On values in relatively normal lattices

Alexandru Filipoiu ${ }^{\text {a. * }}$, George Georgescu ${ }^{\text {b }}$
${ }^{2}$ Department of Mathematics 1, Univ. 'Politechnica' Bucharest, Str. Splaiul Independenpei 313, Bucharest, Romania
${ }^{\mathrm{b}}$ Institute of Mathematics, Str. Academiei 14. Bucharest, Romania

Received 26 April 1995

Abstract

In $[8,11,12]$ the class IRN was introduced in order to obtain the lattice-theoretic analogues of some results of Conrad (see e.g. [4]). The aim of these paper is to provide other useful constructions in the study of the structure of relatively normal lattices. The introduced notions and results are purely lattice-theoretic extensions of notions and results for lattice-ordered groups [$2,4,5$]. In the second section, the notion of plenary set of a member of the class IRN is introduced and the characterization of maximal plenary sets is given, extending a well-known theorem in l-groups. In the third section with any lattice in IRN is associated a tree and we investigate how the properties of this tree are reflected in the structure of the lattice. For the case of l-groups, one gets some of Conrad's results in [5].

1. Preliminaries

In this section we review some relevant concepts. For notions not defined here, we refer the reader to $[6,11]$.

Let A be an algebraic, distributive lattice with least element 0 and greatest element 1 and $\operatorname{Com}(A)$ the join-subsemilattice of compact elements of A.

An element $p<1$ is meet-irreducible if $p=x \wedge y$ implies $p=x$ or $p=y$; an element $p<1$ is meet-prime if $x \wedge y \leqslant p$ implies $x \leqslant p$ or $y \leqslant p$. These definitions can be extended to arbitrary meets and we obtain the concepts of completely meet-irreducible and meet completely-prime elements. The dual notions of join-irreducible, join-prime, completely join-irreducible and completely join-prime elements are defined dually.

In an algebraic lattice every element is the meet of a set of completely meetirreducible elements [6].

A value of a compact element c of A is an element $p \in A$ which is maximal with respect to not exceeding $c[11]$. For any $c \in \operatorname{Com}(A)$ we shall denote by $\operatorname{Val}(c)$ the set

[^0]of values of $c . V(A)$ will denote the set of the values in A. Thus, $V(A)$ is exactly the set of completely meet-irreducible elements in A, so every element of A is a meet of a set of values.

In [11] there was proved that an element is completely join-prime iff it is compact and has a unique value; an element is completely meet-prime iff it is the unique value of a compact element.

A root-system is a poset (P, \leqslant) for which the principal order filter $[p)=\{x \in P \mid p \leqslant x\}$ is a chain for all $p \in P$. A root is a maximal chain in (P, \leqslant). We shall denote by IRN the class of the algebraic, distributive lattices A such that $\operatorname{Com}(A)$ is a sublattice of A and the meet-primes element in A form a root system (see $[11,12]$).

Lemma 1.1 (Snodgrass and Tsinakis [11]). For an algebraic, distributive lattice A such that $\operatorname{Com}(A)$ is a sublattice of A, the following are equivalent:
(1) A is a member of IRN;
(2) For all $c, d \in \operatorname{Com}(A)$ there exist $c^{\prime}, d^{\prime} \in \operatorname{Com}(A)$ such that $c \vee d^{\prime}=c^{\prime} \vee d=$ $c \vee d$ and $c^{\prime} \wedge d^{\prime}=0$.

We remark that if $c, d, c^{\prime}, d^{\prime}$ are as in (2), then $c^{\prime} \leqslant c, d^{\prime} \leqslant d$. Further if c and d are incomparable, then $0<c^{\prime}, d^{\prime}$.

Remark. If G is an l-group then the set $C(G)$ of all its convex l-subgroups is a member of IRN (see [2,4]). The set of the ideals in a relatively normal lattice, in an MValgebra [3] or in a bounded commutative BCK-algebra [9] is also a member of IRN. Thus, the results of this paper can be applied for all these cases.

Throughout this paper A will denote a member of IRN.
An element $x \neq 0$ is linear if $(x]=\{y \in A \mid y \leqslant x\}$ is a chain. If $a \leqslant b$, then we shall say that b is an ordinal extension of a if $(b]-(a]$ is a chain and every element of (b] - (a] exceeds a. An ordinal element is a proper ordinal extension of some element. All these notions are defined in [12] as natural extensions of some notions in l-groups $[1,2,4]$. We remark that a linear element is also an ordinal element and a non-zero compact element below a linear element is completely join-prime [12].

For $x \in A$ we shall denote by x^{*} the pseudo-complement of x in A. The set of meet-prime elements of A will be denoted by $\operatorname{Spec} A$ and the set of minimal meetprime elements of A by $\operatorname{Min} A$.

For any $a \in A,(a]=\{x \in A \mid x \leqslant a\}$ is a member of IRN and $\operatorname{Com}(a]=$ $\operatorname{Com}(A) \cap(a]$ (see [12]). It is easy to prove that for $a \in A$ the mapping $\varphi:\{p \in \operatorname{Spec} A \mid a \nless p\} \rightarrow \operatorname{Spec}(a]$ defined by $\varphi(p)=p \wedge a$ is an order preserving bijection and its inverse, given by $\varphi^{-1}(q)=a \rightarrow q$, is also order preserving.

Lemma 1.2. Let $c \in \operatorname{Com}(a]$. Then $m \in \operatorname{Val}(c)$ iff $\varphi(m) \in \operatorname{Val}_{(a]}(c)$, where $\operatorname{Val}_{[a]}(c)$ is the set of values of c in (a].

Proof. Suppose $m \in \operatorname{Val}(c)$; then $m \in \operatorname{Spec} A$ and $a \not m$, so we can compute $\varphi(m)$. Since, $c \neq m \wedge a$ there exists $k \in \operatorname{Val}_{(a]}(c)$ such that $m \wedge a \leqslant k$. First note that $c<\varphi^{-1}(k)$ since otherwise $c \wedge a \leqslant k, c \nless k$ imply $a \leqslant k$, contradicting $c \leqslant k$. Thus, $m \leqslant \varphi^{-1}(k), c \not \varphi^{-1}(k)$ and $m \in \operatorname{Val}(c)$ imply $m=\varphi^{-1}(k)$, that is $\varphi(m)=k \in \operatorname{Val}_{(a]}(c)$.

We next assume $k \in \operatorname{Val}_{(a]}(c)$ and we shall establish that $\varphi^{-1}(k) \in \operatorname{Val}(c)$. It follows that $c \varphi^{-1}(k)$ since otherwise $c \wedge a \leqslant k$ and $c \leqslant k$ imply $a \leqslant k$, contradiction. Hence there exist $m \in \operatorname{Val}(c)$ such that $\varphi^{-1}(k) \leqslant m$; then $k \leqslant \varphi(m), c \not \varphi(m)$ and $k \in \operatorname{Val}_{(a]}(c)$ imply $k=\varphi(m)$, so $\varphi^{-1}(k)=m \in \operatorname{Val}(c)$.

