of (1), for $c \in \text{Com}(A)$ we have the following equivalences: $c \leq r(A) \Leftrightarrow c \leq p$, for any $p \in E(A) \Leftrightarrow c$ has no essential values.

(3) In accordance with Lemma 2.3 [11], the values of any nonzero compact element are completely meet-prime, so they are essential. By (2) one gets r(A) = 0.

Corollary 2.8. The following conditions are equivalent:

(1) E(A) is a plenary set in A;

- (2) There exists a minimal plenary set in A;
- (3) There exists the least plenary set in A;

(4) r(A) = 0.

Proof. By Theorem 2.6 and Proposition 2.7, since E(A) is an increasing set in V(A). \Box

Proposition 2.9. The following assertions are equivalent:

- (1) A is finite-valued;
- (2) A is completely distributive.

Proof. (1) \Rightarrow (2). Denoting $a = \bigvee \{ \bigwedge (x_{ij} | j \in J) | i \in I \}$ and $b = \bigwedge \{ \bigvee (x_{if(i)} | i \in I) | f \in J^I \}$ we always have $a \leq b$. For the converse inequality it suffices to prove that if $p \in V(A)$, $a \leq p$ then $b \leq p$, because any element in A is a meet of values. By Lemma 2.3 [11] p is completely meet-prime, hence for $i \in I$ there exists $f(i) \in J$ such that $x_{if(i)} \leq p$, so $b \leq \bigvee (x_{if(i)} | i \in I) \leq p$.

(2) \Rightarrow (1). By Lemma 2.3 [11] it suffices to prove that any $p \in V(A)$ is completely meet-prime. If $\bigwedge \{x_i | i \in I\} \leq p$ then, since A is completely distributive, we obtain $p = p \lor (\bigwedge \{x_i | i \in I\} = \bigwedge \{p \lor x_i | i \in I\}$. But p is completely meet-irreducible, hence $p = p \lor x_i$ for some $i \in I$, that is $x_i \leq p$ for some $i \in I$. \square

Corollary 2.10. If A is completely distributive then r(A) = 0.

Proof. By Propositions 2.9 and 2.7.

Proposition 2.11. $r(A) \leq \bigwedge \{c^* \mid c \in \text{Com}(A), c \text{ linear element} \}.$

Proof. Let $x \in \text{Com}(A)$ such that $x \leq r(A)$. For any linear compact element c we have $\text{Val}(c) = \{m\}$ for some $m \in V(A)$, using Lemma 3.1 [12]. Then $x \leq m$ and $c \leq x$; but any linear element is an ordinal element hence, by Lemma 3.9 [12], one gets $x \leq c \lor c^*$. Since, $x \in \text{Com}(A)$, one can find $y, z \in \text{Com}(A)$ such that $x = y \lor z$, $y \leq c$ and $z \leq c^*$, so $y \land z = 0$. If $y \neq 0$ then there is $q \in V(A)$, $\text{Val}(y) = \{q\}$, because y is linear and compact. Thus, $y \leq q$ and $y \leq x$ so $x \leq q$, a contradiction, because $q \in E(A)$ and $x \leq A \in (A)$. Hence, y = 0, therefore $x \leq c^*$. \Box

A subset B of A is a basis of A [12] if it is a maximal orthogonal set in A and every element of B is linear. Thus, A has a basis iff every nonzero element of A exceeds a linear element (see [12, Proposition 4.3]).

Corollary 2.12. If A has a basis than r(A) = 0.

Proof. By Proposition 2.11, if $d \in \text{Com}(A) - \{0\}$ and $d \leq r(A)$ then d does not exceed any linear compact element. But A has a basis so, by the previous remark, r(A) = 0. \Box

3. The tree S

Let A be a member of IRN. We shall associate with A a tree S and we shall investigate how the properties of S are reflected in the structure of A. For the case of l-groups one gets some of Conrad's results [5].

For $p \in V(A)$ consider $\bar{p} = \bigwedge \{x \in A \mid p < x\}$. Thus, for any $c \in \text{Com}(A)$, $p \in \text{Val}(c)$ implies $c \leq \bar{p}$. For any $p \in V(A)$ we shall denote $s_p = \bigvee \{c \in \text{Com}(A) \mid q \in \text{Val}(c) \Rightarrow p \parallel q\}$.

