
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Journal of Number Theory 122 (2007) 121–134

www.elsevier.com/locate/jnt

Greenberg’s conjecture and capitulation
in Zd

p-extensions

Andrea Bandini ∗,1

Dipartimento di Matematica, Università della Calabria, Via P. Bucci, Cubo 30B, 87036 Arcavacata di Rende (CS), Italy

Received 10 September 2003; revised 26 January 2006

Available online 22 May 2006

Communicated by David Goss

Abstract

Let p be an odd prime. Let k be an algebraic number field and let k̃ be the compositum of all the
Zp-extensions of k, so that Gal(k̃/k) � Zd

p for some finite d. We shall consider fields k with Gal(k/Q) �
(Z/2Z)n. Building on known results for quadratic fields, we shall show that the Galois group of the maximal
abelian unramified pro-p-extension of k̃ is pseudo-null for several such k’s, thus confirming a conjecture
of Greenberg. Moreover we shall see that pseudo-nullity can be achieved quite early, namely in a Z2

p-
extension, and explain the consequences of this on the capitulation of ideals in such extensions.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let K be a Zd
p-extension of a number field k (d � 1). For any n � 0 let kn be the subfield

of K such that Gal(kn/k) � (Z/pnZ)d . Let Akn be the p-part of the ideal class group of kn. Let

Nkm/kn : km → kn and ikn/km : kn ↪→ km
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be the natural norm and inclusion for any m � n � 0. They induce the corresponding maps
on ideal class groups. The Akn form a direct system with respect to the inclusion maps and a
projective system with respect to the norms. Hence we can define

lim−→
n

Akn

def= AK and lim←−
n

Akn

def= YK.

Let τ1, . . . , τd be independent topological generators of Gal(K/k). Then the map τi → Ti + 1
for i = 1, . . . , d defines a noncanonical isomorphism

Zp

�
Gal(K/k)

� � Zp�T1, . . . , Td� def= Λd,

see [17]. The group YK is canonically isomorphic to Gal(LK/K) where LK is the maximal
abelian unramified pro-p-extension of K . This isomorphism enables us to define an action of
Gal(K/k) on YK via conjugation and YK can be seen as a Λd -module. Greenberg, in [3], has
proved that it is a finitely generated torsion Λd -module. A finitely generated Λd -torsion module
M is called pseudo-null if it has at least two relatively prime annihilators. We shall write M ∼Λd

0
to indicate that M is a pseudo-null Λd -module.

We will study the following:

Conjecture 1. [6, Conjecture 3.5] Let k̃ be the compositum of all the Zp-extensions of k and let
Gal(k̃/k) � Zn

p . Then Y
k̃

is a pseudo-null Λn-module.

This conjecture has been verified for many real quadratic fields (see [2,9] and the references
there) and many imaginary quadratic fields (see [13]). Recently the case of certain cyclotomic
fields has been studied in [11,12]. In [1], building on quadratic fields, we were able to prove
Greenberg’s conjecture for real fields with Galois group isomorphic to (Z/2Z)n and for some
imaginary biquadratic fields. In that paper we had some restrictive hypothesis on the behaviour of
the prime p in k, namely we did not want p to split completely. This limitation prevented us from
building larger imaginary extensions. Now with our new Theorem 9 we are able to overcome this
difficulty and to provide a large class of imaginary fields with Galois group (Z/2Z)n for which
the conjecture holds (Section 4).

Regarding capitulation of ideals, for a Zp-extension a Λ1-module is pseudo-null if and only
if it is finite. Using a well-known theorem of Iwasawa [8, Theorem 10], Greenberg proved that

YK ∼Λ1 0 ⇐⇒ AK = 0

[4, Proposition 2]. In Section 2 we give a short proof for a partial generalization of such statement
which can be applied to all the fields described above (see also [7]). We shall show that for a
Zd

p-extension K/k, containing the cyclotomic Zp-extension of k,

YK ∼Λd
0 	⇒ AK = 0.

The importance of this statement relies on the fact that it relates the pseudo-nullity of YK

with capitulation of ideals in the extension K/k, which is an interesting but still quite mysterious
phenomenon. Thus it provides further motivation for the study of Greenberg’s conjecture.

