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Abstract

In this paper, we study the matrix equation AX2
+ B X +C = 0, where A, B and C are square matrices. We give two improved

algorithms which are better than Newton’s method with exact line searches to calculate the solution. Some numerical examples are
reported to illustrate our algorithms.
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1. Introduction

In this paper, our interest is the simplest quadratic matrix equation

AX2
+ B X + C = 0, (1.1)

where A, B and C are given square matrices. The Eq. (1.1) often occurs in many applications, for example, the
quasi-birth–death processes, the quadratic eigenvalue problems (QEP) and pseudo-spectra for quadratic eigenvalue
problems, see detail in [5,8,12,14]. Let

F(X) = AX2
+ B X + C, (1.2)

where A, B and C are square matrices. A matrix S is called a solvent of the Eq. (1.1) if F(S) = 0 [4]. In the
case of simple solvent, where the derivative is regular. A dominant solvent is a solvent matrix whose eigenvalues
strictly dominate the eigenvalues of all other solvents. The paper [10,13] gave two linearly convergent algorithms
for computing a dominant solvent of Eq. (1.1) while the algorithms have the drawbacks that it is difficult to check
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Table 1.1
Newton’s method

The i th iteration Error The i th iteration Error

1 2.7394e+010 3 1.7121e+009
5 1.0701e+008 7 6.6871e+006
9 4.1706e+005 11 2.5220e+004
13 1.1082e+003 15 20.6248
16 0.7567 17 0.0017
18 1.1049e−008 19 5.3417e−014

Table 1.2
Newton’s method with exact line searches

The i th iteration t Error

1 1.9997 2.2820e+003
2 0.8375 427.5598
3 1.1719 36.4079
4 1.0222 1.0573
5 1.0018 0.0015
6 1.0000 5.0189e−009
7 1.0000 3.6296e−014

in advance whether a dominant solvent exists and the convergence can be extremely slow. Davis applied Newton’s
method to the Eq. (1.1), and gave supporting theory and implementation details in [1,2]. Kratz and Stickel investigated
Newton’s method for the general degree matrix polynomials in [4]. Higham and Kim improved the global convergence
properties of Newton’s method with exact line searches and gave a complete characterization of solution in terms of
the generalized Schur decomposition in [5]. Various numerical solution techniques are described and compared in [6].
From the above papers, we know that Newton’s method is very attractive for solving the Eq. (1.1). It has very nice
numerical behavior such as quadratic convergence and good numerical stability, but it has a weak necessary that each
iteration is rather expansive. We know also that modified Newton’s method is cheaper than Newton’s method at each
iteration [4], while it is only linearly convergence.

Consider the quadratic matrix equation AX2
+ B X + C = 0 with A, B,C ∈ Rn×n, n = 120

A = In, B =


20 −10
−10 30 −10

−10
. . .

. . .

. . . 30 −10
−10 20

 , C =


15 −5
−5 15 −5

−5
. . .

. . .

. . . 15 −5
−5 15

 .

The Tables 1.1 and 1.2 list the numerical results with starting iterative X0 = 104 In by Newton’s method and Newton’s
method with exact line searches, respectively, where error = ‖F(X i )‖F , ‖ · ‖F denotes Frobenious norm, t is a real
step size scalar in the direction of Newton.

It can be seen from the Tables 1.1 and 1.2 that when error > 10−1, ‖F(X i )‖F by Newton’s method with exact line
searches comes down faster than by Newton’s method, while when error < 10−1 Newton’s method with exact line
searches has the same convergence rate as Newton’s method and t sufficiently near or equal to 1.

The paper has two main contributions. First, we incorporate Newton’s method with exact line searches and
Newton’s method in order to reduce the cost of computation. Second, we incorporate Newton’s method with exact line
searches and Newton’s method with S̆amanskii technique in order to have faster convergence than Newton’s method
with exact line searches.