Remark. The mapping φ realizes an order preserving bijection between $\operatorname{Val}(c)$ and $\operatorname{Val}_{[a]}(c)$, for any $c \in \operatorname{Com}(a]$.

Lemma 1.3. The mapping φ induces an order preserving bijection between $\{p \in V(A) \mid a \nless p\}$ and $V((a])$.

Proof. Suppose $m \in V(A), a \neq m$ and we establish that $\varphi(m) \in V((a])$. Since $a \leqslant m$ there exist a compact y such that $y \leqslant a, y \leqslant m$ and because $m \in V(A)$ there exists a compact x such that $m \in \operatorname{Val}(x)$. Then $x \wedge y$ is a compact, $x \wedge y \not m$ and $m \in \operatorname{Val}(x \wedge y)$, since for $m<n$ we obtain $x \leqslant n$, using $m \in \operatorname{Val}(x)$, so $x \wedge y \leqslant n$. Using Lemma 1.2 it follows that $\varphi(m) \in \operatorname{Val}_{(a]}(x \wedge y) \subseteq V((a])$.

Conversely, for $k \in V((a])$ there exist a compact $x \leqslant a$ such that $k \in \operatorname{Val}_{(a]}(x)$, hence $\varphi^{-1}(k) \in \operatorname{Val}(x)$ using Lemma 1.2.

Lemma 1.4. Let $a \in A$ and $p \in V(A)$. Then $a \nless p$ iff there exists $c \in \operatorname{Com}(A)$ such that $c \leqslant a$ and $p \in \operatorname{Val}(c)$.

Proof. Using Lemmas 1.2 and 1.3, for any $p \in V(A)$, the following equivalences hold: $a \leqslant p$ iff $\varphi(p) \in V((a])$ iff $\varphi(p) \in \operatorname{Val}_{(a]}(c)$ for some $c \in \operatorname{Com}(a]$ iff $p \in \operatorname{Val}(c)$ for some compact element $c \leqslant a$.

2. Minimal plenary sets

Definition 2.1. A nonempty subset D of $V(A)$ will be called a plenary set of A if the following conditions are satisfied:
(1) $\wedge D=0$,
(2) If $p \in D, q \in V(A), p \leqslant q$ then $q \in D$.

This notion extends a notion in l-groups (see $[2,4]$). Condition (2) of the previous definition can be stated: D is an increasing subset (or an order-filter) of $V(A)$. The main result of this section is the characterization of minimal plenary sets of A, extending a well-known theorem in l-groups $[2,4]$.

By Zorn's lemma, for any nonzero compact element $c \in A$, the set $D(c)=D \cap \operatorname{Val}(c)$ is nonempty.

If $a, b \in A$ are incomparable we shall write $a \| b$.
Lemma 2.2. If $q, q_{1}, \ldots, q_{n} \in A$ are such that q is meet-prime and $q \| q_{i}$ for $i=1, \ldots, n$, then there exist two compact elements c, d such that $c \leqslant q, c \nless q_{i}$ for $i=1, \ldots, n, d \nless q$, $d \leqslant \wedge\left\{q_{i} / i=1, \ldots, n\right\}$ and $c \wedge d=0$.

Proof. We can find compact elements x_{i}, y_{i} such that $x_{i} \leqslant q, x_{i} \leqslant q_{i}$ and $y_{i} \leqslant q_{i}, y_{i} \leqslant q$ for $i=1, \ldots, n$. Denoting $x=\bigvee\left\{x_{i} / i=1, \ldots, n\right\}$ and $y=\bigwedge\left\{y_{i} / i=1, \ldots, n\right\}$ we have $x \leqslant q, y \leqslant q$ and $x \nless q_{i}, y \leqslant q_{i}$ for any $i=1, \ldots, n$. Since, x and y are incomparable, using Lemma 1.1, there exist two compact elements c and d such that $c \vee y=d \vee x=x \vee y, c \wedge d=0$ and $0 \leqslant c \leqslant x, 0<d \leqslant y$. It is obvious that $c \leqslant q$ and $d \leqslant \wedge\left\{q_{i} / i=1, \ldots, n\right\}$. If $c \leqslant q_{i}$ for some i, then $x \leqslant d \vee x=c \vee y \leqslant q_{i}$, contradiction. Similarly, one can verify that $d \nless q$.

Lemma 2.3. If D is a plenary set in $A, x \in \operatorname{Com}(A)$ and $D(x)$ is finite then $D(x)=\operatorname{Val}(x)$.

Proof. Let $D(x)=\left\{q_{1}, \ldots, q_{n}\right\}$ and $q \in \operatorname{Val}(x)$. Suppose $q \notin D$, then q, q_{1}, \ldots, q_{n} are pairwise incomparable meet-prime elements in A, so one can find two compact elements c, d as in the previous lemma. Since $d \nless q, x \neq q$ it follows that $d \wedge x \neq q$, so $d \wedge x \neq 0$, hence there exists an element $p_{0} \in D(d \wedge x)$. Thus $x \not p_{0}$, so there is $p \in D(x)$ such that $p_{0} \leqslant p$, therefore $p=q_{i}$ for some $i \in\{1, \ldots, n\}$. Hence, $c \nless p_{0}$ and $d \wedge x \not p_{0}$. But p_{0} is meet-prime and $c \wedge d \wedge x=0$, contradiction; so $q \in D$.

Lemma 2.4. Let D be a plenary set in $A, x \in \operatorname{Com}(A)-\{0\}$ and $p \in V(A)$ such that $\bigvee D(x) \leqslant p$. Then $p \in D$ and $\bigvee \operatorname{Val}(x) \leqslant p$.

Proof. It is obvious that $p \in D$, because $D(x) \neq \emptyset$ and D is plenary set. If $p \in \operatorname{Val}(x)$ then $p \in D(x)$ therefore, using the hypothesis $\vee D(x) \leqslant p$, it follows that $D(x)=\{p\}$ and by Lemma 2.3, $\operatorname{Val}(x)=\{p\}$.

Suppose $p \notin \operatorname{Val}(x)$ and $q \nless p$ for some $q \in \operatorname{Val}(x)$. If $x \nless p$ there is $p_{0} \in D(x)$ such that $p<p_{0}$, hence $p=p_{0}$, which contradicts $p \notin \operatorname{Val}(x)$. Thus, $x \leqslant p$. Since, $q \nless p$ there exists $f \in \operatorname{Com}(A), f \leqslant q$ and $f \leqslant p$. By Lemma 1.1, $c \vee f=d \vee x=f \vee x$ and $c \wedge d=0$ for two compact elements $c \leqslant x, d \leqslant f$. If $c=0$ then $f=d \vee x$ so $x \leqslant f \leqslant q$ which contradicts $q \in \operatorname{Val}(x)$. Thus, $c \neq 0$ and there is $m \in D(c)$. We shall consider two cases:
(a) $m \leqslant p$; since $c \leqslant m$ and $c \wedge d=0$, one gets $d \leqslant m \leqslant p$, so $c \vee f=d \vee x \leqslant p$, which contradicts $f \$ p$.
(b) $m \leqslant p$. If $x \leqslant m$ then there is $m_{0} \in D(x), m \leqslant m_{0}$, so by the hypothesis $\vee D(x) \leqslant p$, we have $m_{0} \leqslant p$, which contradicts $m \leqslant p$. If $x \leqslant m$, then $c \leqslant m$, which contradicts $m \in \operatorname{Val}(c)$.