Similar and more general results have been proved by Lannuzel and Nguyen Quang Do in [10]
for nontotally real fields k and for K = k̃ with an additional hypothesis on the decomposition
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groups of the primes of k lying above p. Therefore we expect capitulation of ideals in k̃ but our
examples in Section 4 will show how it is often possible to obtain capitulation at a lower (almost
“minimal”) level.

In the rest of the paper we will use the following notations. For any number field k let:
kcyc the cyclotomic Zp-extension of k;
k̃ the compositum of all the Zp-extensions of k;
Lk the maximal abelian unramified p-extension of k;
Ak � Gal(Lk/k) the p-part of the ideal class group of k.
We will use the same notations even for fields which have infinite degree over Q, for example:

if kcyc = ⋃
kn then Lkcyc = ⋃

Lkn and

Akcyc = lim−→
n

Akn, Ykcyc = lim←−
n

Akn � Gal(Lkcyc/kcyc),

where the direct limit is taken on the inclusion maps and the projective limit is on the norms.

2. Pseudo-nullity and capitulation

Let k be a number field and let K/k be a Zd
p-extension with d � 2. In this section we briefly

describe a relation between the pseudo-nullity of YK and the triviality of AK .

Proposition 2. YK ∼Λd
0 	⇒ AK ∼Λd

0.

Proof. Let k0 be the maximal unramified extension of k contained in K , i.e., k0 = Lk ∩ K . Let
kn be such that k0 ⊆ kn ⊂ K and Gal(kn/k0) � (Z/pnZ)d . Then

⋃
kn = K and obviously AK is

the direct limit of the Akn . We shall prove that there is no nontrivial unramified extension of kn

in K .
Fix an n and let H be any subfield of K such that Gal(H/kn) � Z/pZ. One can write H =

H ′k′
n, where Gal(H ′/k0) � Z/pn+1Z and Gal(k′

n/k0) � (Z/pnZ)d−1. Consider a Zp-extension
of k0 containing H ′ and contained in K .

H ′

k k0

Z/pn+1Z

(Z/pnZ)d

(Z/pnZ)d−1

kn

Z/pZ

H

k′
n

By the definition of k0 there exists a prime p in k0 lying above p which totally ramifies
in H ′. Indeed some prime has to start ramification at k0 and, in a Zp-extension, a prime is
totally ramified from the level in which its ramification starts. Hence the inertia group of p in
Gal(H ′/k0) is cyclic of order pn+1. For the same prime p the inertia group in Gal(k′

n/k0) is at
most (Z/pnZ)d−1 so p has to be ramified in H ′k′

n/kn, i.e., in H/kn.
Therefore, by class field theory, the norm maps Nkm/kn :Akm → Akn are surjective for all

m � n � 0 and, taking the inverse limit, NK/kn :YK → Akn is surjective for all n. Hence the
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annihilators of YK annihilate Akn for any n � 0 and eventually they annihilate AK as well. It
immediately follows that

YK ∼Λd
0 	⇒ AK ∼Λd

0. �
Let MK be the maximal abelian pro-p-extension of K unramified outside p and let XK =

Gal(MK/K). Then we can define, via conjugation as usual, a Λd -module structure on XK and
we have the following theorem due to Greenberg.

Theorem 3. If K ⊃ kcyc, the cyclotomic Zp-extension of k, then XK contains no nontrivial
pseudo-null Λd -submodules.

Proof. See [5, Theorem 2] or, for a different approach, [14]. �
Remark 4. In [5] the theorem is proved under the hypothesis of Leopoldt’s conjecture for k.
In all our examples in Section 4, k will be an abelian number field and Leopoldt’s conjecture
is known to hold for them. Anyway the hypothesis kcyc ⊂ K used in [14] is, in general, more
suitable for our purposes.

Let ÂK = Hom(AK,μp∞) be the Kummer dual of AK and let χ be the cyclotomic charac-
ter describing the action of Gal(K/k) on μp∞ , i.e., σ(ζ ) = ζχ(σ) for any σ ∈ Gal(K/k) and
ζ ∈ μp∞ . Then ÂK has a natural Λd -module structure defined by

γ ϕ(·) = γ
(
ϕ
(
γ −1·)) = (

ϕ
(
γ −1·))χ(γ )

,

i.e., the natural action on μp∞ or, equivalently, the twist by χ of the trivial action on Q/Z.

