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Abstract 

In [8, 11, 12] the class IRN was introduced in order to obtain the lattice-theoretic analogues 
of some results of Conrad (see e.g. [4]). The aim of these paper is to provide other useful 
constructions in the study of the structure of relatively normal lattices. The introduced notions 
and results are purely lattice-theoretic extensions of notions and results for lattice-ordered 
groups [2, 4, 5]. In the second section, the notion of plenary set of a member of the class IRN is 
introduced and the characterization of maximal plenary sets is given, extending a well-known 
theorem in/-groups. In the third section with any lattice in IRN is associated a tree and we 
investigate how the properties of this tree are reflected in the structure of the lattice. For the case 
of/-groups, one gets some of Conrad's results in [5]. 

1. Preliminaries 

In this section we review some relevant concepts. For  notions not  defined here, we 

refer the reader to I-6, 11]. 

Let A be an algebraic, distributive lattice with least element 0 and greatest 

element 1 and Com(A) the join-subsemilattice of compact  elements of A. 

An element p < 1 is meet-irreducible i fp = x A y implies p = x or  p = y; an element 

p < 1 is meet-prime if x ^ y ~< p implies x ~< p or y ~< p. These definitions can be 
extended to arbi t rary meets and we obtain the concepts of  completely meet-irreducible 
and meet completely-prime elements. The dual notions of join-irreducible, join-prime, 
completely join-irreducible and completely join-prime elements are defined dually. 

In an algebraic lattice every element is the meet of a set of completely meet- 

irreducible elements [6]. 

A value of a compact  element c of  A is an element p e A which is maximal  with 

respect to not  exceeding c [11]. For  any c ~ Com(A) we shall denote by Val(c) the set 
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of values of c. V(A) will denote the set of the values in A. Thus, V(A) is exactly the set 
of completely meet-irreducible elements in A, so every element of A is a meet of a set of 
values. 

In [11] there was proved that an element is completely join-prime iff it is compact 
and has a unique value; an element is completely meet-prime iff it is the unique value 
of a compact element. 

A root-system is a poset (P, ~<) for which the principal order filter 
[p) = {x • PIP <~ x} is a chain for all p • P. A root is a maximal chain in (P, ~<). 
We shall denote by IRN the class of the algebraic, distributive lattices A such that 
Com(A) is a sublattice of A and the meet-primes element in A form a root system (see 

[11,121). 

Lemma 1.1 (Snodgrass and Tsinakis [11]). For an algebraic, distributive lattice 

A such that Corn(A) is a sublattice of A, the following are equivalent: 

(1) A is a member of IRN; 
(2) For all c, d • Corn(A) there exist c',d' • Com(A) such that c v d' = c' v d = 

c v d a n d c '  A d ' = O .  

We remark that if c, d, c', d' are as in (2), then c' ~< c, d' ~< d. Further if c and d are 
incomparable, then 0 < c', d'. 

Remark. If G is an/-group then the set C(G) of all its convex/-subgroups is a member 
of IRN (see [2,4]). The set of the ideals in a relatively normal lattice, in an MV- 
algebra [3] or in a bounded commutative BCK-algebra [91 is also a member of IRN. 
Thus, the results of this paper can be applied for all these cases. 

Throughout this paper A will denote a member of IRN. 
An element x ~ 0 is linear if (x] = {y • A I Y ~< x} is a chain. If a ~< b, then we shall 

say that b is an ordinal extension of a if (b] - (a] is a chain and every element of 
(b] - (a] exceeds a. An ordinal element is a proper ordinal extension of some element. 
All these notions are defined in [12] as natural extensions of some notions in/-groups 
[1, 2, 4]. We remark that a linear element is also an ordinal element and a non-zero 
compact element below a linear element is completely join-prime [12]. 

For  x • A we shall denote by x* the pseudo-complement of x in A. The set of 
meet-prime elements of A will be denoted by SpecA and the set of minimal meet- 
prime elements of A by Min A. 

For  any a • A ,  ( a ] = { x • A I x ~ < a }  is a member of IRN and C o m ( a ] =  
Com(A)n(a]  (see [12]). It is easy to prove that for a • A  the mapping 
tp : {p • Spec A I a ~p} ~ Spec(a] defined by ~0(p) = p ^ a is an order preserving bijec- 
tion and its inverse, given by ~0-1 (q) = a ~ q, is also order preserving. 

Lemma 1.2. Let c • Com(a]. Then m e Val(c)/fro(m) • Valt,l(c), where Valt, l(c ) is the 

set of values of c in (a]. 
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Proof. Suppose m •  Val(c); then m •  SpecA and a ~ m ,  so we can compute tp(m). 
Since, c ~ m ^  a there exists k•Vall ,](c) such that m ^  a ~< k. First note that 
c ~ tp- 1 (k) since otherwise c ^ a ~< k, c ~ k imply a ~< k, contradicting c ~ k. Thus, 
m ~< ¢p- l(k), c ~ cp- l(k) and m • Val(c) imply m = ~p- l(k), that is ~p (m) = k • Valt,l(c ). 