In both cases we have obtained a contradiction, therefore $q \leqslant p$ for any $q \in \operatorname{Val}(x)$.

For any nonzero compact element x let us denote $r_{x}=\bigvee \operatorname{Val}(x)$. We shall say that $p \in V(A)$ is essential if there is $x \in \operatorname{Com}(A)-\{0\}$ such that $r_{x} \leqslant p$. If p is completely meet-prime then there is $c \in \operatorname{Com}(A)-\{0\}$ such that $\operatorname{Val}(c)=\{p\}$, therefore p is essential.

Let us denote by $E(A)$ the set of essential values in A and $r(A)=$ $\bigwedge\left\{r_{x} \mid x \in \operatorname{Com}(A)-\{0\}\right\}$.

Lemma 2.5. If D is a plenary set in A then $E(A) \subseteq D$.
Proof. If $p \in E(A)$ then $r_{x} \leqslant p$ for some $x \in \operatorname{Com}(A)-\{0\}$. But $\wedge D=0$ so $x \nless q$ for some $q \in D$. Thus $q \leqslant q^{\prime}$ for some $q^{\prime} \in \operatorname{Val}(x)$, hence $q^{\prime} \leqslant p$, so $p \in D$.

Theorem 2.6. For any plenary set D in A the following are equivalent:
(1) D is a minimal plenary set in A;
(2) $D=E(A)$;
(3) D is the least plenary set in A.

Proof. (1) \Rightarrow (2). By Lemma 2.4, it suffices to prove that for any $d \in D$ there is $x \in \operatorname{Com}(A)-\{0\}$ such that $\bigvee D(x) \leqslant d$. Suppose, for a proof by contradiction, there is $d \in D$ such that for any $x \in \operatorname{Com}(A)-\{0\}$ there exists $q_{x} \in D(x), q_{x} \not d$. Consider the following set: $D^{\prime}=D-\{p \in V(A) \mid p \leqslant d\}$. Thus, $q_{x} \in D^{\prime}$ for any $x \in \operatorname{Com}(A)-\{0\}$. If $\wedge D^{\prime} \neq 0$ then there is $a \in \operatorname{Com}(A)-\{0\}$ such that $a \leqslant p$ for any $p \in D^{\prime}$, in particular, $a \leqslant q_{a}$ which contradicts $q_{a} \in \operatorname{Val}(a)$. It follows that $\wedge D^{\prime}=0$ and D^{\prime} being increasing one gets that D^{\prime} is a plenary set in $A, D^{\prime} \subseteq D$ and $D^{\prime} \neq D$, because $d \in D-D^{\prime}$, which contradicts the minimality of D.
(2) $\Rightarrow(1)$. By Lemma 2.5 .
$(1) \Leftrightarrow(3)$. By $(1) \Rightarrow(2)$ and Lemma 2.5 .

We shall say that A is finite-valued [11] if $\operatorname{Val}(x)$ is finite for any $x \in \operatorname{Com}(A)$.

Proposition 2.7. (1) $r(A)=\wedge E(A)$.
(2) For $c \in \operatorname{Com}(A), c \leqslant r(A)$ iff c has no essential values.
(3) If A is finite-valued then $r(A)=0$.

Proof. (1) Let us consider $c \in \operatorname{Com}(A)$ such that $c \nless\left\{r_{x} \mid x \in \operatorname{Com}(A)-\{0\}\right\}$ so there is $x \in \operatorname{Com}(A)-\{0\}$ such that $c \not r_{x}=\bigvee \operatorname{Val}(x)$. Hence there is $m \in \operatorname{Val}(c)$ such that $r_{x} \leqslant m$, so $c \leqslant m$ and $m \in E(A)$. This yields $r(A) \geqslant \wedge E(A)$. On the other hand, for any $p \in E(A)$ there is $x(p) \in \operatorname{Com}(A)-\{0\}$ such that $r_{x(p)} \leqslant p$, therefore $r(A) \leqslant \bigwedge\left\{r_{x(p)} \mid p \in E(A)\right\} \leqslant \wedge E(A)$.
(2) In the light of (1), for $c \in \operatorname{Com}(A)$ we have the following equivalences: $c \leqslant r(A) \Leftrightarrow c \leqslant p$, for any $p \in E(A) \Leftrightarrow c$ has no essential values.
(3) In accordance with Lemma 2.3 [11], the values of any nonzero compact element are completely meet-prime, so they are essential. By (2) one gets $r(A)=0$.

Corollary 2.8. The following conditions are equivalent:
(1) $E(A)$ is a plenary set in A;
(2) There exists a minimal plenary set in A;
(3) There exists the least plenary set in A;
(4) $r(A)=0$.

Proof. By Theorem 2.6 and Proposition 2.7, since $E(A)$ is an increasing set in $V(A)$.

Proposition 2.9. The following assertions are equivalent:
(1) A is finite-valued;
(2) A is completely distributive.

Proof. (1) \Rightarrow (2). Denoting $a=\bigvee\left\{\bigwedge\left(x_{i j} \mid j \in J\right) \mid i \in I\right\}$ and $b=\bigwedge\left\{\bigvee\left(x_{i f(i)} \mid i \in I\right) \mid f \in J^{I}\right\}$ we always have $a \leqslant b$. For the converse inequality it suffices to prove that if $p \in V(A)$, $a \leqslant p$ then $b \leqslant p$, because any element in A is a meet of values. By Lemma 2.3 [11] p is completely meet-prime, hence for $i \in I$ there exists $f(i) \in J$ such that $x_{i f(i)} \leqslant p$, so $b \leqslant \bigvee\left(x_{i f(i)} \mid i \in I\right) \leqslant p$.
(2) $\Rightarrow(1)$. By Lemma 2.3 [11] it suffices to prove that any $p \in V(A)$ is completely meet-prime. If $\bigwedge\left\{x_{i} \mid i \in I\right\} \leqslant p$ then, since A is completely distributive, we obtain $p=p \vee\left(\wedge\left\{x_{i} \mid i \in I\right\}=\bigwedge\left\{p \vee x_{i} \mid i \in I\right\}\right.$. But p is completely meet-irreducible, hence $p=p \vee x_{i}$ for some $i \in I$, that is $x_{i} \leqslant p$ for some $i \in I$.

Corollary 2.10. If A is completely distributive then $r(A)=0$.
Proof. By Propositions 2.9 and 2.7.

Proposition 2.11. $r(A) \leqslant \wedge\left\{c^{*} \mid c \in \operatorname{Com}(A)\right.$, c linear element $\}$.