Lemma 3.1. For $x \in Com(A)$ and $p \in V(A)$ the following are equivalent:

(1) $x \leq s_p$;

(2) for any $q \in Val(x)$, p || q.

Proof. (1) \Rightarrow (2). If $x \leq s_p$ then $x \leq c_1 \vee \cdots \vee c_n$ for some compact elements c_1, \ldots, c_n such that $p \parallel q$ for all $q \in Val(c_i)$, $i = 1, \ldots, n$. Let $q \in Val(x)$; we have $x \leq q$, so $c_i \leq q$ for some $i \in \{1, \ldots, n\}$. Thus, $q \leq q'$ for some $q' \in Val(c_i)$, so $p \parallel q'$. If $p \leq q$ then $p \leq q'$. If q < p then $q \leq p, q'$ so p, q' are comparable since A is a member of IRN. Both cases are impossible, therefore $p \parallel q$.

 $(2) \Rightarrow (1)$. Obvious.

Lemma 3.2. Let $q, q_1, \ldots, q_n \in V(A)$ be such that $q ||q_i, i = 1, \ldots, n$. Then there exists $c \in \text{Com}(A)$ such that $c \leq \bar{q}, c \leq q$ and $c \leq \bigwedge \{s_{q_i}/i = 1, \ldots, n\}$.

Proof. For $p_1, p_2 \in V(A), p_1 || p_2$ there exist $x, y \in \text{Com}(A)$ such that $x \leq \bar{p}_1, x \leq p_1$ and $y \leq p_2, y \leq p_1$. Hence, $z = x \land y \in \text{Com}(A), z \leq \bar{p}_1 \land p_2$ and $z \leq p_1$.

Using this remark, in our case there exist $a_i, b_i \in \text{Com}(A)$, such that $a_i \leq \bar{q} \wedge q_i$, $a_i \leq q$ and $b_i \leq \bar{q}_i \wedge q$, $b_i \leq q_i$ for i = 1, ..., n. Denoting $a = \bigwedge \{a_i/i = 1, ..., n\}$, $b = \bigvee \{b_i/i = 1, ..., n\}$ we have $a \leq \bar{q} \wedge q_i$, $a \leq q$, $b \leq q$ and $b \leq q_i$ for i = 1, ..., n. It is obvious that a, b are incomparable compact elements, so there exist compact elements $0 < c \leq a$, $0 < d \leq b$ such that $a \lor d = b \lor c = a \lor b$ and $c \land d = 0$. We have $c \leq \bar{q} \wedge q_i$, i = 1, ..., n and $c \leq q$, because $c \leq q$ implies $a \leq a \lor b = c \lor b \leq q$. Now we shall prove that $c \leq s_{q_i}, i = 1, ..., n$, using Lemma 3.1. Suppose the contrary: there is i and $p \in \text{Val}(c)$ such that p, q_i are comparable. Two cases are possible:

(1) $q_i \leq p$, hence $c \leq a \leq q_i \leq p$, which contradicts $p \in Val(c)$;

(2) $p < q_i$, hence $d \le p < q_i$, because $c \land d = 0$ and $c \le p$. Thus, $b \le a \lor b = a \lor d \le q_i$, which is impossible.

In this way we have proved that c satisfies all the conditions of the lemma. \Box

Theorem 3.3. If $p \in V(A)$ then $s_p = \bigvee \{c^* | c \in \text{Com}(A), c \leq p\} = \bigwedge \{m | m \in \text{Min } A, m \leq p\}$.