We next assume k • Valt,l(c ) and we shall establish that tp-l(k) • Val(c). It follows 
that c ~ tp- 1 (k) since otherwise c ^ a ~< k and c ~ k imply a ~< k, contradiction. Hence 
there exist m • Val(c) such that ~p-l(k) ~< m; then k ~< ¢p(m), c ~ ~p(m) and k • Valt,](c) 
imply k = ~p(m), so ~p-l(k) = m e Val(c). [] 

Remark. The mapping ~p realizes an order preserving bijection between Val(c) and 

Val~,l(c ), for any c • Com(a]. 

Lemma 1.3. The mapping ~p induces an order preserving bijection between 

{ p •  V ( A ) I a  ¢~p} and V((a]). 

Proof. Suppose m • V(A), a ~ m  and we establish that tp(m)• V((a]). Since a ~m  
there exist a compact y such that y ~< a, y ~m and because m • V(A) there exists 
a compact x such that m•Val(x) .  Then x ^ y  is a compact, x ^ y ~ m  and 
m • Val(x A y), since for m < n we obtain x ~< n, using m • Val(x), so x A y ~< n. Using 
Lemma 1.2 it follows that ~p(m) • Valt,](x ^ y) c V((a]). 

Conversely, for k • V((a]) there exist a compact x ~< a such that k • Val(al(x), hence 
~o- 1 (k) • Val(x) using Lemma 1.2. []  

Lemma 1.4. Let  a • A and p • V(A). Then a ~ p  iff there exists c • Com(A) such that 

c <~ a and p • Val(c). 

Proof. Using Lemmas 1.2 and 1.3, for any p • V(A), the following equivalences hold: 
a ~ p  iff ~o(p) • V((a]) iff ¢p(p) • Valt,l(c ) for some c • Com(a] iff p • Val(c) for some 
compact element c ~< a. [] 

2. Minimal plenary sets 

Definition 2.1. A nonempty subset D of V(A) will be called a plenary set of A if the 
following conditions are satisfied: 

(1) AD = 0, 
(2) I f p • D , q • V ( A ) , p < ~ q t h e n q • D .  

This notion extends a notion in/-groups (see [2,4]). Condition (2) of the previous 
definition can be stated: D is an increasing subset (or an order-filter) of V(A). The main 
result of this section is the characterization of minimal plenary sets of A, extending 
a well-known theorem in/-groups [2,4]. 
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By Zorn 's  lemma, for any nonzero  compact  element c E A, the set D(c) = D oVal (c )  
is nonempty.  

If  a, b ~ A are incomparable  we shall write a II b. 

Lemma 2.2. I f  q, ql, ... ,qn ~ A are such that q is meet-prime and qllq~ for  i = 1 . . . . .  n, 
then there exist two compact elements c ,d such that c <~ q, c ~q~ for  i = 1, ... ,n, d ~q ,  

d <~ A { q i / i  = 1 . . . .  ,n} and c/x d = O. 

Proof. We can find compact  elements xl, Yi such that xi <~ q, xi 4~ qi and Yi <~ qi, Yl ~ q 
for i = 1 . . . .  ,n. Denot ing  x = V { x , / i  = 1, ... ,n} and y = A { y , / i  = 1 . . . . .  n} we have 

x ~< q, y ~ q and x ¢~ qi, y <~ qi for any i = 1 . . . .  , n. Since, x and y are incomparable,  

using L e m m a  1.1, there exist two compact  elements c and d such that  

c v y = d v x = x v y ,  c ^ d = 0 a n d 0 ~ < c ~ < x ,  0 < d ~ < y .  I t i s  obvious that  c~<q  

and d <~ A { q i / i  = 1 . . . .  ,n}. I f c  ~< qi for some i, then x <~ d v x = c v y <~ qi, contra-  
diction. Similarly, one can verify that  d ~q .  [ ]  

Lemma 2.3. I f  D is a plenary set in A, x ~ C o m ( A )  and D(x) is finite then 
O(x) = Val(x). 

Proof.  Let D ( x ) =  {ql,-- .  ,q,} and q ~ Val(x). Suppose q CD, then q, ql, . - - ,q ,  are 

pairwise incomparable  meet-prime elements in A, so one can find two compac t  

elements c, d as in the previous lemma. Since d ~ q, x ~ q it follows that  d ^ x ~ q, so 

d ^ x ¢ 0, hence there exists an element Po e D(d/x  x). Thus x ~Po,  so there is 

p ~ D(x) such that  Po ~< P, therefore p = qi for some i ~ {1 . . . . .  n}. Hence, c ~P0 and 

d/x x ~ Po. But Po is meet-prime and c ^ d ^ x = 0, contradiction; so q ~ D. [ ]  

L e m m a  2.4. Let  D be a plenary set in A, x ~ Corn(A) - {0} and p ~ V(A) such that 

VD(x) <<. p. Then p ~ D and VVal(x) ~< p. 

Proof.  It is obvious that  p ~ D, because D(x) :/: 0 and D is plenary set. If p ~ Val(x) 

then p ~ D(x) therefore, using the hypothesis VD(x)  ~< p, it follows that  D(x) = {p} 

and by Lemma 2.3, Val(x) = {p}. 