The paper is organized as follows. In Section 2, we introduce some notations and lemmas. In Section 3, two
algorithms are presented and analyzed. In order to illustrate our results, several numerical examples are reported in
Section 4. At last, some conclusions are given in Section 5.
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2. Some notations and lemmas

For matrices A, B ∈ Cn×n the Kronecker product is the matrix A ⊗ B ∈ Cn2
×n2

given by

A ⊗ B =

a11 B · · · a1n B
...

...

an1 B · · · ann B

 , where A = (ai j ),

and the vec function of the matrix A is the column

vec(A) = (aT
1 , . . . , aT

n )
T
∈ Cn2

where a1, . . . , an ∈ Cn are the the columns of A.

Definition 2.1 ([3,4,14]). Let G(X) = 0 be the nonlinear matrix equation, where G : Cn×n
→ Cn×n . If

G(X + E) − G(X) = G ′(X)[E] + G1(E), where G1 : Cn×n
→ Cn×n , G ′ is a bounded linear operator and

‖G1(E)‖/‖E‖ → 0 as ‖E‖ → 0, then the function G is said to be Frechet-differentiable at X with Frechet derivative
G ′(X)[E] in the direction E .

From Eq. (1.1), we obtain

F(X + E) = F(X)+ AE X + (AX + B)E + AE2. (2.1)

Definition 2.1 implies that the Frechet derivative of Eq. (1.1) at X in the direction E is given by

F ′(X)[E] = AE X + (AX + B)E . (2.2)

We call F ′(X) regular if the mapping F ′(X) is injective.

Algorithm 2.1 (Newton’s Method).

step 0: Given X0, and ε, set k = 0.
step 1: If errork < ε, stop.
step 2: Solve for Ek in generalized Sylvester equation

AEk Xk + (AXk + B)Ek = −F(Xk). (2.3)

step 3: Update Xk+1 = Xk + Ek, k = k + 1, and go to step 1, where errork = ‖F(Xk)‖F .

Lemma 2.1 ([14]). Suppose that S ∈ Cn×n is a simple solvent of (1.1), i.e. F(S) = 0 and F ′(S) is regular. Then, if
the starting matrix X0 is sufficiently near S, the sequence {Xk} produced by Algorithm 2.1 converges quadratically to
S. More precisely, if ‖X0 − S‖ = ε0 < ε = min{ c0

‖A‖ , δ}, where

c0 = inf
{∥∥F ′(X)[H ]

∥∥ : ‖H‖ = 1, ‖X − S‖ ≤ δ
}
> 0

for sufficiently small δ ∈ (0, 1], then we have:

(i) limk→∞ Xk = S,
(ii) ‖Xk − S‖ ≤ ε0qk with q = ε0‖A‖

c0
< 1, for k = 0, 1, 2, . . . ,

(iii) ‖Xk+1 − S‖ ≤ ‖A‖
c0
‖Xk − S‖2 for k = 0, 1, 2, . . . ,

Remark 2.1. The Algorithm 2.1 has quadratical convergence rate, but it has some weakness. When it solves the
generalized Sylvester equation defining Ek , it takes at least 56n3 flops, thus each iteration is rather expansive.

Algorithm 2.2 (Modified Newton’s Method).

step 0: Given X0, and ε, set k = 0.
step 1: If errork < ε, stop.
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step 2: Solve for Ek in generalized Sylvester equation

AEk X0 + (AX0 + B)Ek = −F(Xk). (2.4)

step 3: Update Xk+1 = Xk + Ek, k = k + 1, and go to step 1,
where errork = ‖F(Xk)‖F .

Lemma 2.2 ([4]). Suppose that X0 is an n × n matrix, and

(i) F ′(X0) is regular, i.e. c0 = inf
{∥∥F ′(X0)[H ]

∥∥ : ‖H‖ = 1
}
> 0,

(ii) ‖F(X0)‖ = ε0 ≤ ε = min
{

c2
0

4‖A‖ ,
c0
2

}
.