Proof. The second equality was proved in [9] (see Proposition 4.4). Consider $x \in \text{Com}(A)$ such that $x \leq \bigvee \{c^* | c \in \text{Com}(A), c \leq p\}$. Thus there exist compact elements c_1, \ldots, c_n such that $x \leq \bigvee \{c^*_i | i = 1, \ldots, n\}$ and $c_i \leq p$, $i = 1, \ldots, n$, hence $d = \bigwedge \{c_i / i = 1, \ldots, n\} \leq p$ and $x \leq \bigvee \{c^*_i | i \leq d^*$. It follows that $x \wedge d = 0$, so $x \leq p$ because $d \leq p$. Now we shall prove that $x \leq s_p$ using Lemma 3.1. Let $q \in \text{Val}(x)$, hence $p \leq q$, because $p \leq q$ implies $x \leq p \leq q$. If q < p then $d \leq q$, because $d \leq p$; but $x \wedge d = 0$ and $x \leq q$ which contradicts $q \in \text{Spec } A$. Hence, $p \parallel q$ and we have proved that $\bigvee \{c^* \mid c \in \text{Com}(A), c \leq p\} \leq s_p$.

Let $x \in \text{Com}(A)$ be such that q || p for all $q \in \text{Val}(x)$. For any $m \in \text{Min } A$, $m \leq p$ implies $x \leq m$. Indeed, suppose $m \leq p$ and $x \leq m$, then there is $q \in \text{Val}(x)$, $m \leq q$. Thus, $m \leq p$, q so p, q are comparable, contradiction. Therefore, one gets $s_p \leq \bigwedge \{m | m \in \text{Min } A, m \leq p\}$. \Box

Corollary 3.4. For any $p \in V(A)$, $s_p^* = \bigwedge \{c^{**} | c \in Com(A), c \leq p\}$.

Proposition 3.5. Let $p, q \in V(A)$. Then $s_p \leq q$ iff p, q are comparable.

Proof. If $s_p \leq q$ then there is $x \in \text{Com}(A)$ such that $x \leq s_p$ and $x \leq q$. In accordance with Lemma 3.1, p || q' for any $q' \in \text{Val}(x)$. From $x \leq q$ one gets $q \leq q'$ for some $q' \in \text{Val}(x)$. It follows that p || q, because if $p \leq q$ then $p \leq q'$ and if q < p then $q \leq p, q'$. In both cases one contradicts the assumption p || q'.

For the converse implication, suppose p || q. By Lemma 3.2 there exists a compact element x such that $x \leq \bar{q} \wedge s_p$, $x \leq q$ so $s_p \leq q$.

Corollary 3.6. Let $p, q \in V(A)$. Then $s_p \leq q$ iff $s_q \leq p$.

Corollary 3.7. For any $p \in V(A)$, $s_p = \bigwedge \{q \in V(A) | p, q \text{ are comparable} \}$.

Proof. Denote by u the second member of this equality. If $u \leq s_p$ there is $c \in \text{Com}(A)$, $c \leq u, c \leq s_p$ so by Lemma 3.1 there is $q \in \text{Val}(c)$ such that p, q are comparable, hence $c \leq u \leq q$ which contradicts $q \in \text{Val}(c)$. This contradiction shows that $u \leq s_p$. The converse inequality follows by Proposition 3.5. \Box

Remark. If $p \in V(A)$ then $s_p \leq p$.

Corollary 3.8. For $p, q \in V(A)$, p || q iff $s_p || s_q$.

Proof. Suppose $s_p \leq s_q$; then using $s_q \leq q$ we obtain $s_p \leq q$ and by Proposition 3.5 p, q are comparable. If $p \leq q$, by Theorem 3.3, one gets $s_q = \bigwedge \{m \in \operatorname{Min} A \mid m \leq q\} \leq \bigwedge \{m \in \operatorname{Min} A \mid m \leq p\} = s_p$. \Box

Remark. By the previous corollary, $s_p < s_q$ implies q < p.

Let us denote $S = \{s_p | p \in V(A)\}$. From the previous results and the fact that V(A) is a root system it follows that S is a tree.

Proposition 3.9. For $p, q \in V(A)$ the following are equivalent:

(1) $s_p = s_q;$

(2) For any $r \in V(A)$, $r \parallel p$ iff $r \parallel q$;

(3) p,q belong to the same roots of V(A).

Proof. (1) \Rightarrow (2). By Corollary 3.8 we have the following equivalences:

 $r \parallel p \text{ iff } s_r \parallel s_p \text{ iff } s_r \parallel s_q \text{ iff } r \parallel q.$

 $(2) \Rightarrow (1)$. By Corollary 3.6.