Suppose p CVal(x) and q ~ p  for some q ~ Val(x). If x ~ p  there is Po ~ D(x) such 

that p < P0, hence p = Po, which contradicts  p~Val(x). Thus, x ~< p. Since, q ~ p  

there exists f ~  Com(A), f~< q and f¢~p .  By Lemma 1.1, c v f =  d v x = f v  x and 

c/x d = 0 for two compact  elements c ~< x, d ~<f. I f c  = 0 then f =  d v x so x ~<f~< q 
which contradicts q ~ Val(x). Thus, c ~ 0 and there is m ~ D(c). We shall consider 

two cases: 
(a) m~<p; since c K m  and c ^ d = 0 ,  one gets d~<m~<p ,  so c v f = d v x ~ < p ,  

which contradicts f ~ p .  
(b) m ~ p .  If  x ~ m  then there is m o ~ D ( x ) ,  m <~ mo, so by the hypothesis  

VD(x) ~< p, we have mo ~< p, which contradicts  m ~ p .  If  x ~< m, then c ~< m, which 
contradicts m ~ Val(c). 
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In bo th  cases we have obta ined  a contradict ion,  therefore q ~< p for any 

q ~ V a l ( x ) .  [ ]  

For  any nonzero compact  dement  x let us denote rx = VVal(x). We shall say that 
p ~ V(A) is essential if there is x ~ Com(A) - {0} such that rx ~< p. If p is completely 
meet-prime then there is e e Com(A) - {0} such that Val(c) = {p}, therefore p is essential. 

Let  us denote  by E(A) the set of essential values in A and r ( A ) =  

A{rx Ix z Com(A)  - {0} }. 

L e m m a  2.5. l f  D is a plenary set in A then E(A) ~_ D. 

Proof.  If p ~ E(A) then rx ~< p for some x ~ Corn(A)-{0}. But A D = 0 so x ~ q  for 
some q ~ D. Thus  q ~< q' for some q' ~ Val(x), hence q' ~< p, so p ~ D. [ ]  

Theorem 2.6. For any plenary set D in A the following are equivalent: 

(1) D is a minimal plenary set in A; 

(2) D = E(A); 

(3) D is the least plenary set in A. 

Proof.  (1)=*(2). By L e m m a  2.4, it suffices to prove  that  for any d ~ D  there is 

x ~ Corn(A) - {0} such that  VD(x)  ~< d. Suppose,  for a p roof  by contradict ion,  there 
is d • D such that  for any x ~ Com(A)  - {0} there exists q~ e D(x), qx ~d .  Consider  the 
following set: D' -= D - {p ~ V(A) Ip <<. d}. Thus, q~ ~ D' for any x ~ Com(A) - {0}. If 

A D'  # 0 then there is a e Com(A)  - {0} such that  a ~< p for any p ~ D', in part icular ,  

a ~< qa which contradicts  qa ~ Val(a). I t  follows that  A D'  = 0 and D'  being increasing 
one gets that  D' is a p lenary set in A, D' _c D and D'  # D, because d ~ D - D', which 
contradic ts  the minimal i ty  of  D. 

(2) =* (1). By L e m m a  2.5. 
(1) ¢:-(3). By (1) =*(2) and L e m m a  2.5. [ ]  

We shall say that  A is finite-valued [11] if Val(x) is finite for any x ~ Corn(A). [ ]  

Proposition 2.7. (1) r(A) = AE(A).  
(2) For c ~ Com(A),  c <~ r(A) iff c has no essential values. 

(3) I f  A is finite-valued then r(A) = O. 

Proof.  (1) Let  us consider c e C o m ( A )  such that  c ~ A { r x l x ~ C o m ( A ) - { 0 } }  so 
there is x e Com(A)  - {0} such that  c ~ r x  = VVal(x) .  Hence  there is m ~ Val(c) such 

that  rx ~< m, so c ~ m  and m ~ E(A). This yields r(A) ~> AE(A).  On  the other  hand,  
for any p e E ( A )  there is x ( p ) ~ C o m ( A ) - { 0 }  such that  rxtv~ <<.P, therefore 

r(A) <~ A{r~,v)lp ~ E(A)} ~< AE(A). 
(2) In the light of  (1), for c ¢ Com(A)  we have the following equivalences: 

c <~ r(A) ¢~c <~ p, for any p z E(A) o c  has no essential values. 
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(3) In accordance with Lemma 2.3 [11], the values of any nonzero compact element 
are completely meet-prime, so they are essential. By (2) one gets r(A) = O. [] 

Corollary 2.8. The followin# conditions are equivalent: 
(1) E(A) is a plenary set in A; 
(2) There exists a minimal plenary set in A; 
(3) There exists the least plenary set in A; 
(4) r(A) = O. 

Proof. By Theorem 2.6 and Proposition 2.7, since E(A) is an increasing set 
in V(A). [] 

Proposition 2.9. The followin# assertions are equivalent: 
(1) A is finite-valued; 
(2) A is completely distributive. 