Then there exists S ∈ Cn×n ,such that F(S) = 0, ‖S − X0‖ ≤
2ε0
c0

. More precisely, the sequence {Xk} given by
Algorithm 2.2 satisfies:

(i) limk→∞ Xk = S exists with F(S) = 0,
(ii) ‖Xk − S‖ ≤ q ‖Xk−1 − S‖ ≤ 2 ε0

c0
qk,

(iii) ‖Xk+1 − Xk‖ ≤ q ‖Xk − Xk−1‖ f or k = 1, 2, . . . , q = 4ε0‖A‖
c2

0
< 1.

Remark 2.2. The Algorithm 2.2 is only linearly convergence, which means possibly very slow convergence. But at
each iterative step, only a linear equation with the same coefficient matrix has to be solved.

Algorithm 2.3 (Newton’s Method with S̆amanskii Technique [11]).

step 0: Given X0,m and ε, set k = 0.
step 1: If errork < ε, stop.
step 2: Let Xk,0 = Xk, i = 1.
step 3: if i > m, go to step 6.
step 4: Solve for Ek,i−1 in generalized Sylvester equation

AEk,i−1 Xk + (AXk + B)Ek,i−1 = −F(Xk,i−1). (2.5)

step 5: Update Xk,i = Xk,i−1 + Ek,i−1, i = i + 1, and go to step 3.
step 6: Update Xk+1 = Xk,m, k = k + 1, and go to step 1,

where errork = ‖F(Xk)‖F .

Remark 2.3. If m = 1, then the Algorithm 2.3 is Newton’s method.

In this paper, we only consider the case that m = 2. Following we investigate the properties of Algorithm 2.3.

Theorem 2.1. Suppose that S ∈ Cn×n is a simple solvent of (1.1), i.e. F(S) = 0 and F ′(S) is regular. Then, if the
starting matrix X0 is sufficiently near S, the sequence {Xk} produced by Algorithm 2.3 converges cubically to S. More
precisely, if ‖X0 − S‖ = ε0 < ε = min{ c0

2‖A‖ , δ}, where,

c0 = inf
{∥∥F ′(X)[H ]

∥∥ : ‖H‖ = 1, ‖X − S‖ ≤ δ
}
> 0

for sufficient small δ ∈ (0, 1], then we have:

(i) ‖Xk+1 − S‖ ≤ η ‖Xk − S‖3 with η = ‖A‖2

c2
0

(
2+ ‖A‖

c0
ε0

)
≤

3‖A‖2

c2
0
, k = 1, 2, . . . ,

(ii) ‖Xk − S‖ ≤ ε0qk, q = ηε2
0 < 1, k = 1, 2, . . . ,

(iii) limk→∞ Xk = S.
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Proof. From the Lemma 2.1, we obtain that Xk,1 is well defined by

Xk,1 = Xk + E, AE Xk + (AXk + B)E = −F(Xk), (2.6)

Xk ∈ V =

{
X | ‖X − S‖ = ε0 < ε = min

{
δ,

c0

2 ‖A‖

}}
and

∥∥Xk,1 − S
∥∥ ≤ ‖A‖

c0
‖Xk − S‖2 .

Hence, Xk+1 is well defined by

Xk+1 = Xk,1 + H, AH Xk + (AXk + B)H = −F(Xk,1), (2.7)

Xk ∈ {X | ‖X − S‖ < ε1} ⊂ V , where ε2
1 ≤

ε0c0
‖A‖ . By the Lemma 2.1 and the properties of Kronecker product and

vec function, we obtain

‖Xk+1 − S‖ =
∥∥Xk,1 + H − S

∥∥
=
∥∥vec(Xk,1 − S)+ vecH

∥∥
=

∥∥∥vec(Xk,1 − S)− F∗(Xk)
−1vecF(Xk,1)

∥∥∥
≤

1
c0

∥∥vecF ′(Xk)[Xk,1 − S] − vecF(Xk,1)
∥∥

=
1
c0

∥∥F ′(Xk)[Xk,1 − S] − F(Xk,1)+ F(S)
∥∥

≤
1
c0
‖A‖

∥∥Xk,1 − S
∥∥ (2 ‖Xk − S‖ +

∥∥Xk,1 − S
∥∥)

≤
1

c2
0

‖A‖2 ‖Xk − S‖2
(

2 ‖Xk − S‖ +
‖A‖

c0
‖Xk − S‖2

)
≤
‖A‖2

c2
0

(
2+
‖A‖

c0
ε0

)
‖Xk − S‖3

= η ‖Xk − S‖3 ,

where F∗(Xk) = X T
k ⊗ A+ I ⊗ (AXk + B). So the assertion (i) is proved. Now we obtain assertion (ii) by induction.