(2) \Rightarrow (3). Assume there is a root U in V(A) such that $p \in U$, $q \notin U$; so $r \parallel q$ for some $r \in U$, therefore $r \parallel p$. This contradicts $p, r \in U$.

(3) \Rightarrow (2). We remark that $p \parallel r$ iff for any root U in V(A), $p \in U$ implies $r \notin U$.

Proposition 3.10. For $a \in A$, $a^* = \bigwedge \{s_p \mid p \in V(A), a \leq p\}$.

Proof. Suppose $x \in \text{Com}(A)$, $x \leq a^*$ and $p \in V(A)$, $a \leq p$. By Lemma 1.4 there is $c \in \text{Com}(A)$, $c \leq a$ and $p \in \text{Val}(c)$. Thus $x \wedge c = 0$ and $c \leq p$, so $x \leq p$. Assume there is $q \in V(A)$ such that p, q are comparable and $x \leq q$, hence $c \leq q$. We remark that $p \leq q$ implies $x \leq q$ and q < p implies c < p. In both cases we obtain a contradiction, so if p, q are comparable then $x \leq q$. This yields $x \leq \bigwedge \{q \in V(A) \mid p, q \text{ are comparable}\} = s_p$, therefore $x \leq \bigwedge \{s_p \mid p \in V(A), a \leq p\}$. We have proved that $a^* \leq \bigwedge \{s_p \mid p \in V(A), a \leq p\}$.

For the converse inequality, consider a compact element x such that $x \leq \bigwedge \{s_p \mid p \in V(A), a \leq p\}$. Note first that if c is a compact element satisfying $c \leq a, p \in Val(c)$ and $q \in Val(x)$, then $a \leq p$ because $c \leq p$, so $x \leq s_p$, hence in accordance with Lemma 3.1 one gets $p \parallel q$. Now if $x \land a \neq 0$, then $c \leq x \land a$ for some $c \in Com(A) - \{0\}$, hence there is $p \in Val(c)$, so $x \land a \leq p$. It follows that $x \leq p$, so there is $q \in Val(x), p \leq q$. This contradicts the previous remark, so $x \land a = 0$, hence $x \leq a^*$. \Box

Corollary 3.11. For any $p \in V(A)$ we have $s_p^* = \bigwedge \{s_q | q \in V(A), q \| p\}$.

Proof. From Propositions 3.10 and 3.5, one can infer

 $s_p^* = \bigwedge \{ s_q | q \in V(A), s_p \leq q \} = \bigwedge \{ s_q | q \in V(A), q \| p \}. \square$

Corollary 3.12. If $Val(c) = \{p\}$ then $s_p = c^*$.

Proof. By Proposition 3.10 we have $c^* = \bigwedge \{s_q | q \in V(A), c \leq q\}$. If $q \in V(A), c \leq q$, since $Val(c) = \{p\}$, then $q \leq p$. In accordance with Theorem 3.3, $s_p \leq s_q$, therefore $c^* = s_p$. \Box

Proposition 3.13. If $p \in V(A)$ then the following equality holds:

 $\bar{p} \wedge s_p^* = \bigvee \{ c \in \operatorname{Com}(A) | \operatorname{Val}(c) \subseteq (p] \}.$

Proof. Assume $c \in \text{Com}(A)$ such that $\text{Val}(c) \subseteq (p]$. Consider $q \in V(A)$ such that q || p. We shall prove that r || q for any $r \in \text{Val}(c)$. Suppose there is $r \in \text{Val}(c)$ such that r, q are comparable. Thus $r \leq p$ and two cases are possible:

(a) $r \leq q$; then $r \leq p$, q so p, q are comparable;

(b) q < r; then q < p.

It follows a contradiction in both cases, so $r \in Val(c)$ implies r ||q, hence $c \leq s_q$. This yields $c \leq \bigwedge \{s_q | q \in V(A), q || p\} = s_p^*$. If $c \neq 0$ then there is $q \in Val(c)$, so $q \leq p$, hence $c \leq \bar{q} \leq \bar{p}$.