Proof. (1) =~ (2). Denoting a = V{A(xul j ~ J) li e I} and b = A{ V(xift,)li ~ I) l f e  J '}  
we always have a ~< b. For  the converse inequality it suffices to prove that if p ~ V(A), 
a ~< p then b ~< p, because any element in A is a meet of values. By Lemma 2.3 [11] p is 
completely meet-prime, hence for i t  I there exists f ( i ) ~  J such that xiyt0 ~< p, so 

b ~< V(xiyu) l i ~ I )  ~< p. 
(2) =~ (1). By Lemma 2.3 [11] it suffices to prove that any p ~ V(A) is completely 

meet-prime. If A{x~l i~  I} <~ p then, since A is completely distributive, we obtain 
p = p v (A {x~[i ~ 1} =/~ {p v xi[i e I }. But p is completely meet-irreducible, hence 
p = p v x ~ f o r s o m e i ~ I ,  t h a t i s x ~ < p f o r s o m e i ~ I .  []  

Corollary 2.10. I r A  is completely distributive then r(A) = O. 

Proof. By Propositions 2.9 and 2.7. []  

Proposition 2.11. r(A) <~ /~ {c*lc ~ Corn(A), c linear element}. 

Proof. Let x e Com(A) such that x <<, r(A). For any linear compact element c we have 
Val(c) = {m} for some m e V(A), using Lemma 3.1 112]. Then x ~< m and c ~ x ;  but 
any linear element is an ordinal element hence, by Lemma 3.9 [12], one gets 
x ~< c v c*. Since, x e Corn(A), one can find y, z ~ Com(A) such that x = y v z, y ~< c 
and z ~< c*, so y ^ z = 0. If y ~ 0 then there is q e V(A), Val(y) = {q}, because y is 
linear and compact. Thus, y ~ q  and y ~< x so x ~q,  a contradiction, because q ~ E(A) 
and x <<. AE(A). Hence, y = 0, therefore x ~< c*. []  

A subset B of A is a basis of A [12] if it is a maximal orthogonal set in A and every 
element of B is linear. Thus, A has a basis iff every nonzero element of A exceeds 
a linear element (see [12, Proposition 4.3]). 
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Corollary 2.12. I f  A has a basis than r(A) = O. 

Proof. By Propos i t ion  2.11, if d e Com(A) - {0} and d <<. r(A) then d does not  exceed 

any linear compact  element. But A has a basis so, by the previous remark, 

r(A) = O. [] 

3. The tree S 

Let A be a member  of  IRN.  We shall associate with A a tree S and we shall 

investigate how the properties of  S are reflected in the structure of  A. For  the case of 

/-groups one gets some of  Conrad ' s  results [5]. 

For  p e V ( A )  consider ~ = A { x e A I p < x } .  Thus, for any c e C o m ( A ) ,  

p ~  Val(c) implies c ~</~. For  any p ~ V(A) we shall denote Sp = V { c e C o m ( A ) l  

q e Val(c) ~Pl lq} .  

Lemma 3.1. For x ~ Com(A) and p e V(A) the following are equivalent: 

(1) x ~< sp; 

(2) for  any q ~ Val(x), P]lq. 

Proof.  (1) =~ (2). If  x ~< s~ then x ~< c~ v ... v cn for some compac t  elements cx, . . . ,  c, 

such that  PHq for all q e Val(ci), i = 1 . . . .  , n. Let q e Val(x); we have x ~ q ,  so c~ ~ q  for 

some i ~ {1 . . . . .  n}. Thus,  q ~< q' for some q' ~ Val(q), so Pllq'. I f p  ~< q then p ~< q'. If  

q < p then q <<. p, q' so p, q' are comparable  since A is a member  of IRN.  Both  cases are 

impossible, therefore Pll q. 

(2)=~(1). Obvious.  [ ]  

L e m m a  3.2. Let  q,q~ . . . .  ,qn e V(A) be such that qllqi, i = 1, ... ,n. Then there exists 

c e Com(A) such that c <<, el, c ~ q  and c <<. A{sq,/ i  = 1, ... ,n}. 

Proof. For  pl,P2 ~ V(A), Pl NP2 there exist x , y  ~ Com(A) such that  x ~</~1, x ~ P l  and 

Y ~< P2, Y ~ P l .  Hence, z = x ^ y e Com(A), z ~< p~ ^ P2 and z ~P l .  
Using this remark, in our  case there exist ai, bi e Corn(A), such that  a~ ~< ~] ̂  q~, 

a i ~ q  and bi<<,fli^ q, b i ~ q i  for i = l , . . . , n .  Denot ing a = A { a i / i = l  . . . .  ,n}, 
b = V {bl/i = 1, . . . ,  n} we have a ~< ~ A qi, a ~ q, b ~< q and b ~ qi for i = 1, . . . ,  n. It is 

obvious  that a, b are incomparable  compact  elements, so there exist compact  elements 

O<c<<.a,  O<d<<,b  such that  a v d = b v c = a v b  and c A d = O .  We have 

c ~< ~ ^ qi, i = 1 . . . . .  n and c ~q ,  because c ~< q implies a ~< a v b = c v b ~< q. N o w  

we shall prove that  c ~< sq,, i = 1 . . . .  , n, using Lemma 3.1. Suppose the contrary:  there 
is i and p e Val(c) such that p, ql are comparable.  Two cases are possible: 

(1) qi ~< p, hence c ~< a ~< qi ~< p, which contradicts p ~ Val(c); 

(2) p < q ~ ,  hence d ~ < p < q i ,  because c ^ d = 0  and c ~ p .  Thus, b ~ < a v b =  
a v d <~ qi, which is impossible. 
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In this way we have proved that c satisfies all the conditions of the 
lemma. []  

Theorem 3.3. I f  p e V(A) then sp = V{c*]c ~ Corn(A), c ~p} = A { m l m  ~ MinA, 
m<~p}. 