Since ‖X0 − S‖ = ε0 ≤ ε is given, we assume that ‖Xk − S‖ ≤ ε0qk holds. While q = ε0η < 1 is obvious, thus
‖Xk − S‖ ≤ ε0. So we have ‖Xk+1 − S‖ ≤ η ‖Xk − S‖3 ≤ ηε2

0 ‖Xk − S‖ = q ‖Xk − S‖ < ε0qk+1, hence, the
assertion (ii) holds by induction principle. It is obvious that (ii) implies (iii).

Algorithms 2.1 and 2.3 are now compared in terms of computational cost. we know that the heart of the two
algorithms is to solve the generalized Sylvester equation

AE X + (AX + B)E = −F(X). (2.8)

To solve (2.8) we can adapt methods described in [5,7] as follows.
(1) Computing Hessenberg-triangular decomposition [9] of A and AX + B

W ∗AZ = T, W ∗(AX + B)Z = H, 15n3 flops, (2.9)

where W and Z are unitary, T is upper triangular and H is upper Hessenberg.
(2) Computing the Schur decomposition [9] of X

U∗XU = R, 25n3 flops, (2.10)

where U is unitary and R is upper triangular.
(3) Forming F

F = −W ∗P(X)U, 4n3 flops. (2.11)
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(4) Transforming from Y to E

Y = Z∗EU, 4n3 flops. (2.12)

(5) Solving the upper Hessenberg systems

(H + rkk T )yk = fk −

k−1∑
i=1

rik T yi , 4n3 flops. (2.13)

Thus, the computational cost that we obtain Xk+1 from Xk is about 56n3 flops for Algorithm 2.1. For Algorithm 2.3,
in order to obtain Xk+1 we need to solve two generalized Sylvester equations with the same coefficient matrix. Hence
the cost is about 70n3 flops. Algorithm 2.3 is only 14n3 flops more than Algorithm 2.1 at each iteration, but the
Algorithm 2.3 converges cubically to the solvent S.

Remark 2.4. If the starting matrix X0 is sufficient near the solvent of Eq. (1.1), then Newton’s method with S̆amanskii
technique has faster convergence than Newton’s method. The computational procedure of Newton’s method with
S̆amanskii technique only increases a time of circulation compared to Newton’s method and when m = 1, it has
contained the procedure of Newton’s method.

3. Two new algorithms

Algorithm 3.1 (Newton’s Method with Exact Line Searches).

step 0: Given X0, and ε, set k = 0.
step 1: If errork < ε, stop.
step 2: Solve for Ek in generalized Sylvester equation

AEk Xk + (AXk + B)Ek = −F(Xk). (3.1)

step 3: Find t by exact line searches such that

‖F(Xk + t Ek)‖F = min
s∈[0,2]

‖F(Xk + s Ek)‖F (3.2)

step 4: Update Xk+1 = Xk + t Ek, k = k + 1, and go to step 1,
where errork = ‖F(Xk)‖F .

From [5], we know that Algorithm 3.1 has the global convergence properties and the quadratic convergence rate, but
at each iterative step, t , namely, a multiple of the Newton’s step, has to be calculated. Observing the Table 1.2, we
obtain a question whether t approaches or equal to 1 when the iterative solution Xk is near the solvent S. The answer
is yes, under a mild assumption, as we now show. Recalling that Newton’s method defines E by

AE X + (AX + B)E = −F(X) (3.3)

and Newton’s method with exact line searches defines t by

‖F(Xk + t Ek)‖F = min
s∈[0,2]

‖F(Xk + s Ek)‖F (3.4)