Proof. Let $x \in \operatorname{Com}(A)$ such that $x \leqslant r(A)$. For any linear compact element c we have $\operatorname{Val}(c)=\{m\}$ for some $m \in V(A)$, using Lemma 3.1 [12]. Then $x \leqslant m$ and $c \leqslant x$; but any linear element is an ordinal element hence, by Lemma 3.9 [12], one gets $x \leqslant c \vee c^{*}$. Since, $x \in \operatorname{Com}(A)$, one can find $y, z \in \operatorname{Com}(A)$ such that $x=y \vee z, y \leqslant c$ and $z \leqslant c^{*}$, so $y \wedge z=0$. If $y \neq 0$ then there is $q \in V(A)$, $\operatorname{Val}(y)=\{q\}$, because y is linear and compact. Thus, $y \nless q$ and $y \leqslant x$ so $x \not q$, a contradiction, because $q \in E(A)$ and $x \leqslant \wedge E(A)$. Hence, $y=0$, therefore $x \leqslant c^{*}$.

A subset B of A is a basis of A [12] if it is a maximal orthogonal set in A and every element of B is linear. Thus, A has a basis iff every nonzero element of A exceeds a linear element (see [12, Proposition 4.3]).

Corollary 2.12. If A has a basis than $r(A)=0$.
Proof. By Proposition 2.11, if $d \in \operatorname{Com}(A)-\{0\}$ and $d \leqslant r(A)$ then d does not exceed any linear compact element. But A has a basis so, by the previous remark, $r(A)=0$.

3. The tree S

Let A be a member of IRN. We shall associate with A a tree S and we shall investigate how the properties of S are reflected in the structure of A. For the case of l-groups one gets some of Conrad's results [5].

For $p \in V(A)$ consider $\bar{p}=\bigwedge\{x \in A \mid p<x\}$. Thus, for any $c \in \operatorname{Com}(A)$, $p \in \operatorname{Val}(c)$ implies $c \leqslant \bar{p}$. For any $p \in V(A)$ we shall denote $s_{p}=V\{c \in \operatorname{Com}(A) \mid$ $q \in \operatorname{Val}(c) \Rightarrow p \| q\}$.

Lemma 3.1. For $x \in \operatorname{Com}(A)$ and $p \in V(A)$ the following are equivalent:
(1) $x \leqslant s_{p}$;
(2) for any $q \in \operatorname{Val}(x), p \| q$.

Proof. (1) \Rightarrow (2). If $x \leqslant s_{p}$ then $x \leqslant c_{1} \vee \cdots \vee c_{n}$ for some compact elements c_{1}, \ldots, c_{n} such that $p \| q$ for all $q \in \operatorname{Val}\left(c_{i}\right), i=1, \ldots, n$. Let $q \in \operatorname{Val}(x)$; we have $x \nless q$, so $c_{i} \nless q$ for some $i \in\{1, \ldots, n\}$. Thus, $q \leqslant q^{\prime}$ for some $q^{\prime} \in \operatorname{Val}\left(c_{i}\right)$, so $p \| q^{\prime}$. If $p \leqslant q$ then $p \leqslant q^{\prime}$. If $q<p$ then $q \leqslant p, q^{\prime}$ so p, q^{\prime} are comparable since A is a member of IRN. Both cases are impossible, therefore $p \| q$.
(2) \Rightarrow (1). Obvious.

Lemma 3.2. Let $q, q_{1}, \ldots, q_{n} \in V(A)$ be such that $q \| q_{i}, i=1, \ldots, n$. Then there exists $c \in \operatorname{Com}(A)$ such that $c \leqslant \bar{q}, c \nless q$ and $c \leqslant \wedge\left\{s_{q_{i}} / i=1, \ldots, n\right\}$.

Proof. For $p_{1}, p_{2} \in V(A), p_{1} \| p_{2}$ there exist $x, y \in \operatorname{Com}(A)$ such that $x \leqslant \bar{p}_{1}, x \nless p_{1}$ and $y \leqslant p_{2}, y \leqslant p_{1}$. Hence, $z=x \wedge y \in \operatorname{Com}(A), z \leqslant \bar{p}_{1} \wedge p_{2}$ and $z \leqslant p_{1}$.

Using this remark, in our case there exist $a_{i}, b_{i} \in \operatorname{Com}(A)$, such that $a_{i} \leqslant \bar{q} \wedge q_{i}$, $a_{i} 太 q$ and $b_{i} \leqslant \bar{q}_{i} \wedge q, b_{i} \leqslant q_{i}$ for $i=1, \ldots, n$. Denoting $a=\bigwedge\left\{a_{i} / i=1, \ldots, n\right\}$, $b=\bigvee\left\{b_{i} / i=1, \ldots, n\right\}$ we have $a \leqslant \bar{q} \wedge q_{i}, a \leqslant q, b \leqslant q$ and $b \not q_{i}$ for $i=1, \ldots, n$. It is obvious that a, b are incomparable compact elements, so there exist compact elements $0<c \leqslant a, 0<d \leqslant b$ such that $a \vee d=b \vee c=a \vee b$ and $c \wedge d=0$. We have $c \leqslant \bar{q} \wedge q_{i}, i=1, \ldots, n$ and $c \nless q$, because $c \leqslant q$ implies $a \leqslant a \vee b=c \vee b \leqslant q$. Now we shall prove that $c \leqslant s_{q_{i}}, i=1, \ldots, n$, using Lemma 3.1. Suppose the contrary: there is i and $p \in \operatorname{Val}(c)$ such that p, q_{i} are comparable. Two cases are possible:
(1) $q_{i} \leqslant p$, hence $c \leqslant a \leqslant q_{i} \leqslant p$, which contradicts $p \in \operatorname{Val}(c)$;
(2) $p<q_{i}$, hence $d \leqslant p<q_{i}$, because $c \wedge d=0$ and $c \leqslant p$. Thus, $b \leqslant a \vee b=$ $a \vee d \leqslant q_{i}$, which is impossible.

In this way we have proved that c satisfies all the conditions of the lemma.

Theorem 3.3. If $p \in V(A)$ then $s_{p}=\bigvee\left\{c^{*} \mid c \in \operatorname{Com}(A), c \nless p\right\}=\wedge\{m \mid m \in \operatorname{Min} A$, $m \leqslant p\}$.

Proof. The second equality was proved in [9] (see Proposition 4.4). Consider $x \in \operatorname{Com}(A)$ such that $x \leqslant \bigvee\left\{c^{*} \mid c \in \operatorname{Com}(A), c \nless p\right\}$. Thus there exist compact elements c_{1}, \ldots, c_{n} such that $x \leqslant \bigvee\left\{c_{i}^{*} / i=1, \ldots, n\right\}$ and $c_{i} \nless p, i=1, \ldots, n$, hence $d=\wedge\left\{c_{i} / i=1, \ldots, n\right\} \neq p$ and $x \leqslant \vee c_{i}^{*} \leqslant d^{*}$. It follows that $x \wedge d=0$, so $x \leqslant p$ because $d \leqslant p$. Now we shall prove that $x \leqslant s_{p}$ using Lemma 3.1. Let $q \in \operatorname{Val}(x)$, hence $p \leqslant q$, because $p \leqslant q$ implies $x \leqslant p \leqslant q$. If $q<p$ then $d \leqslant q$, because $d \leqslant p$; but $x \wedge d=0$ and $x \nless q$ which contradicts $q \in \operatorname{Spec} A$. Hence, $p \| q$ and we have proved that $\bigvee\left\{c^{*} \mid c \in \operatorname{Com}(A), c \nless p\right\} \leqslant s_{p}$.