For the converse inequality let c be a compact element such that $c \leq \bar{p} \wedge s_p^*$. Suppose there is $q \in Val(c)$, $q \leq p$. If p < q, then since $c \leq \bar{p}$ it follows that $c \leq q$, which contradicts $q \in Val(c)$. Hence, $p \leq q$, so p || q. From $c \leq s_p^* = \bigwedge \{s_r | r \in V(A), r || p\}$ and p || q one deduces, via the remark after Corollary 3.7, that $c \leq s_q \leq q$. This contradiction shows that $Val(c) \subseteq (p]$. \Box

Lemma 3.14. For $p, q \in V(A)$, $s_p < s_q$ iff q < p and there exists $r \in V(A)$ such that r < p and r || q.

Proof. Suppose $s_p < s_q$, hence q < p by the remark after Corollary 3.8, and there is $x \in \text{Com}(A)$ such that $x \leq s_q$ and $x \leq s_p$. Using Lemma 3.1, p is comparable with some value r of x. Applying again that lemma, for $r \in \text{Val}(x)$ we infer that r || q. If $p \leq r$ then q < r which is not possible, therefore r < p.

Assume q, r < p and r || q, so $s_p \leq s_q \wedge s_r \leq s_q$. If $s_q \wedge s_r = s_q$ then we obtain $s_q \leq s_r$, so, by Corollary 3.7, q and r are comparable. This contradiction shows that $s_p < s_q$. \Box

Theorem 3.15. For $p \in V(A)$ the following are equivalent:

- (1) s_p is maximal in S;
- (2) $s_p \in \operatorname{Spec} A$;
- (3) $s_p \in \operatorname{Min} A$;
- (4) $(p] \cap V(A)$ is a chain;
- (5) p is contained in a unique root of V(A);
- (6) p exceeds a unique element of Min A.

Proof. It is obvious that $(3) \Rightarrow (2)$ and $(4) \Leftrightarrow (5) \Leftrightarrow (6)$.

(1) \Rightarrow (4). Assume there exists $q, r \in (p] \cap V(A)$ such that q ||r|. In accordance with Lemma 3.14, $s_p < s_q$ which contradicts the maximality of s_p in S.

(4) \Rightarrow (3). If m_0 is the unique element of Min A such that $m_0 \leq p$ then, by Theorem 3.3, $s_p = \bigwedge \{ m \in \text{Min } A \mid m \leq p \} = m_0$.

(2) \Rightarrow (1). Suppose $s_p < s_q$, then q, r < p for some r || q. By Lemma 3.2 there exist compact elements x, y such that $x \leq \bar{q} \wedge r$, $x \leq q$ and $y \leq \bar{r} \wedge q$, $y \leq r$. It is obvious that x || y; then by Lemma 1.1 there exist compact elements $0 < c \leq x$, $0 < d \leq y$ such that $x \vee d = y \vee c = x \vee y$ and $c \wedge d = 0$. From this one gets $c \leq \bar{q}, c \leq q, d \leq \bar{r}, d \leq r$ (by example, $c \leq q$ implies $x \vee y = y \vee c \leq q$ so $x \leq q$, contradiction). Then $q \in Val(c)$ and $r \in Val(d)$. Since, $q \in Val(c)$ and q < p we have by Lemma 3.1, $c \leq s_p$ and similarly $d \leq s_p$. But this contradicts $s_p \in Spec A$ and $c \wedge d = 0$. Hence, s_p is maximal in S. \Box

Corollary 3.16. Let $c \in \text{Com } A$ such that $\text{Val}(c) = \{p\}$. Then s_p is maximal in S iff c is linear.

Proof. By Proposition 4.2 [12], c is linear iff $c^* \in Min A$. In accordance with Corollary 3.12, $s_p = c^*$ so, by the previous theorem, s_p is maximal in S iff c is linear. \Box

Lemma 3.17. For $p, q_1, \ldots, q_n \in V(A)$, $\bigwedge \{s_{q_i} | i = 1, \ldots, n\} \leq p$ iff p is comparable with some q_i .