From (3.3), we have

F(X + s E) = (1− s)F(X)+ s2 AE2. (3.5)

Assume that X j is within a region where quadratic convergence to S and let X j+1 = X j + E j and X̃ j+1 = X j + t E j
be the Newton update and the update with exact line searches, respectively. Defining ∆ j = S−X j , So, by Lemma 2.1,
we have

‖∆ j+1‖ = O(‖∆ j‖
2), (3.6)
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and using (3.5) we have

‖(1− t)F(X j )+ t2 AE2
j‖ = ‖F(X j + t E j )‖

≤ ‖F(X j + E j )‖

= ‖F(S −∆ j+1)‖

= O(‖∆ j‖
2). (3.7)

Thus E j = −∆ j+1 +∆ j , which means that ‖E j‖ = O(‖∆ j‖) and, Therefore (3.3) says

F(X j ) = F(S −∆ j ) = −DS(∆ j )+ O(‖∆ j‖
2),

where DS(∆ j ) = A∆ j S + (AS + B)∆ j . Hence, as long as the Frechet derivative is nonsingular at S, (3.7) implies
that |1− t | = O(‖∆ j‖). So as long as X j is sufficient near the solvent S, that is ‖∆ j‖ → 0, then t → 1. In practice,
it is difficult to know in advance the solvent S of Eq. (1.1), hence, we use ‖F(X i )‖ ≤ ε0 to replace ‖∆ j‖ → 0 for
convenience. Upon all above analysis, we have the following algorithm.

Algorithm 3.2 (No. 1).

step 0: Given X0, ε0 and ε, set k = 0.
step 1: If errork < ε, stop.
step 2: Solve for Ek in generalized Sylvester equation

AEk Xk + (AXk + B)Ek = −F(Xk). (3.8)

step 3: If errork < ε0, go to step 6.
step 4: Find t by exact line searches such that

‖F(Xk + t Ek)‖F = min
s∈[0,2]

‖F(Xk + s Ek)‖F (3.9)

step 5: Update Xk+1 = Xk + t Ek, k = k + 1, and go to step 1.
step 6: Update Xk+1 = Xk + Ek, k = k + 1, and go to step 1,

where errork = ‖F(Xk)‖F .

Clearly Algorithm 3.2 not only keeps the global convergence properties and the quadratic convergence rate, but
also need not to compute t when errork < ε0.

From Theorem 2.1, we know that Newton’s method with S̆amskii technique (m = 2) converges cubically
to the solvent S, so long as the starting matrix X0 satisfying the conditions ‖X0 − S‖ = ε0 < ε =

min{ c0
2‖A‖ , δ}, where c0 = inf{

∥∥F ′(X)[H ]
∥∥ : ‖H‖ = 1, ‖X − S‖ ≤ δ} > 0 for sufficient small δ ∈ (0, 1]. Hence, by

Algorithms 3.1 and 2.3, we get the following algorithm.

Algorithm 3.3 (No. 2).

step 0: Given X0, ε0 and ε, set k = 0.
step 1: If errork < ε, stop.
step 2: Solve for Ek in generalized Sylvester equation

AEk Xk + (AXk + B)Ek = −F(Xk). (3.10)

step 3: If errork < ε0, go to step 6.
step 4: Find t by exact line searches such that

‖F(Xk + t Ek)‖F = min
s∈[0,2]

‖F(Xk + s Ek)‖F (3.11)

step 5: Update Xk+1 = Xk + t Ek, k = k + 1, and go to step 1.
step 6: Update Xk,1 = Xk + Ek .
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Table 4.1
Algorithm 2.1

n = 20 n = 50

s = 1 error1 = 1.1291e+ 004 s = 1 error1 = 1.7853e+ 004
s = 5 error5 = 43.3420 s = 5 error5 = 68.8583
s = 8 error8 = 0.3885 s = 8 error8 = 0.6346
s = 9 error9 = 0.0258 s = 9 error9 = 0.0424
s = 10 error10 = 1.5401e−004 s = 10 error10 = 2.5560e−004
s = 11 error11 = 5.7274e−009 s = 11 error11 = 9.5571e−009
s = 12 error12 = 1.4282e−015 s = 12 error12 = 2.2820e−015