Let $x \in \operatorname{Com}(A)$ be such that $q \| p$ for all $q \in \operatorname{Val}(x)$. For any $m \in \operatorname{Min} A$, $m \leqslant p$ implies $x \leqslant m$. Indeed, suppose $m \leqslant p$ and $x \leqslant m$, then there is $q \in \operatorname{Val}(x)$, $m \leqslant q$. Thus, $m \leqslant p, q$ so p, q are comparable, contradiction. Therefore, one gets $s_{p} \leqslant \bigwedge\{m \mid m \in \operatorname{Min} A, m \leqslant p\}$.

Corollary 3.4. For any $p \in V(A), s_{p}^{*}=\bigwedge\left\{c^{* *} \mid c \in \operatorname{Com}(A), c \nless p\right\}$.

Proposition 3.5. Let $p, q \in V(A)$. Then $s_{p} \leqslant q$ iff p, q are comparable.
Proof. If $s_{p} \nless q$ then there is $x \in \operatorname{Com}(A)$ such that $x \leqslant s_{p}$ and $x \nless q$. In accordance with Lemma 3.1, $p \| q^{\prime}$ for any $q^{\prime} \in \operatorname{Val}(x)$. From $x \leqslant q$ one gets $q \leqslant q^{\prime}$ for some $q^{\prime} \in \operatorname{Val}(x)$. It follows that $p \| q$, because if $p \leqslant q$ then $p \leqslant q^{\prime}$ and if $q<p$ then $q \leqslant p, q^{\prime}$. In both cases one contradicts the assumption $p \| q^{\prime}$.

For the converse implication, suppose $p \| q$. By Lemma 3.2 there exists a compact element x such that $x \leqslant \bar{q} \wedge s_{p}, x \nless q$ so $s_{p} \leqslant q$.

Corollary 3.6. Let $p, q \in V(A)$. Then $s_{p} \leqslant q$ iff $s_{q} \leqslant p$.
Corollary 3.7. For any $p \in V(A), s_{p}=\wedge\{q \in V(A) \mid p, q$ are comparable $\}$.

Proof. Denote by u the second member of this equality. If $u \not s_{p}$ there is $c \in \operatorname{Com}(A)$, $c \leqslant u, c \leqslant s_{p}$ so by Lemma 3.1 there is $q \in \operatorname{Val}(c)$ such that p, q are comparable, hence $c \leqslant u \leqslant q$ which contradicts $q \in \operatorname{Val}(c)$. This contradiction shows that $u \leqslant s_{p}$. The converse inequality follows by Proposition 3.5.

Remark. If $p \in V(A)$ then $s_{p} \leqslant p$.
Corollary 3.8. For $p, q \in V(A), p \| q$ iff $s_{p} \| s_{q}$.

Proof. Suppose $s_{p} \leqslant s_{q}$; then using $s_{q} \leqslant q$ we obtain $s_{p} \leqslant q$ and by Proposition $3.5 p, q$ are comparable. If $p \leqslant q$, by Theorem 3.3, one gets $s_{q}=\wedge\{m \in \operatorname{Min} A \mid m \leqslant q\} \leqslant$ $\bigwedge\{m \in \operatorname{Min} A \mid m \leqslant p\}=s_{p}$.

Remark. By the previous corollary, $s_{p}<s_{q}$ implies $q<p$.
Let us denote $S=\left\{s_{p} \mid p \in V(A)\right\}$. From the previous results and the fact that $V(A)$ is a root system it follows that S is a tree.

Proposition 3.9. For $p, q \in V(A)$ the following are equivalent:
(1) $s_{p}=s_{q}$;
(2) For any $r \in V(A), r \| p$ iff $r \| q$;
(3) p, q belong to the same roots of $V(A)$.

Proof. (1) \Rightarrow (2). By Corollary 3.8 we have the following equivalences:
$r \| p$ iff $s_{r} \| s_{p}$ iff $s_{r} \| s_{q}$ iff $r \| q$.
$(2) \Rightarrow(1)$. By Corollary 3.6.
(2) \Rightarrow (3). Assume there is a root U in $V(A)$ such that $p \in U, q \notin U$; so $r \| q$ for some $r \in U$, therefore $r \| p$. This contradicts $p, r \in U$.
(3) \Rightarrow (2). We remark that $p \| r$ iff for any root U in $V(A), p \in U$ implies $r \notin U$.

Proposition 3.10. For $a \in A, a^{*}=\bigwedge\left\{s_{p} \mid p \in V(A), a \nless p\right\}$.
Proof. Suppose $x \in \operatorname{Com}(A), x \leqslant a^{*}$ and $p \in V(A), a \neq p$. By Lemma 1.4 there is $c \in \operatorname{Com}(A), c \leqslant a$ and $p \in \operatorname{Val}(c)$. Thus $x \wedge c=0$ and $c \leqslant p$, so $x \leqslant p$. Assume there is $q \in V(A)$ such that p, q are comparable and $x \nless q$, hence $c \leqslant q$. We remark that $p \leqslant q$ implies $x \leqslant q$ and $q<p$ implies $c<p$. In both cases we obtain a contradiction, so if p, q are comparable then $x \leqslant q$. This yields $x \leqslant \Lambda\{q \in V(A) \mid p, q$ are comparable $\}=$ s_{p}, therefore $x \leqslant \bigwedge\left\{s_{p} \mid p \in V(A), a \nless p\right\}$. We have proved that $a^{*} \leqslant \bigwedge\left\{s_{p} \mid p \in V(A)\right.$, $a \leqslant p\}$.

For the converse inequality, consider a compact element x such that $x \leqslant \bigwedge\left\{s_{p} \mid p \in V(A), a \leqslant p\right\}$. Note first that if c is a compact element satisfying $c \leqslant a, p \in \operatorname{Val}(c)$ and $q \in \operatorname{Val}(x)$, then $a \nless p$ because $c \nless p$, so $x \leqslant s_{p}$, hence in accordance with Lemma 3.1 one gets $p \| q$. Now if $x \wedge a \neq 0$, then $c \leqslant x \wedge a$ for some $c \in \operatorname{Com}(A)-\{0\}$, hence there is $p \in \operatorname{Val}(c)$, so $x \wedge a \leqslant p$. It follows that $x \neq p$, so there is $q \in \operatorname{Val}(x), p \leqslant q$. This contradicts the previous remark, so $x \wedge a=0$, hence $x \leqslant a^{*}$.