Proof. If p is comparable with some q_i then, by Proposition 3.5, $s_{q_i} \leq p$, hence $\wedge \{s_{q_i} | i = 1, ..., n\} \leq p$. In order to prove the converse implication one can assume that $q_1, ..., q_n$ are pairwise incomparable. Suppose that $p || q_i$ for i = 1, ..., n. By Lemma 3.2 there is a compact element c such that $c \leq p$ and $c \leq \bar{p} \wedge \wedge \{s_{q_i} | i = 1, ..., n\}$, so $\wedge \{s_{q_i} / i = 1, ..., n\} \leq p$. \square

Remark. $\wedge V(A) = 0$, otherwise $c \leq \wedge V(A)$ for some $c \in \text{Com}(A) - \{0\}$, implying $c \leq p$, for any $p \in V(A)$, which contradicts the fact that c does have values. It follows easily that $\wedge \text{Min } A = 0$.

Theorem 3.18. If $q_1, \ldots, q_n \in V(A)$ are pairwise incomparable then the following are equivalent:

- (1) $\wedge \{s_{q_i} / i = 1, ..., n\} = 0;$
- (2) $\{q_1, \ldots, q_n\}$ is a maximal set of pairwise incomparable elements in V(A);
- (3) If U is a root in V(A) then $q_i \in U$ for some $i \in \{1, ..., n\}$;
- (4) If $m \in \text{Min } A$ then $s_{q_i} \leq m$ for some $i \in \{1, ..., n\}$.

Proof. (1) \Rightarrow (2). By the previous lemma.

(2) \Rightarrow (3). Assume that U is a root of V(A) and $q_i \notin U$ for any i = 1, ..., n. Consider $p_1 \in U$; so there is q_{i1} comparable with p_1 , hence $q_{i1} < p_1$, because $p_1 \leqslant q_{i1}$ implies

 $q_{i1} \in U$. But U is a root so there is $p_2 \in U$ such that $p_2 < p_1$ and $q_{i1} || p_2$. In this way, one can obtain a sequence $q_{i1}, q_{i2}, \ldots, q_{ik}, \ldots$ and $p_1 > p_2 > \cdots > p_k > \cdots$ such that $q_{ik} || p_{k+1}$ and $q_{ik} < p_k$ for each k. Since $\{q_1, \ldots, q_n\}$ is finite there is l < k such that $q_{ik} = q_{il}$. Thus, $q_{ik} < p_k < \cdots < p_{l+1}$, hence $q_{il} < p_{l+1}$. We have obtained a contradiction, so U contains one of the q_i .

(3) \Rightarrow (4). If $m \in \text{Min } A$ then $U = \{q \in V(A) | m \leq q\}$ is a root of V(A). By hypothesis, there exists $q_i \in U$ so $m \leq q_i$, therefore $s_{q_i} = \bigwedge \{k \in \text{Min } A | k \leq q_i\} \leq m$.

(4) \Rightarrow (1). For any $m \in Min A$ there exists q_i such that $s_{q_i} \leq m$ so $\bigwedge \{s_{q_i}/i = 1, ..., n\} \leq \bigwedge Min A = 0$. \Box

Remarks. (1) An element $c \in A$ is completely join-prime iff c has a unique value (see [10]).

(2) Let $\{c_1, \ldots, c_n\}$ be a finite set of completely join-prime elements in A, Val $(c_i) = \{q_i\}$ $i = 1, \ldots, n$. If c_1, \ldots, c_n are pairwise orthogonal then q_1, \ldots, q_n are pairwise incomparable. Indeed, $c_i \wedge c_j = 0$ and $c_j \leq q_j$ imply $c_i \leq q_j$, hence if $q_j < q_i$ then $c_i < q_i$, a contradiction.

Theorem 3.19. Let A be a member of IRN. The following statements are equivalent:

(1) There exists a maximal finite set of pairwise incomparable elements of V(A);

(2) There exists a finite subset S' of S such that $\bigwedge S' = 0$;

(3) There exists a finite set of completely join-prime elements of A, which is maximal orthogonal;

(4) Any set of pairwise disjoint roots of V(A) is finite.