Proposition 5. Assume that k ⊃ μp , the pth roots of unity, and that K ⊃ kcyc. Let NK =
K({ pn√

ε: n � 0, ε unit in OK }) where OK is the ring of integers of K . Then ÂK is isomor-
phic to Gal(MK/NK) as Λd -module.

Proof. The hypothesis yields μp∞ ⊂ K and the proposition is a standard consequence of Kum-
mer theory (see also [12]). Explicitly we can describe the isomorphism as follows. Let pn√

a be
a generator of MK . Since kcyc ⊂ K , primes above p are ramified to an arbitrary high power
in K/k. Thus the ideal (a) is the pnth power of some ideal c in OK . Let c be the class in AK

representing c. We define η : ÂK → XK by

(
η(ϕ)

)(
pn√

a
) = ϕ(c)

(
pn√

a
)
.

It is not hard to check that Imη fixes NK and that η provides the desired isomorphism of Λd -
modules. �
Theorem 6. Let k be a number field and let K/k be a Zd

p-extension such that kcyc ⊂ K . Then
YK ∼Λd

0 	⇒ AK = 0.

Proof. By Proposition 2 one has AK ∼Λd
0 and then ÂK ∼Λd

0.
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If k contains μp then, by Proposition 5, ÂK embeds in XK which, by Theorem 3, contains no
nontrivial pseudo-null submodules. Therefore ÂK ∼Λd

0 	⇒ ÂK = 0 and eventually AK = 0.
If k does not contain μp , consider the Zd

p-extension K(μp)/k(μp). As above one gets an

injection ÂK(μp) ↪→ XK(μp).
Let kn be finite subextensions of K such that

⋃
kn = K . All extensions kn(μp)/kn have

the same Galois group and are totally ramified at primes lying above p so, by class field the-
ory, the norms N :Akn(μp) → Akn are surjective. Taking the direct limit one gets a surjection

N :AK(μp) → AK . This, by duality, yields an injection ÂK ↪→ ÂK(μp). Therefore ÂK embeds
in XK(μp) and, using Theorem 3 as in the previous case, this implies AK = 0. �
3. Main theorems

Greenberg’s Conjecture 1 and our Theorem 6 tell us to expect capitulation in k̃, with no
additional hypothesis on k or k̃, but this is not the only case.

For a nontrivial example we can look at biquadratic imaginary fields. Let Gal(k/Q) �
(Z/2Z)2. Let F , E, H be the three quadratic subextensions of k and assume that H is the real
one. We recall that for abelian number fields Gal(k̃/k) � Z

r2+1
p where r2 is the number of pairs

of complex embeddings of k (this is true in general assuming Leopoldt’s conjecture for k, see
[18, Theorem 13.4]).

Assume p �= 2. In [1] we proved the following theorems (Theorem 3.2 and Theorem 3.3
there):

Theorem 7. Assume that:

(1) p does not split in k;
(2) Conjecture 1 holds for F and H , i.e., Y

F̃
∼Λ2 0 and YHcyc ∼Λ1 0;

(3) YEcyc ∼Λ1 0.

Then Y
kF̃

∼Λ2 0.

Theorem 8. Assume that:

(1) F̃ /Fcyc is unramified;
(2) Conjecture 1 holds for F and H , i.e., Y

F̃
∼Λ2 0 and YHcyc ∼Λ1 0;

(3) YEcyc ∼Λ1 0.

Then Y
kF̃

∼Λ2 0.

F

Z/2ZZ/2Z

Z2
p

F̃

Z/2Z

Q H k
Zp

kcyc
Zp

kF̃
Zp

k̃

E
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Proof. (Sketch) The action of Gal(k/F ) on Y
kF̃

gives a decomposition

Y
kF̃

� Y+
kF̃

⊕ Y−
kF̃

.

It is easy to see that Y+
kF̃

� Y
F̃

so this is pseudo-null. For the minus part one can prove that

Y−
kF̃

/T2Y
−
kF̃

� Gal(Lkcyc/Lkcyc ∩ kF̃ )− ↪→ YHcyc ⊕ YEcyc (Theorem 7), or

Y−
kF̃

/T2Y
−
kF̃

� Gal(Lkcyc/kF̃ )− ↪→ YHcyc ⊕ YEcyc (Theorem 8).