Corollary 3.11. For any $p \in V(A)$ we have $s_{p}^{*}=\bigwedge\left\{s_{q} \mid q \in V(A), q \| p\right\}$.
Proof. From Propositions 3.10 and 3.5, one can infer

$$
s_{p}^{*}=\bigwedge\left\{s_{q} \mid q \in V(A), s_{p} \leqslant q\right\}=\bigwedge\left\{s_{q} \mid q \in V(A), q \| p\right\} .
$$

Corollary 3.12. If $\operatorname{Val}(c)=\{p\}$ then $s_{p}=c^{*}$.

Proof. By Proposition 3.10 we have $c^{*}=\bigwedge\left\{s_{q} \mid q \in V(A), c \leqslant q\right\}$. If $q \in V(A), c \nless q$, since $\operatorname{Val}(c)=\{p\}$, then $q \leqslant p$. In accordance with Theorem 3.3, $s_{p} \leqslant s_{q}$, therefore $c^{*}=s_{p} . \quad \square$

Proposition 3.13. If $p \in V(A)$ then the following equality holds:

$$
\bar{p} \wedge s_{p}^{*}=\bigvee\{c \in \operatorname{Com}(A) \mid \operatorname{Val}(c) \subseteq(p]\}
$$

Proof. Assume $c \in \operatorname{Com}(A)$ such that $\operatorname{Val}(c) \subseteq(p]$. Consider $q \in V(A)$ such that $q \| p$. We shall prove that $r \| q$ for any $r \in \operatorname{Val}(c)$. Suppose there is $r \in \operatorname{Val}(c)$ such that r, q are comparable. Thus $r \leqslant p$ and two cases are possible:
(a) $r \leqslant q$; then $r \leqslant p, q$ so p, q are comparable;
(b) $q<r$; then $q<p$.

It follows a contradiction in both cases, so $r \in \operatorname{Val}(c)$ implies $r \| q$, hence $c \leqslant s_{q}$. This yields $c \leqslant \bigwedge\left\{s_{q} \mid q \in V(A), q \| p\right\}=s_{p}^{*}$. If $c \neq 0$ then there is $q \in \operatorname{Val}(c)$, so $q \leqslant p$, hence $c \leqslant \bar{q} \leqslant \bar{p}$.

For the converse inequality let c be a compact element such that $c \leqslant \bar{p} \wedge s_{p}^{*}$. Suppose there is $q \in \operatorname{Val}(c), q \nless p$. If $p<q$, then since $c \leqslant \bar{p}$ it follows that $c \leqslant q$, which contradicts $q \in \operatorname{Val}(c)$. Hence, $p \nless q$, so $p \| q$. From $c \leqslant s_{p}^{*}=\bigwedge\left\{s_{r} \mid r \in V(A), r \| p\right\}$ and $p \| q$ one deduces, via the remark after Corollary 3.7, that $c \leqslant s_{q} \leqslant q$. This contradiction shows that $\operatorname{Val}(c) \subseteq(p]$.

Lemma 3.14. For $p, q \in V(A), s_{p}<s_{q}$ iff $q<p$ and there exists $r \in V(A)$ such that $r<p$ and $r \| q$.

Proof. Suppose $s_{p}<s_{q}$, hence $q<p$ by the remark after Corollary 3.8, and there is $x \in \operatorname{Com}(A)$ such that $x \leqslant s_{q}$ and $x \$ s_{p}$. Using Lemma 3.1, p is comparable with some value r of x. Applying again that lemma, for $r \in \operatorname{Val}(x)$ we infer that $r \| q$. If $p \leqslant r$ then $q<r$ which is not possible, therefore $r<p$.

Assume $q, r<p$ and $r \| q$, so $s_{p} \leqslant s_{q} \wedge s_{r} \leqslant s_{q}$. If $s_{q} \wedge s_{r}=s_{q}$ then we obtain $s_{q} \leqslant s_{r}$, so, by Corollary 3.7, q and r are comparable. This contradiction shows that $s_{p}<s_{q}$.

Theorem 3.15. For $p \in V(A)$ the following are equivalent:
(1) s_{p} is maximal in S;
(2) $s_{p} \in \operatorname{Spec} A$;
(3) $s_{p} \in \operatorname{Min} A$;
(4) $(p] \cap V(A)$ is a chain;
(5) p is contained in a unique root of $V(A)$;
(6) p exceeds a unique element of $\operatorname{Min} A$.

Proof. It is obvious that (3) $\Rightarrow(2)$ and $(4) \Leftrightarrow(5) \Leftrightarrow(6)$.
$(1) \Rightarrow(4)$. Assume there exists $q, r \in(p] \cap V(A)$ such that $q \| r$. In accordance with Lemma 3.14, $s_{p}<s_{q}$ which contradicts the maximality of s_{p} in S.
(4) \Rightarrow (3). If m_{0} is the unique element of $\operatorname{Min} A$ such that $m_{0} \leqslant p$ then, by Theorem 3.3, $s_{p}=\wedge\{m \in \operatorname{Min} A \mid m \leqslant p\}=m_{0}$.
(2) \Rightarrow (1). Suppose $s_{p}<s_{q}$, then $q, r<p$ for some $r \| q$. By Lemma 3.2 there exist compact elements x, y such that $x \leqslant \bar{q} \wedge r, x \leqslant q$ and $y \leq \bar{r} \wedge q, y \nless r$. It is obvious that $x \| y$; then by Lemma 1.1 there exist compact elements $0<c \leqslant x, 0<d \leqslant y$ such that $x \vee d=y \vee c=x \vee y$ and $c \wedge d=0$. From this one gets $c \leqslant \bar{q}, c \nless q, d \leqslant \bar{r}, d \nless r$ (by example, $c \leqslant q$ implies $x \vee y=y \vee c \leqslant q$ so $x \leqslant q$, contradiction). Then $q \in \operatorname{Val}(c)$ and $r \in \operatorname{Val}(d)$. Since, $q \in \operatorname{Val}(c)$ and $q<p$ we have by Lemma 3.1, $c \nless s_{p}$ and similarly $d \not s_{p}$. But this contradicts $s_{p} \in \operatorname{Spec} A$ and $c \wedge d=0$. Hence, s_{p} is maximal in S.

Corollary 3.16. Let $c \in \operatorname{Com} A$ such that $\operatorname{Val}(c)=\{p\}$. Then s_{p} is maximal in S iff c is linear.

Proof. By Proposition 4.2 [12], c is linear iff $c^{*} \in \operatorname{Min} A$. In accordance with Corollary $3.12, s_{p}=c^{*}$ so, by the previous theorem, s_{p} is maximal in S iff c is linear.

Lemma 3.17. For $p, q_{1}, \ldots, q_{n} \in V(A), \bigwedge\left\{s_{q_{i}} / i=1, \ldots, n\right\} \leqslant p$ iff p is comparable with some q_{i}.