Proof. (1) \Rightarrow (3). Let $\{q_1, \ldots, q_n\}$ be a maximal set of pairwise incomparable elements in V(A). By Lemma 3.2, there is a compact element $c_1 \leq q_1$, and $c_1 \leq \bar{q}_1 \wedge s_{q_i}$, $i = 2, \ldots, n$, so $q_1 \in \operatorname{Val}(c_1)$. Suppose there is a $p \in \operatorname{Val}(c_1)$, $p \neq q_1$ so $p || q_1$. By the maximality of $\{q_1, \ldots, q_n\}$, p is comparable with q_i for some $i \in \{2, \ldots, n\}$, so $c_1 \leq s_{q_i}$, using Lemma 3.1. This contradiction shows that $\operatorname{Val}(c_1) = \{q_1\}$. In this way one can obtain the completely join-prime elements c_1, \ldots, c_n such that $\operatorname{Val}(c_i) = \{q_i\}$, $i = 1, \ldots, n$. We shall prove that $\{c_1, \ldots, c_n\}$ is a maximal orthogonal set. Note first that c_1, \ldots, c_n are pairwise incomparable: by example if $c_1 \leq c_2$ then $c_1 \leq \bar{q}_2 \wedge s_{q_1} \leq s_{q_1} \leq q_1$, contradiction. By [10, Lemma 2.3] it follows that $\{c_1, \ldots, c_n\}$ is orthogonal. Assume $c \wedge c_i = 0$ for any $i = 1, \ldots, n$, where $c \in \operatorname{Com}(A)$. If $c \neq 0$ there is $p \in \operatorname{Val}(c)$, so $c_i \leq p$ for any $i = 1, \ldots, n$. This yields $p || q_i, i = 1, \ldots, n$. Indeed, $p \leq q_i$ implies $c_i \leq q_i$ and $q_i < p$ implies $c \leq q_i$, so $c_i \leq q_i$, because $c \wedge c_i = 0$ and q_i is meet-prime. Our conclusion that $p || q_i, i = 1, \ldots, n$ contradicts the maximality of $\{q_1, \ldots, q_n\}$, hence c = 0.

 $(3) \Rightarrow (1)$. Suppose $\{c_1, \ldots, c_n\}$ is maximal orthogonal and $\operatorname{Val}(c_i) = \{q_i\}, i = 1, \ldots, n$. Using the previous remark q_1, \ldots, q_n are pairwise incomparable. Assume there exists $p \in V(A)$ such that the elements of the set $\{p, q_1, \ldots, q_n\}$ are pairwise incomparable. By Lemma 3.2 there exists a compact element $c \leq \overline{p} \wedge s_{q_i}, i = 1, \ldots, n$ and $c \leq p$, so $p \in \operatorname{Val}(c)$. We shall prove that the set $\{c, c_1, \ldots, c_n\}$ is orthogonal. If $c \wedge c_i \neq 0$ for some *i*, there is $q \in \operatorname{Val}(c \wedge c_i)$, so $c \leq q$ and $c_i \leq q$. But $\operatorname{Val}(c_i) = \{q_i\}$, therefore $c \leq s_{q_i} = \bigwedge \{r \in V(A) | r, q_i \text{ are comparable}\} \leq q$. This contradiction shows that $\{c, c_1, \ldots, c_n\}$ is orthogonal and this contradicts the hypothesis. It follows that $\{q_1, \ldots, q_n\}$ is a maximal set of pairwise incomparable elements in V(A).

The rest of the proof follows by Theorem 3.8. \Box

Corollary 3.20. Let A be a member of IRN. The following are equivalent:

- (1) A has a finite basis;
- (2) There exists a finite set $S' \subseteq S$ of maximal elements in S, such that $\bigwedge S' = 0$;
- (3) S is finite;
- (4) V(A) has a finite number of roots.

Proof. (1) \Rightarrow (2). Let $\{c_1, \ldots, c_n\}$ be a finite basis of A. One can suppose c_1, \ldots, c_n are completely join-prime (see [12], Corollary 4.4). If $\operatorname{Val}(c_i) = \{q_i\}, i = 1, \ldots, n$ then by Corollary 3.16, s_{q_i} are maximal in S for $i = 1, \ldots, n$. In accordance with Theorem 3.18 we have $\bigwedge \{s_{q_i} | i = 1, \ldots, n\} = 0$.