In both cases Y−
kF̃

/T2Y
−
kF̃

is finite, i.e., a pseudo-null Λ1-module. By [16, Lemme 2] (see also [1,

Proposition 3.1]) this yields Y−
kF̃

∼Λ2 0 and eventually Y
kF̃

∼Λ2 0. �
Note that Gal(k̃/k) � Z3

p and Gal(F̃ /F ) � Z2
p . Hence Gal(kF̃ /k) � Z2

p and we obtain
pseudo-nullity and capitulation at a level which is lower than the expected one.

In [1] we thought that this might depend on condition (3), i.e., YEcyc ∼Λ1 0 which implies
the conjecture for E but it is not equivalent to it. If p splits in E, (3) does not hold so, in [1],
we did not consider the case in which p splits completely in k. But now we are able to prove a
theorem which applies to that case and which will allow us to go further in the verification of the
conjecture for larger fields (see Section 4 for some examples).

Theorem 9. Assume that:

(1) p totally splits in k;
(2) YFcyc � YEcyc � Zp;
(3) Conjecture 1 holds for H , i.e., YHcyc ∼Λ1 0.

Then Y
kF̃

∼Λ2 0.

Proof. Let Gal(k̃/kF̃ ) � 〈τ3〉 and Gal(kF̃ /kcyc) � 〈τ2〉 with τi − 1 → Ti in the isomorphism
Λ3 � Zp�Gal(k̃/k)�.

Then

Y
k̃
/(T2, T3)Yk̃

� Gal(L0/k̃),

where L0 is the maximal abelian extension of kcyc contained in L
k̃
, the maximal abelian unram-

ified pro-p-extension of k̃ (see the notations at the end of the introduction).
As in [1, Theorem 2.2] one can prove that

Ykcyc � YFcyc ⊕ YHcyc ⊕ YEcyc .

Hence, by hypothesis (2),

Ykcyc � Z2
p ⊕ YHcyc .
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Since F̃ /Fcyc and Ẽ/Ecyc are unramified one has that k̃/kcyc is unramified as well. Therefore
L

k̃
/k̃ unramified 	⇒ L0/kcyc is abelian and unramified, i.e., L0 = Lkcyc .

Since Gal(k̃/kcyc) � Z2
p one has

Y
k̃
/(T2, T3)Yk̃

� Gal(Lkcyc/k̃) � YHcyc

which, by hypothesis (3), is finite.
This, by [16, Lemme 2], yields

Y
k̃
/T3Yk̃

∼Λ2 0.

Moreover

Y
k̃
/T3Yk̃

� Gal(L1/k̃),

where L1 is the maximal abelian extension of kF̃ contained in L
k̃
. But again since k̃/kF̃ is

unramified one has L1 = L
kF̃

. Hence one has an exact sequence

0 → Gal(L
kF̃

/k̃) → Gal(L
kF̃

/kF̃ ) → Gal(k̃/kF̃ ) → 0,

i.e.,

0 → Y
k̃
/T3Yk̃

→ Y
kF̃

→ Zp → 0.

Since the elements on the left and on the right are pseudo-null as Λ2-modules one gets
Y

kF̃
∼Λ2 0. �

Remark 10. In the classical language of Iwasawa λ-invariants for Zp-extensions our hypoth-
esis (2) simply means λ(Fcyc/F ) = λ(Ecyc/E) = 1 and it yields the conjecture for F and E.
Indeed let T2 correspond to a topological generator of Gal(F̃ /Fcyc) (respectively Gal(Ẽ/Ecyc)).
Then, as in Theorem 9,

Y
F̃
/T2YF̃

� Gal(LFcyc/F̃ ) = 0
(
respectively Y

Ẽ
/T2YẼ

� Gal(LEcyc/Ẽ) = 0
)
,

by hypothesis (2). Hence Nakayama’s Lemma yields Y
F̃

= 0 (respectively Y
Ẽ

= 0).

Remark 11. One way to check hypothesis (2) for an imaginary quadratic field F is the following.
Let OF be the ring of integers of F and let pOF = pp̄. Let hF be the class number of F and let
p̄hF = (α) for some α ∈ OF . Then

λ(Fcyc/F ) = 1 ⇐⇒ α /∈ (
Q∗

p

)p

(see [13, Lemma 3.4]).