Table 4.2
Algorithm 3.1

n = 20 n = 50

s1 = 1 t = 1.9849 error1 = 5.3244 s1 = 1 t = 1.9872 error1 = 6.3133
s1 = 2 t = 0.5109 error2 = 0.7510 s1 = 2 t = 0.4331 error2 = 0.7949
s1 = 3 t = 1.1099 error3 = 0.0330 s1 = 3 t = 0.9954 error3 = 0.0690
s1 = 4 t = 1.0066 error4 = 7.4418e−005 s1 = 4 t = 1.0079 error4 = 6.3845e−005
s1 = 5 t = 1.0000 error5 = 7.4663e−010 s1 = 5 t = 1.0000 error5 = 5.1195e−010
s1 = 6 t = 1.0000 error6 = 2.2122e−015 s1 = 6 t = 1.0000 error6 = 2.2820e−015

step 7: Solve for Ek,1 in generalized Sylvester equation

AEk,1 Xk + (AXk + B)Ek,1 = −F(Xk,1). (3.12)

step 8: Update Xk+1 = Xk,1 + Ek,1, k = k + 1, and go to step 1,
where errork = ‖F(Xk)‖F .

We know that Newton’s method with exact line searches needs 61n3flops and Algorithm 3.3 needs 70n3flops as
error < ε0 for each iteration. Hence, Algorithm 3.3 is only 9n3 flops more than Algorithm 3.1 as error < ε0 for each
iterative step, while 9n3 flops may be ignored compared with 61n3 flops. It is obvious that Algorithm 3.3 keeps the
global convergence properties of Algorithm 3.1 but has faster convergence rate than Algorithm 3.1 by Remark 2.4.

4. Numerical results

In this section, we use several numerical examples to illustrate our results. The following notations will be
used in this section, s = i, s1 = i and s2 = i denote the i th iteration of Newton’s method, Newton’s method
with exact line searches, Newton’s method with S̆amanskii technique, respectively. X i is the i th iterative solution.
errori = ‖P(X i )‖F , X denotes the iterative solution when ‖P(X)‖F ≤ ε and error = ‖P(X)‖F . CPU denotes the
computation time.

Example 4.1. Consider the example mentioned in [14], AX2
+ B X + C = 0, with

A = In, B = In, C = −(H2
+ H),

where H = (hi j ), hi j = 1/(i + j − 1).

The Tables 4.1–4.4 list the numerical result, ε0 = 0.1, ε = 10−11. Starting the iteration with X0 = 100In .

Observing the Tables 4.1–4.4, we know that Algorithm 2.1 needs the most flops and iteration numbers than other
algorithms. Algorithm 3.1 is better than Algorithm 2.1, since it needs less iteration numbers than Algorithm 2.1, but
it needs to compute t at each iteration step. Algorithm 3.2 keeps the merits of Algorithm 3.1 and does not need to
compute t when error < ε0. Algorithm 3.3 needs the fewest iteration numbers than others.
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Table 4.3
Algorithm 3.2

n = 20 n = 50

s1 = 1 t = 1.9849 error1 = 5.3244 s1 = 1 t = 1.9872 error1 = 6.3133
s1 = 2 t = 0.5109 error2 = 0.7510 s1 = 2 t = 0.4331 error2 = 0.7949
s1 = 3 t = 1.1099 error3 = 0.0330 s1 = 3 t = 0.9954 error3 = 0.0690
s = 1 error4 = 2.2614e−004 s = 1 error4 = 5.3830e−004
s = 2 error5 = 1.2829e−008 s = 2 error5 = 3.6341e−008
s = 3 error6 = 2.2281e−015 s = 3 error6 = 2.2953e−015