Proof. The second equality was proved in [9] (see Proposition 4.4). Consider 

x ~ Corn(A) such that x <~ V{c* I c e  Com(A), c ~p}. Thus there exist compact ele- 
ments c l , . . . , cn  such that x < ~ V { c * / i = l , . . . , n }  and c i~p ,  i = l  . . . .  ,n, hence 
d = A{ci / i  = 1, . . . ,n}  ¢~p and x ~< Vc* ~<d*. It follows that x ^ d  = 0, so x ~<p 
because d ~p .  Now we shall prove that x ~< sp using Lemma 3.1. Let q e Val(x), hence 
p ~q,  because p ~< q implies x ~< p ~< q. If q < p then d ~q,  because d ~p ;  but 
x ^ d = 0 and x ~ q  which contradicts q e SpecA. Hence, Pllq and we have proved 

that V{c*lc  e Corn(A), c ~p} ~< sp. 
Let x ~ C o m ( A )  be such that qllP for all qeVal(x) .  For  any m e M i n A ,  

m ~< p implies x ~< m. Indeed, suppose m ~< p and x ~m, then there is q ~ Val(x), 
m ~< q. Thus, m ~< p, q so p,q are comparable, contradiction. Therefore, one gets 

s p < ~ A { m l m E M i n A ,  m<<.p}. [] 

Corollary 3.4. For any p • V(A), s* = A (c** Ic ~ Corn(A), c ~p}. 

Proposition 3.5. Let p, q ~ V (A). Then sp <~ q iff p, q are comparable. 

Proof. If sp ~ q  then there is x e Corn(A) such that x <~ sp and x ~q.  In accordance 
with Lemma 3.1, PHq' for any q ' e  Val(x). From x ~q  one gets q ~< q' for some 
q' e Val(x). It follows that Pllq, because ifp ~< q then p ~< q' and ifq < p then q ~< p, q'. 
In both cases one contradicts the assumption Pl[q'. 

For the converse implication, suppose Pllq. By Lemma 3.2 there exists a compact 
element x such that x ~< ~ ^ sp, x ~ q  so sp ~q.  []  

Corollary 3.6. Let p, q e V(A). Then Sp ~ q iff sq <<. p. 

Corollary 3.7. For any p ~ V(A), sp = / ~  {q e V(A) Ip, q are comparable}. 

Proof. Denote by u the second member of this equality. If u ~sp there is c ~ Corn(A), 
c ~< u, c ~sp so by Lemma 3.1 there is q • Val(c) such that p,q are comparable, hence 
c ~< u ~< q which contradicts q • Val(c). This contradiction shows that u ~< s r The 
converse inequality follows by Proposition 3.5. []  

Remark. If p e V(A) then sp ~< p. 

Corollary 3.8. For p,q • V(A), Pl[q iff sptlsq. 
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Proof.  Suppose sp <~ Sq; then using sq ~< q we obtain sp ~< q and by Proposi t ion  3.5 p, q 

are comparable .  If p ~< q, by Theorem 3.3, one gets Sq = / \ { m  • M i n A  [m ~< q} ~< 

A { m • M i n A [ m < < . p } = s p .  [] 

Remark.  By the previous corollary, sp < sq implies q < p. 

Let us denote S = {splp • V(A)}. F r o m  the previous results and the fact that  V(A) 
is a root  system it follows that  S is a tree. 

Proposition 3.9. For p, q • V(A) the following are equivalent: 
(1) sp = sq; 

(2) For any r •  V(A), rllp /ff rl}q; 
(3) p, q belong to the same roots of V(A). 

Proof.  (1) =~ (2). By Corol lary  3.8 we have the following equivalences: 

rllP iff srLlsp iff s,l[sq iff rllq. 

(2) =:. (1). By Corol lary  3.6. 

(2) =,(3). Assume there is a root  U in V(A) such that  p • U, q~U; so rllq for some 

r • U, therefore rllp. This contradicts  p,r • U. 
(3) =~ (2). We remark that  pllr iff for any root  U in V(A), p • U implies r~U. [] 

Proposition 3.10. Fo r  a • A, a* = A{splp • V(A), a ~p}. 

Proof. Suppose x • Com(A), x ~< a* and p • V(A), a f~p. By Lemma 1.4 there is 

c • Com(A),  c ~< a and p • Val(c). Thus x ^ c = 0 and c ~;p, so x ~< p. Assume there is 

q • V(A) such that  p, q are comparable  and x ~ q, hence c ~< q. We remark that  p ~< q 

implies x ~< q and q < p implies c < p. In both  cases we obtain a contradict ion,  so if 

p, q are comparable  then x ~< q. This yields x ~ A{q • V(A) Ip, q are comparable} = 

sp, therefore x <<, A{splp • V(A), a ~p}. We have proved that  a* <~ A{splp • V(A), 
a ~;p}. 