The following theorem and its corollary will be the main tools for the verification of the
conjecture for several biquadratic fields and even for larger fields.
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Theorem 12. Let Gal(k̃/k) � Zn
p and let K ⊂ k̃ be such that Gal(K/k) � Zd

p for some 2 �
d < n. Assume that:

(1) for any prime p of k dividing p the decomposition group D(p) of p in Gal(K/k) has Zp-rank
at least 2;

(2) YK ∼Λd
0.

Then the conjecture holds for k.

Proof. Let τd+1, . . . , τn be independent topological generators of Gal(k̃/K) corresponding to
the variables Td+1, . . . , Tn in Λn. Then

Y
k̃
/(Td+1, . . . , Tn)Yk̃

� Gal(L0/k̃),

where L0 is the maximal abelian extension of K contained in L
k̃
.

Let pK be a prime of K lying above p and let I (pK) be its inertia group in Gal(L0/K). Since
L0/k̃ is unramified I (pK) embeds in Gal(k̃/K) and it is isomorphic to Zl

p for some 0 � l �
n − d . Moreover let

I (K) =
∑
pK |p

I (pK),

then the fixed field of I (K) is the maximal unramified extension of K contained in L0, i.e.,
Fix I (K) = LK .

LK

I(K)
L0 L

k̃

k
Zd

p

K k̃

Y
k̃

Let p be a prime of k lying below pK and let ν1(p), ν2(p) be two independent elements of its
decomposition group D(p) ⊆ Gal(K/k). The group D(p) fixes pK hence it acts via conjugation
on I (pK) and it acts trivially because I (pK) embeds in Gal(k̃/K) and Gal(k̃/k) is abelian.
Therefore ν1(p) − 1 and ν2(p) − 1 correspond to two relatively prime elements of Λd which
annihilate I (pK). The same holds for all primes of K dividing p. Hence one has

∑
pK |p

I (pK) ∼Λd
0.

Finally, since a finite sum of pseudo-null modules is pseudo-null, we have

I (K) =
∑
pK |p

I (pK) =
∑
p|p

∑
pK |p

I (pK) ∼Λd
0.

By Galois theory there is an exact sequence

0 → Gal(L0/LK) → Gal(L0/K) → Gal(LK/K) → 0
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which corresponds to

0 → I (K) → Gal(L0/K) → YK → 0.

Thus Gal(L0/K) ∼Λd
0 and, in particular,

Gal(L0/k̃) � Y
k̃
/(Td+1, . . . , Tn)Yk̃

∼Λd
0.

Applying repeatedly Lemme 2 of [16] one eventually gets Y
k̃
∼Λn 0. �

Corollary 13. Let F be a quadratic imaginary field and let k/F be a field extension. Let
Gal(k̃/k) � Zn

p . If Y
kF̃

∼Λ2 0 then Y
k̃
∼Λn 0.

Proof. It is a well-known fact that in F̃ /F the hypothesis on the decomposition group is verified.
So it is verified in kF̃ /k as well and the previous theorem applies with K = kF̃ . �
Remark 14. The three theorems on biquadratic fields apply to the cases in which p does not
split in k (Theorem 7), p splits in F but not in H or E (Theorem 8) and p splits completely in k

(Theorem 9). In all the cases described by the theorems we can prove Greenberg’s conjecture
using Theorem 12.

Remark 15. Hypothesis (1) in Theorem 12 holds for K = k̃ if k ⊃ μp or if k contains an imagi-
nary Galois extension of Q (see [10, Théorème 3.2]).

3.1. Examples

Many examples for Theorems 7 and 8 can be found in [1]. We give examples for Theorem 9
with p = 3, F = Q(

√−d ) and E = Q(
√−l ). The hypothesis on H = Q(

√
ld ) has been verified

in several papers (see [2,9,15]). When 3 divides the class number hypothesis (2) has been checked
in [13] and we are taking our values of l and d from [13, Table 6.1]. In the range 2 � l, d � 500
we can take l and d within the following set of numbers: 23, 26, 29, 38, 53, 59, 83, 89, 110, 170,
182, 233, 293, 335, 431, 434, 473, 491, 497.