Proof. If p is comparable with some q_{i} then, by Proposition $3.5, s_{q_{i}} \leqslant p$, hence $\bigwedge\left\{s_{q_{i}} \mid i=1, \ldots, n\right\} \leqslant p$. In order to prove the converse implication one can assume that q_{1}, \ldots, q_{n} are pairwise incomparable. Suppose that $p \| q_{i}$ for $i=1, \ldots, n$. By Lemma 3.2 there is a compact element c such that $c \$ p$ and $c \leqslant \bar{p} \wedge \wedge\left\{s_{q_{i}} \mid i=1, \ldots, n\right\}$, so $\wedge\left\{s_{q_{i}} / i=1, \ldots, n\right\} \nless p$.

Remark. $\wedge V(A)=0$, otherwise $c \leqslant \wedge V(A)$ for some $c \in \operatorname{Com}(A)-\{0\}$, implying $c \leqslant p$, for any $p \in V(A)$, which contradicts the fact that c does have values. It follows easily that $\wedge \operatorname{Min} A=0$.

Theorem 3.18. If $q_{1}, \ldots, q_{n} \in V(A)$ are pairwise incomparable then the following are equivalent:
(1) $\wedge\left\{s_{q_{i}} / i=1, \ldots, n\right\}=0$;
(2) $\left\{q_{1}, \ldots, q_{n}\right\}$ is a maximal set of pairwise incomparable elements in $V(A)$;
(3) If U is a root in $V(A)$ then $q_{i} \in U$ for some $i \in\{1, \ldots, n\}$;
(4) If $m \in \operatorname{Min} A$ then $s_{q_{i}} \leqslant m$ for some $i \in\{1, \ldots, n\}$.

Proof. (1) \Rightarrow (2). By the previous lemma.
(2) \Rightarrow (3). Assume that U is a root of $V(A)$ and $q_{i} \notin U$ for any $i=1, \ldots, n$. Consider $p_{1} \in U$; so there is $q_{i 1}$ comparable with p_{1}, hence $q_{i 1}<p_{1}$, because $p_{1} \leqslant q_{i 1}$ implies
$q_{i 1} \in U$. But U is a root so there is $p_{2} \in U$ such that $p_{2}<p_{1}$ and $q_{i 1} \| p_{2}$. In this way, one can obtain a sequence $q_{i 1}, q_{i 2}, \ldots, q_{i k}, \ldots$ and $p_{1}>p_{2}>\cdots>p_{k}>\cdots$ such that $q_{i k} \| p_{k+1}$ and $q_{i k}<p_{k}$ for each k. Since $\left\{q_{1}, \ldots, q_{n}\right\}$ is finite there is $l<k$ such that $q_{i k}=q_{i l}$. Thus, $q_{i k}<p_{k}<\cdots<p_{l+1}$, hence $q_{i l}<p_{t+1}$. We have obtained a contradiction, so U contains one of the q_{i}.
(3) \Rightarrow (4). If $m \in \operatorname{Min} A$ then $U=\{q \in V(A) \mid m \leqslant q\}$ is a root of $V(A)$. By hypothesis, there exists $q_{i} \in U$ so $m \leqslant q_{i}$, therefore $s_{q_{i}}=\wedge\left\{k \in \operatorname{Min} A \mid k \leqslant q_{i}\right\} \leqslant m$.
(4) \Rightarrow (1). For any $m \in \operatorname{Min} A$ there exists q_{i} such that $s_{q_{i}} \leqslant m$ so $\wedge\left\{s_{q_{i}} / i=1, \ldots, n\right\} \leqslant \wedge \operatorname{Min} A=0$.

Remarks. (1) An element $c \in A$ is completely join-prime iff c has a unique value (see [10]).
(2) Let $\left\{c_{1}, \ldots, c_{n}\right\}$ be a finite set of completely join-prime elements in A, $\operatorname{Val}\left(c_{i}\right)=\left\{q_{i}\right\} \quad i=1, \ldots, n$. If c_{1}, \ldots, c_{n} are pairwise orthogonal then q_{1}, \ldots, q_{n} are pairwise incomparable. Indeed, $c_{i} \wedge c_{j}=0$ and $c_{j} \leqslant q_{j}$ imply $c_{i} \leqslant q_{j}$, hence if $q_{j}<q_{i}$ then $c_{i}<q_{i}$, a contradiction.

Theorem 3.19. Let A be a member of IRN. The following statements are equivalent:
(1) There exists a maximal finite set of pairwise incomparable elements of $V(A)$;
(2) There exists a finite subset S^{\prime} of S such that $\wedge S^{\prime}=0$;
(3) There exists a finite set of completely join-prime elements of A, which is maximal orthogonal;
(4) Any set of pairwise disjoint roots of $V(A)$ is finite.

Proof. (1) \Rightarrow (3). Let $\left\{q_{1}, \ldots, q_{n}\right\}$ be a maximal set of pairwise incomparable elements in $V(A)$. By Lemma 3.2 , there is a compact element $c_{1} * q_{1}$, and $c_{1} \leqslant \bar{q}_{1} \wedge s_{q_{i}}$, $i=2, \ldots, n$, so $q_{1} \in \operatorname{Val}\left(c_{1}\right)$. Suppose there is a $p \in \operatorname{Val}\left(c_{1}\right), p \neq q_{1}$ so $p \| q_{1}$. By the maximality of $\left\{q_{1}, \ldots, q_{n}\right\}, p$ is comparable with q_{i} for some $i \in\{2, \ldots, n\}$, so $c_{1} \leqslant s_{q_{i}}$, using Lemma 3.1. This contradiction shows that $\operatorname{Val}\left(c_{1}\right)=\left\{q_{1}\right\}$. In this way one can obtain the completely join-prime elements c_{1}, \ldots, c_{n} such that $\operatorname{Val}\left(c_{i}\right)=\left\{q_{i}\right\}$, $i=1, \ldots, n$. We shall prove that $\left\{c_{1}, \ldots, c_{n}\right\}$ is a maximal orthogonal set. Note first that c_{1}, \ldots, c_{n} are pairwise incomparable: by example if $c_{1} \leqslant c_{2}$ then $c_{1} \leqslant \bar{q}_{2} \wedge s_{q_{1}} \leqslant s_{q_{1}} \leqslant q_{1}$, contradiction. By [10, Lemma 2.3] it follows that $\left\{c_{1}, \ldots, c_{n}\right\}$ is orthogonal. Assume $c \wedge c_{i}=0$ for any $i=1, \ldots, n$, where $c \in \operatorname{Com}(A)$. If $c \neq 0$ there is $p \in \operatorname{Val}(c)$, so $c_{i} \leqslant p$ for any $i=1, \ldots, n$. This yields $p \| q_{i}, i=1, \ldots, n$. Indeed, $p \leqslant q_{i}$ implies $c_{i} \leqslant q_{i}$ and $q_{i}<p$ implies $c \nless q_{i}$, so $c_{i} \leqslant q_{i}$, because $c \wedge c_{i}=0$ and q_{i} is meet-prime. Our conclusion that $p \| q_{i}, i=1, \ldots, n$ contradicts the maximality of $\left\{q_{1}, \ldots, q_{n}\right\}$, hence $c=0$.
(3) \Rightarrow (1). Suppose $\left\{c_{1}, \ldots, c_{n}\right\}$ is maximal orthogonal and $\operatorname{Val}\left(c_{i}\right)=\left\{q_{i}\right\}, i=1, \ldots, n$. Using the previous remark q_{1}, \ldots, q_{n} are pairwise incomparable. Assume there exists $p \in V(A)$ such that the elements of the set $\left\{p, q_{1}, \ldots, q_{n}\right\}$ are pairwise incomparable. By Lemma 3.2 there exists a compact element $c \leqslant \bar{p} \wedge s_{q_{i}}, i=1, \ldots, n$ and $c \neq p$, so $p \in \operatorname{Val}(c)$. We shall prove that the set $\left\{c, c_{1}, \ldots, c_{n}\right\}$ is orthogonal. If $c \wedge c_{i} \neq 0$ for
some i, there is $q \in \operatorname{Val}\left(c \wedge c_{i}\right)$, so $c \neq q$ and $c_{i} \neq q$. But $\operatorname{Val}\left(c_{i}\right)=\left\{q_{i}\right\}$, therefore $c \leqslant s_{q_{i}}=\bigwedge\left\{r \in V(A) \mid r, q_{i}\right.$ are comparable $\} \leqslant q$. This contradiction shows that $\left\{c, c_{1}, \ldots, c_{n}\right\}$ is orthogonal and this contradicts the hypothesis. It follows that $\left\{q_{1}, \ldots, q_{n}\right\}$ is a maximal set of pairwise incomparable elements in $V(A)$.