For  the converse inequality, consider a compact  element x such that  

x < ~ A { s p i p •  V(A), a f;p}. Note  first that  if c is a compact  element satisfying 

c ~< a, p •Va l (c )  and q • Val(x), then a ~ p  because c ~p, so x ~< sp, hence in 

accordance  with Lemma 3.1 one gets PlLq. N o w  if x ^ a # 0, then c ~< x ^ a for some 

c e Corn(A) - {0}, hence there is p • Val(c), so x ^ a ~ p .  It follows that  x ~;p, so 

there is q e Val(x), p ~< q. This contradicts the previous remark,  so x ^ a = 0, 

hence x ~<a*. [ ]  

* = A{sq I q ~ V(A), qllP}. Corollary 3.11. For any p e V(A) we have sp 

Proof. F r o m  Proposi t ions  3.10 and 3.5, one can infer 

* = A{sqlq • V(A), sp f~q} = A{sqlq • V(A), qllp}. Sp [ ]  



96 A. Filipoiu, G. Georgescu / Discrete Mathematics 161 (1996) 87-100 

Corollary 3.12. I f  Val(c) = {p} then sp = c*. 

Proof. By Proposit ion 3.10 we have c* = A{sqlq • v (A), c ~q}. If q • V(A), c ~q,  

since Val(c) = (p}, then q ~< p. In accordance with Theorem 3.3, sp ~< sq, therefore 

C* = Sp. [] 

Proposition 3.13. I f  p ~ V(A) then the following equality holds: 

* = V{c • Com(A) [ Val(c) _~ (p]}. fi ^ Sp 

Proof. Assume c • Com(A) such that Val(c) _ (p]. Consider q • V(A) such that ql[P. 
We shall prove that r[lq for any r • Val(c). Suppose there is r • Val(c) such that r, q are 

comparable.  Thus r ~< p and two cases are possible: 
(a) r ~< q; then r ~< p, q so p, q are comparable; 
(b) q < r ; t h e n q < p .  

It  follows a contradiction in both cases, so r • Val(c) implies r]lq, hence c ~< sq. This 
yields c <~ A{sqlq • V(A), qllp} = s*. I f c  # 0 then there is q • Val(c), so q ~< p, hence 

c<~?t<~p. 
For  the converse inequality let c be a compact  element such that c ~< i0 ^ s*. 

Suppose there is q • Val(c), q ~p .  I fp  < q, then since c ~</~ it follows that c ~< q, which 

* = A{s ,  l r~  V(A), rllp} and contradicts q ~ Val(c). Hence, p ~q ,  so Pllq. From c ~< sp 
Pl[q one deduces, via the remark after Corollary 3.7, that c ~< sq ~< q. This contradic- 
tion shows that Val(c) ~ (p]. []  

Lemma 3.14. For p, q ~ V(A), se < Sq iff q < p and there exists r • V ( A ) such that r < p 
and r[lq. 

Proof. Suppose sp < s~, hence q < p by the remark after Corollary 3.8, and there is 

x • Corn(A) such that x ~< sq and x ~sp. Using Lemma 3.1, p is comparable with some 

value r of x. Applying again that lemma, for r e Val(x) we infer that r I J q. If p ~< r then 
q < r which is not possible, therefore r < p. 

Assume q,r < p and rp[q, so sp ~< s~ ^ s, ~< sq. Ifsq ^ s, = s~ then we obtain sq ~< s,, 

so, by Corollary 3.7, q and r are comparable. This contradiction shows that 

Sp < Sq. [] 

Theorem 3.15. For p • V(A) the following are equivalent: 
(1) sp is maximal in S; 
(2) s~ • Spec A; 
(3) sp • Min A; 
(4) (p] c~ V(A) is a chain; 

(5) p is contained in a unique root of V(A); 
(6) p exceeds a unique element of  Min A. 
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Proof. It  is obvious  that  (3) = ' (2)  and (4) ,=,(5) ~-(6). 

(1) =-(4). Assume there exists q,r t (p]c~ V(A) such that  qllr. In accordance  with 
L e m m a  3.14, sp < sq which contradicts  the maximal i ty  of  sp in S. 

(4) =-(3). If  mo is the unique element of  M i n A  such that  mo ~< p then, by 

T he o rem 3.3, sp = A{m t M i n A I m  ~< p} = mo. 
(2) ~ ( 1 ) .  Suppose sp < Sq, then q,r < p for some rllq. By L e m m a  3.2 there exist 

compac t  elements x, y such that  x ~< ~ ^ r, x ~ q and y < f ^ q, y ~ r. It  is obvious  that  

xlly; then by L e m m a  1.1 there exist compac t  elements 0 < c ~< x, 0 < d ~< y such that  
x v d = y v c = x v y and c ^ d = 0. F r o m  this one gets c ~< q, c ~ q ,  d ~< f, d ~ r  (by 
example,  c ~< q implies x v y = y v c ~< q so x ~< q, contradiction).  Then q t Val(c) 

and r t Val(d). Since, q t Val(c) and q < p we have by L e m m a  3.1, c ~sp  and similarly 
d ~ sp. But this contradicts  sp t Spec A and c ^ d = 0. Hence, sp is maximal  in S. [ ]  

Corollary 3.16. Let  c t C o m A  such that Val(c) = {p}. Then sp is maximal in S iff c 
is linear. 