If 3 does not divide the class number we can use direct computations as in Remark 11.
As an example for F1 = Q(

√−35 ), F2 = Q(
√−95 ) and F3 = Q(

√−299 ) one has:

(i) hF1 = 2, hF2 = hF3 = 8;
(ii) 3OF1 = (3,1+√−35 )(3,1−√−35 ), 3OF2 = (3,1+√−95 )(3,1−√−95 ) and 3OF3 =

(3,1 + √−299 )(3,1 − √−299 );

(iii) (3,1 − √−35 )2 = ( 1−√−35
2 ), (3,1 − √−95 )8 = (71 + 4

√−95 ) and (3,1 − √−299 )8 =
( 137−5

√−299
2 );

(iv)
√−35 = 1 + 32 + 2 · 33 + 2 · 35 + 36 + · · · ,

√−95 = 1 + 2 · 3 + 32 + 33 + 2 · 35 + 2 · 37 +
38 + · · · and

√−299 = 1 + 3 + 2 · 32 + 2 · 33 + 35 + 2 · 36 + 37 + 38 + · · · in Q3.

Let v3 be the 3-adic valuation. It is easy to check that

v3

(
1 − √−35

)
= 2 and v3(71 + 4

√−95 ) = v3

(
137 − 5

√−299
)

= 8.

2 2
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Hence these are not cubes in Q3 and this yields hypothesis (2) for F1, F2 and F3.
In the same way one can prove hypothesis (2) for Q(

√−d ), d = 2, 5, 11, 14, 17 (and many
more, we are only mentioning the ones which are going to be used in the examples in Section 4).

Remark 16. In all these cases Ykcyc is not finite which yields Akcyc �= 0. So kF̃ is the “minimal”
extension in which ideals capitulate. To our knowledge there are no known examples of imagi-
nary biquadratic fields for which capitulation of ideals can be delayed further, i.e., examples in
which A

kF̃
�= 0 and A

k̃
= 0.

4. Application: fields with Galois group (ZZZ/2ZZZ)n

Iterating the application of the three theorems on biquadratic fields given in the previous
section it is possible to build larger extensions for which Greenberg’s conjecture holds. The
general situation is the following:

L

F F ′ M k
Z2

p

kF̃

N

where F is an imaginary quadratic field, F ′ is an extension of F , k is a biquadratic extension
of F ′ and L, M , N are the three quadratic extensions lying between F ′ and k.

If p is odd then using the action of Gal(k/F ′) on Y
kF̃

we obtain a decomposition

Y
kF̃

�
3⊕

i=0

Y
χi

kF̃
,

where the χi are the characters of Gal(k/F ′) and, for any i, Y
χi

kF̃
is the submodule of Y

kF̃
on

which Gal(k/F ′) acts via χi or, equivalently, the submodule of Y
kF̃

on which Ker χi acts trivially.
Working as in [1] it is not hard to prove that this decomposition corresponds to

Y
kF̃

� Y
F ′F̃ ⊕ Y

LF̃
⊕ Y

MF̃
⊕ Y

NF̃
.

Hence if all the four modules on the right are pseudo-null as Λ2-modules one gets Y
kF̃

∼Λ2 0
which has the following consequences:

1. by Corollary 13 it yields Greenberg’s conjecture for k;
2. by Theorem 6 it yields A

kF̃
= 0, i.e., ideals capitulate in the Z2

p-extension kF̃ which is, in

general, much smaller than k̃.



A. Bandini / Journal of Number Theory 122 (2007) 121–134 131
4.1. Examples

In this section we consider p = 3 and give some examples of the procedure described above.
We take F = Q(

√−2 ) as “base field.” We start with F ′ = F and take L, M , N among the
biquadratic fields F(

√−d ) which can be found using Theorems 8 and 9. To apply those theorems
we need:

(a) d ≡ 0,1 (mod 3) and 3 does not divide the class number of Q(
√−d ) (this yields

YQ(
√−d )cyc

= 0), for Theorem 8;
(b) d among the values given in Section 3.1, for Theorem 9.

With this choice if we let H be any of the fields F ′, L, M , N and k listed in Table 1, we
have Y

HF̃
∼Λ2 0 (note that [k : Q] = 8). After the first step the iteration for fields of larger

degree does not require the use of the theorems anymore and is straightforward. A first iteration
provides fields k of degree 16 (Table 2), and a second one gives fields of degree 32 (Table 3).
Starting with a different F the same results can be proved for many more fields. An example for
F = Q(

√−23 ) (again ending with a field of degree 32) is provided in Tables 4, 5 and 6.
The class numbers of the fields involved in the tables can be found, for example, at the website

http://tnt.math.metro-u.ac.jp.