The rest of the proof follows by Theorem 3.8.

Corollary 3.20. Let A be a member of IRN. The following are equivalent:
(1) A has a finite basis;
(2) There exists a finite set $S^{\prime} \subseteq S$ of maximal elements in S, such that $\wedge S^{\prime}=0$;
(3) S is finite;
(4) $V(A)$ has a finite number of roots.

Proof. (1) \Rightarrow (2). Let $\left\{c_{1}, \ldots, c_{n}\right\}$ be a finite basis of A. One can suppose c_{1}, \ldots, c_{n} are completely join-prime (see [12], Corollary 4.4). If $\operatorname{Val}\left(c_{i}\right)=\left\{q_{i}\right\}, i=1, \ldots, n$ then by Corollary 3.16, $s_{q_{i}}$ are maximal in S for $i=1, \ldots, n$. In accordance with Theorem 3.18 we have $\wedge\left\{s_{q_{i}} / i=1, \ldots, n\right\}=0$.
(2) \Rightarrow (4). If $S^{\prime}=\left\{s_{q_{1}}, \ldots, s_{q_{n}}\right\}$ then, by Theorem 3.18 , for any root U of $V(A)$ there exists some $q_{i} \in U$. By Theorem 3.15, every q_{i} is contained in a unique root, so $V(A)$ has a finite number of roots.
(4) \Rightarrow (3). Denote by U_{1}, \ldots, U_{n} the roots in $V(A)$. For any subset I of $\{1, \ldots, n\}$ denote by \sum_{I} the set of $p \in V(A)$ such that $\left\{U_{i} \mid i \in I\right\}$ is the set of roots in $V(A)$ which contain p. In accordance with Proposition 3.9, $s_{p}=s_{q}$ for any $p, q \in \sum_{I}$, so one can denote by s_{I} the common value of s_{p} for $p \in \sum_{I}$. Thus $S=\left\{s_{I} \mid I \subseteq\{1, \ldots, n\}\right\}$ and S is finite.
(3) \Rightarrow (1). Let S^{\prime} be the maximal elements in S, say $S^{\prime}=\left\{s_{q_{1}}, \ldots, s_{q_{n}}\right\}$. For $p \in V(A)$ we have two cases:
(i) $s_{p} \in S^{\prime}$; hence $\wedge S^{\prime} \leqslant s_{p} \leqslant p$;
(ii) $s_{p} \in S-S^{\prime} ; S$ being finite there is $s_{q_{i}} \in S^{\prime}$ such that $s_{p}<s_{q_{i}}$, hence $q_{i}<p$. We obtain $\wedge S^{\prime} \leqslant s_{q_{i}} \leqslant q_{i}<p$. So, for every $p \in V(A), \wedge S^{\prime} \leqslant p$, then $\wedge S^{\prime} \leqslant \wedge V(A)=0$, i.e. $\wedge S^{\prime}=0$. Because $\left\{q_{1}, \ldots, q_{n}\right\}$ are pairwise incomparable elements of $V(A)$, using Theorem 3.18, $\left\{q_{1}, \ldots, q_{n}\right\}$ is a maximal set of pairwise incomparable elements of $V(A)$. By Theorem 3.19, there is the set $\left\{c_{1}, \ldots, c_{n}\right\}$ which is maximal orthogonal and $c_{i}, i=1, \ldots, n$ are completely join-prime. Because $\operatorname{Val}\left(c_{i}\right)=\left\{q_{i}\right\}$, using Corollary 3.16, c_{i} are linear elements, so A has a finite basis.

Remark. The equivalence of (1) and (4) there was proved firstly in [12].

Acknowledgements

The authors wish to express their gratitude to Professor Sergiu Rudeanu for his advice in the writing of the final version of this paper.

References

[1] M. Anderson and T. Feil, Lattice-ordered groups (Reidel, Dordrecht, Holland, 1988).
[2] A. Bigard, K. Keimal and S. Wolfenstein, Groupes et anneaux réticulés (Springer, Berlin, 1977).
[3] C.C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc., 88 (1958) 456-490.
[4] P. Conrad, Lattice Ordered Groups (Tulane University, 1970).
[5] P. Conrad, The structure of an l-group that is determined by its minimal prime subgroups, in: A.M.W. Glass and W. Ch. Holland, eds., Ordered Groups Lectures Note in Pures and Applied Math., vol. 62 (M. Dekker, New York, 1980).
[6] P. Crawley and R.P. Dilworth, Algebraic Theory of Lattices (Prentice-Hall, Englewood Cliffs, NJ, 1978).
[7] A. DiNola, G. Georgescu and S. Sessa, Closed ideals of MV-algebras, preprint.
[8] J.B. Hart and C. Tsinakis, Decomposition for relatively normal lattices, Trans. Amer. Math. Soc., to appear.
[9] K. Iseki and S. Tanaka, Ideal theory of BCK-algebras, Math. Japan 21 (1976) 351-366.
[10] K. Keimel, A unified theory of minimal prime ideals, Acta Math. Acad. So. Hungaricae (1-2), 23 (1972) 51-69.
[11] J.T. Snodgrass and C. Tsinakis, Finite-valued algebraic lattices, Algebra Universalis 30 (1993) 311-319.
[12] J.T. Snodgrass and C. Tsinakis, The finite basis theorem for relatively normal lattices, Algebra Universalis, to appear.

[^0]: * Corresponding author.