Proof. By Propos i t ion  4.2 [12], c is linear iff c * t  MinA.  In accordance  with 

Corol la ry  3.12, sp = c* so, by the previous theorem,  sp is maximal  in S iff c is 
linear. [ ]  

Lemma 3.17. For P, ql . . . .  ,q~ t V(A), A { s e / i  = 1, ... ,n} ~ p iff p is comparable with 
some q~. 

Proof. If p is comparab l e  with some q~ then, by Propos i t ion  3.5, sq, <<. p, hence 

/~ {sq, I i = 1 . . . . .  n} ~< p. In order to prove the converse implication one can assume that  
ql, . . . ,  q, are pairwise incomparable .  Suppose  that  Plhq~ for i = 1 . . . .  , n. By L e m m a  3.2 
there is a compac t  element c such that  c ~ p  and c ~</~ ̂  A{sq, Ii = 1, ... ,n}, so 
A{sq , / i  = 1, . . . ,n}  ~ p .  [ ]  

Remark .  A V ( A ) =  O, otherwise c <. A V(A) for some c t C o m ( A ) -  {0}, implying 
c ~< p, for any p t V(A), which contradicts  the fact that  c does have values. It  follows 
easily that  A M i n A  = O. 

Theorem 3.18. I f  ql . . . .  ,q ,  t V(A) are pairwise incomparable then the following are 
equivalent: 

(1) A{sq, t i - -  1, . . . , n }  -- O; 
(2) {ql . . . . .  q,} is a maximal set o f  pairwise incomparable elements in V(A); 
(3) I f  U is a root in V(A) then q i t  U for  some i t  {1 . . . .  ,n}; 

(4) I f  m r  M i n A  then Sq, <~ m for some i t  {1, ... ,n}. 

Proof.  (1) ='(2).  By the previous lemma.  

(2) ='(3).  Assume that  U is a root  of  V(A) and qiCU for any i = 1 . . . .  ,n. Consider  
Pa t U; so there is q,l comparab le  with Pl ,  hence qil < Pl, because Pl ~< qi~ implies 
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qil e U. But U is a root  so there is P2 e U such that  P2 < Pl and q~a liP2- In this way, 
one can obtain  a sequence q~a, q~2 . . . .  , q~k . . . .  and Pa > P2 > "'" > Pk > "'" such that  
q~k[lPk+~ and qgk < Pk for each k. Since {qa, ... ,q,} is finite there is l <  k such that  

q~k = qiz. Thus, q~k < Pk < "'" < Pt+ i, hence q~ < Pt+ a. We have obta ined  a contradic-  
tion, so U contains  one of the qi. 

(3) ~ (4). If  m e Min A then U = {q e V(A) I m ~< q} is a root  of  V(A). By hypothe-  
sis, there exists q~ e U so m ~< qi, therefore s~, = / ~  {k ~ Min A I k ~< qi} ~< m. 

(4) ~ ( 1 ) .  Fo r  any  m e M i n A  there exists q~ such that  sq, <~ m so 
A{s~, / i  = 1, . . . , n}  ~< A M i n A  = 0. [ ]  

Remarks .  (1) An element c ~ A is complete ly  jo in-pr ime iff c has a unique value 
(see [10]). 

(2) Let  {cl . . . . .  c,} be a finite set of  complete ly  jo in-pr ime elements in A, 

Val(c~) = {q~} i = 1 . . . .  ,n. If  c a , . . . , c ,  are pairwise o r thogona l  then ql . . . . .  qn are 
pairwise incomparable .  Indeed,  c~ ^ cj = 0 and  cj ~ qj imply  cl <~ q j, hence if qj < q~ 
then c~ < qi, a contradict ion.  

Theorem 3.19. Let  A be a member o f l R N .  The followin9 statements are equivalent: 

(1) There exists a maximal finite set o f  pairwise incomparable elements o f  V(A); 

(2) There exists a finite subset S' o f  S such that A S '  = 0; 
(3) There exists a finite set o f  completely join-prime elements o f  A, which is maximal 

orthooonal; 

(4) Any  set o f  pairwise disjoint roots o f  V(A) is finite. 