(2) \Rightarrow (4). If $S' = \{s_{q_1}, \dots, s_{q_n}\}$ then, by Theorem 3.18, for any root U of V(A) there exists some $q_i \in U$. By Theorem 3.15, every q_i is contained in a unique root, so V(A) has a finite number of roots.

(4) \Rightarrow (3). Denote by U_1, \ldots, U_n the roots in V (A). For any subset I of $\{1, \ldots, n\}$ denote by \sum_I the set of $p \in V(A)$ such that $\{U_i | i \in I\}$ is the set of roots in V(A) which contain p. In accordance with Proposition 3.9, $s_p = s_q$ for any $p, q \in \sum_I$, so one can denote by s_I the common value of s_p for $p \in \sum_I$. Thus $S = \{s_I | I \subseteq \{1, \ldots, n\}\}$ and S is finite.

(3) \Rightarrow (1). Let S' be the maximal elements in S, say $S' = \{s_{q_1}, \dots, s_{q_n}\}$. For $p \in V(A)$ we have two cases:

(i) $s_p \in S'$; hence $\bigwedge S' \leq s_p \leq p$;

(ii) $s_p \in S - S'$; S being finite there is $s_{q_i} \in S'$ such that $s_p < s_{q_i}$, hence $q_i < p$. We obtain $\bigwedge S' \leq s_{q_i} \leq q_i < p$. So, for every $p \in V(A)$, $\bigwedge S' \leq p$, then $\bigwedge S' \leq \bigwedge V(A) = 0$, i.e. $\bigwedge S' = 0$. Because $\{q_1, \ldots, q_n\}$ are pairwise incomparable elements of V(A), using Theorem 3.18, $\{q_1, \ldots, q_n\}$ is a maximal set of pairwise incomparable elements of V(A). By Theorem 3.19, there is the set $\{c_1, \ldots, c_n\}$ which is maximal orthogonal and $c_i, i = 1, \ldots, n$ are completely join-prime. Because $Val(c_i) = \{q_i\}$, using Corollary 3.16, c_i are linear elements, so A has a finite basis. \Box

Remark. The equivalence of (1) and (4) there was proved firstly in [12].

Acknowledgements

The authors wish to express their gratitude to Professor Sergiu Rudeanu for his advice in the writing of the final version of this paper.

References

- [1] M. Anderson and T. Feil, Lattice-ordered groups (Reidel, Dordrecht, Holland, 1988).
- [2] A. Bigard, K. Keimal and S. Wolfenstein, Groupes et anneaux réticulés (Springer, Berlin, 1977).
- [3] C.C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc., 88 (1958) 456-490.
- [4] P. Conrad, Lattice Ordered Groups (Tulane University, 1970).
- [5] P. Conrad, The structure of an *l*-group that is determined by its minimal prime subgroups, in: A.M.W. Glass and W. Ch. Holland, eds., Ordered Groups Lectures Note in Pures and Applied Math., vol. 62 (M. Dekker, New York, 1980).
- [6] P. Crawley and R.P. Dilworth, Algebraic Theory of Lattices (Prentice-Hall, Englewood Cliffs, NJ, 1978).
- [7] A. DiNola, G. Georgescu and S. Sessa, Closed ideals of MV-algebras, preprint.
- [8] J.B. Hart and C. Tsinakis, Decomposition for relatively normal lattices, Trans. Amer. Math. Soc., to appear.
- [9] K. Iseki and S. Tanaka, Ideal theory of BCK-algebras, Math. Japan 21 (1976) 351-366.
- [10] K. Keimel, A unified theory of minimal prime ideals, Acta Math. Acad. So. Hungaricae (1-2), 23 (1972) 51-69.
- [11] J.T. Snodgrass and C. Tsinakis, Finite-valued algebraic lattices, Algebra Universalis 30 (1993) 311-319.
- [12] J.T. Snodgrass and C. Tsinakis, The finite basis theorem for relatively normal lattices, Algebra Universalis, to appear.