Table 4.4
Algorithm 3.3

n = 20 n = 50

s1 = 1 t = 1.9849 error1 = 5.3244 s1 = 1 t = 1.9872 error1 = 6.3133
s1 = 2 t = 0.5109 error2 = 0.7510 s1 = 2 t = 0.4331 error2 = 0.7949
s1 = 3 t = 1.1099 error3 = 0.0330 s1 = 3 t = 0.9954 error3 = 0.0690
s2 = 1 error4 = 3.3543e−006 s2 = 1 error4 = 8.6442e−006
s2 = 2 error5 = 1.7511e−015 s2 = 2 error5 = 2.7540e−015

Table 4.5

ε0 = 10−1

Algorithm 2.1 3.1 3.2 3.3
X0 s Error s1 Error s1 s Error s1 s2 Error

i I 8 1.4879e−14 6 5.5123e−14 4 2 3.2015e−13 5 1 3.1657e−14
105i I 20 2.2907e−14 6 3.9046e−14 4 2 1.5796e−14 5 1 4.4408e−14
1010i I 37 4.8876e−14 7 2.8032e−14 5 2 7.3893e−14 5 2 1.8589e−14

Example 4.2. Consider the example mentioned in [5], AX2
+ B X + C = 0, with

A =

17.6 1.28 2.89
1.28 0.84 0.413
2.89 0.413 0.725

 , B =

7.66 2.45 2.1
0.23 1.04 0.223
0.6 0.756 0.658

 , C =

121 18.9 15.9
0 2.7 0.145

11.9 3.64 15.5

 .
Applying Algorithms 2.1 and 3.1–3.3 for X0 = 10 j

· i I, , i =
√
−1, j = 0, 5, 10 respectively. The results are given

in Table 4.5.

Example 4.3. Consider the equation AX2
+ B X + C = 0 with A, B,C ∈ Rn×n ,

A = In, B =


20 −10
−10 30 −10

−10
. . .

. . .

. . . 30 −10
−10 20

 , C =


15 −5
−5 15 −5

−5
. . .

. . .

. . . 15 −5
−5 15

 .

It comes from a damped mass–spring system. We take n = 50, 100, 150 and solve the equation by Algorithms 3.1–
3.3, respectively. The Tables 4.6–4.8 list the numerical results. Let ε0 = 10−1 or 10, ε = 10−12. Starting the iteration
with X0 = 105 In .

It can be seen from the Tables 4.6–4.8 that Algorithms 3.2 and 3.3 are better than Algorithms 2.1 and 3.1.
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Table 4.6
n = 50

Algorithm s1 s2 s Error CPU

2.1 0 0 19 2.9565e−014 0.365935
3.1 7 0 0 2.2575e−014 0.171445
3.2 4 0 3 2.0640e−014 0.158533 ε0 = 10
3.3 5 1 0 4.2407e−014 0.148978 ε0 = 0.1

Table 4.7
n = 100

Algorithm s1 s2 s Error CPU

2.1 0 0 19 4.9027e−014 3.482728
3.1 7 0 0 2.8602e−014 1.705694
3.2 4 0 3 2.1056e−014 1.683122 ε0 = 10
3.3 5 1 0 6.2580e−014 1.509677 ε0 = 0.1

Table 4.8
n = 150

Algorithm s1 s2 s Error CPU

2.1 0 0 19 5.8728e−014 10.466781
3.1 7 0 0 3.4548e−014 4.754391
3.2 4 0 3 2.8255e−014 4.683742 ε0 = 10
3.3 5 1 0 7.5513e−014 4.397326 ε0 = 0.1

5. Conclusions

Higham and Kim obtained better theoretical and numerical results to solve quadratic matrix equation by Newton’s
method with exact line searches than by Newton’s method in [5]. In this paper we analyzed their algorithms and
obtained that when the iterative solution is near the solvent S such that F(S) = 0, it is not necessary to use exact line
searches. Hence our Algorithm 3.2 need less cost of computation than Algorithm 3.1. Our Algorithm 3.3 first used
S̆amanskii technique [11], which is often used to structure high-order algorithm to solve nonlinear equations, to solve
quadratic matrix equation and obtained better theoretical and numerical results.
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