Proof.  (1) ~ (3). Let  {qx . . . . .  q,} be a max imal  set o fpa i rwise  incomparab le  elements  

in V(A). By L e m m a  3.2, there is a compac t  element cl ~qa ,  and cl ~< ql ^ sq,, 
i = 2, . , . ,  n, so ql 6 Val(ca). Suppose  there is a p e Val(ca), p ~ qx so pllql. By the 
maximal i ty  of  {qa, ... ,q,}, P is comparab le  with q~ for some i ~ {2, ... ,n}, so ca ~sq,, 

using L e m m a  3.1. This contradic t ion  shows that  Val(ca) = {qa}. In this way one can 

obta in  the complete ly  jo in-pr ime elements ca, . . . , c ,  such tha t  V a l ( c i ) =  {qi}, 
i =  1, ... ,n. We shall p rove  that  {Cl, ... ,c , )  is a maximal  o r thogona l  set. No te  
first that  cl . . . .  ,c ,  are pairwise incomparable :  by example  if ca ~< c2 then 

cl <~ ~12 ̂  sq, <~ sql <~ qa, contradict ion.  By [10, L e m m a  2.3] it follows that  {cl, . . . ,  c,} 
is or thogonal .  Assume c ^ c~ = 0 for any i = 1 . . . . .  n, where c ~ Corn(A). I f c  4= 0 there 

is p ~ Val(c), so c~ ~< p for any  i = 1 . . . .  , n. This yields PHqi, i = 1 . . . .  , n. Indeed,  p ~< qi 

implies c~ ~ q~ and q~ < p implies c ~q~, so c~ ~< q~, because c ^ c~ = 0 and qi is 
meet-pr ime.  O u r  conclusion that  Pllqi, i =  1 . . . .  ,n  contradicts  the maximal i ty  of  
{ql, . . . ,  q,}, hence c = 0. 

(3) =~ (1). Suppose {ca . . . . .  c.} is maximal  or thogonal  and Val(ci) = {qi}, i = 1, . . . ,  n. 
Using the previous r emark  ql . . . . .  q, are pairwise incomparable .  Assume there exists 

p ~ V(A) such that  the elements of the set { p, q a . . . . .  q.} are pairwise incomparable .  By 
L e m m a  3.2 there exists a compac t  element c < ~ ^ s ~ , ,  i =  1, ... ,n  and c ~ p ,  so 
p e Val(c). We shall p rove  that  the set {c, cl . . . . .  c,} is or thogonal .  If  c ^ c~ # 0 for 
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some i, there is q • Val(c ^ ci), so c ~;q and cl ~;q. But Va l (c l )=  {ql}, therefore 
c < ~ s q , = A { r •  V(A)Ir ,  q~ are comparable} ~ q .  This contradict ion shows that  
{c,c~ . . . .  ,c,} is or thogonal  and this contradicts the hypothesis. It follows that  
{q, . . . . .  q,} is a maximal  set of pairwise incomparable  elements in V(A). 

The rest of the proof  follows by Theorem 3.8. [ ]  

Corollary 3.20. Let  A be a member o f l R N .  The following are equivalent: 

(1) A has a finite basis; 
(2) There exists a finite set S' ~_ S of  maximal elements in S, such that AS'  = 0; 

(3) S is finite; 
(4) V(A) has a finite number of  roots. 

Proof.  (1) ~ (2 ) .  Let {ca, ... ,c,} be a finite basis of A. One can suppose c,,  ... ,c ,  are 
completely join-prime (see [12], Corol lary 4.4). If Val(ci) = {qi}, i = 1, . . . ,  n then by 
Corol lary  3.16, sq, are maximal in S for i = 1, . . . ,  n. In accordance with Theorem 3.18 
we have A{Sq,/ i  = 1 . . . . .  n} = O. 

(2) =>(4). If S' = {sq . . . . . .  sq.} then, by Theorem 3.18, for any root  U of V(A) there 
exists some q~ • U. By Theorem 3.15, every q~ is contained in a unique root,  so V(A) 
has a finite number  of roots. 

(4) 0 ( 3 ) .  Denote  by U, . . . .  , U, the roots in V (A). For  any subset I of {1, ... ,n} 
denote  by 52/the set o f p  • V(A) such that  {Uil i  • I}  is the set of roots  in V(A) which 
contain p. In accordance with Proposi t ion 3.9, sp = Sq for any p, q • 52/, so one can 
denote  by s / the  common  value ofsp for p • Y4. Thus S = {s11I c_ {1, . . . ,  n} } and S is 
finite. 

(3) =*-(1). Let S' be the maximal elements in S, say S' = {Sql, ... ,sq,}. For  p • V(A) 
we have two cases: 

(i) sp • S'; hence AS '  ~< sp ~< p; 
(ii) sp • S - S'; S being finite there is Sq, • S' such that sp < sq,, hence q~ < p. We 

obtain A S '  <~ sq, <~ qi < P. So, for every p • V(A), A S '  <~ p, then A S '  ~ A V ( A )  = O, 
i.e. A S '  = 0. Because {ql, . . . ,  q,} are pairwise incomparable  elements of V(A), using 
Theorem 3.18, {q,, ... ,q,} is a maximal  set of pairwise incomparable  elements of 
V(A). By Theorem 3.19, there is the set {cx, . . . ,  c,} which is maximal  or thogonal  and 
ci, i = 1, . . . ,  n are completely join-prime. Because Val(cl) = {qi}, using Corol lary  3.16, 
c~ are linear elements, so A has a finite basis. [ ]  

Remark. The equivalence of (1) and (4) there was proved firstly in [12]. 
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