Table 1
F = F ′ = Q(

√−2 )

F ′ L M N k F ′ L M N k

F F(
√−3 ) F (

√−6 ) F (
√−1 ) F (

√−3,
√−1 ) F F(

√−3 ) F (
√−57 ) F (

√−38 ) F (
√−3,

√
19 )

thm 8 thm 8 thm 8 thm 8 thm 8 thm 9

F F(
√−3 ) F (

√−30 ) F (
√−5 ) F (

√−3,
√−5 ) F F(

√−3 ) F (
√−138 ) F (

√−23 ) F (
√−3,

√−23 )

thm 8 thm 8 thm 9 thm 8 thm 8 thm 9

F F(
√−3 ) F (

√−15 ) F (
√−10 ) F (

√−3,
√

5 ) F F(
√−3 ) F (

√−69 ) F (
√−46 ) F (

√−3,
√

23 )

thm 8 thm 8 thm 8 thm 8 thm 8 thm 8

F F(
√−3 ) F (

√−42 ) F (
√−7 ) F (

√−3,
√−7 ) F F(

√−3 ) F (
√−210 ) F (

√−35 ) F (
√−3,

√−35 )

thm 8 thm 8 thm 8 thm 8 thm 8 thm 9

F F(
√−3 ) F (

√−21 ) F (
√−14 ) F (

√−3,
√

7 ) F F(
√−3 ) F (

√−105) F (
√−70) F (

√−3,
√

35)

thm 8 thm 8 thm 9 thm 8 thm 8 thm 8

F F(
√−3 ) F (

√−66 ) F (
√−11 ) F (

√−3,
√−11 ) F F(

√−3 ) F (
√−330) F (

√−55 ) F (
√−3,

√−55 )

thm 8 thm 8 thm 9 thm 8 thm 8 thm 8

F F(
√−3 ) F (

√−33 ) F (
√−22 ) F (

√−3,
√

11 ) F F(
√−3 ) F (

√−165) F (
√−110) F (

√−3,
√

55 )

thm 8 thm 8 thm 8 thm 8 thm 8 thm 9

F F(
√−3 ) F (

√−78 ) F (
√−13 ) F (

√−3,
√−13 ) F F(

√−3 ) F (
√−570) F (

√−95 ) F (
√−3,

√−95 )

thm 8 thm 8 thm 8 thm 8 thm 8 thm 9

F F(
√−3 ) F (

√−39 ) F (
√−26 ) F (

√−3,
√

13 ) F F(
√−3 ) F (

√−285) F (
√−190) F (

√−3,
√

95 )

thm 8 thm 8 thm 9 thm 8 thm 8 thm 8
F F(

√−3 ) F (
√−102 ) F (

√−17 ) F (
√−3,

√−17 ) F F(
√−3 ) F (

√−627) F (
√−418) F (

√−3,
√

209 )

thm 8 thm 8 thm 9 thm 8 thm 8 thm 8
F F(

√−3 ) F (
√−51 ) F (

√−34 ) F (
√−3,

√
17 ) F F(

√−3 ) F (
√−6270) F (

√−1045 ) F (
√−3,

√−1045 )

thm 8 thm 8 thm 8 thm 8 thm 8 thm 8
F F(

√−3 ) F (
√−114 ) F (

√−19 ) F (
√−3,

√−19 )

thm 8 thm 8 thm 8
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Table 2
F ′ = Q(

√−2,
√−3 )

F ′ L M N k

F(
√−3 ) F ′(

√−5 ) F ′(
√

5 ) F ′(
√−1 ) F ′(

√−5,
√−1 )

F (
√−3 ) F ′(

√−5 ) F ′(
√

35) F ′(
√−7 ) F ′(

√−5,
√−7 )

F (
√−3 ) F ′(

√−5 ) F ′(
√

7 ) F ′(
√−35 ) F ′(

√−5,
√

7 )

F (
√−3 ) F ′(

√−5 ) F ′(
√

55 ) F ′(
√−11 ) F ′(

√−5,
√−11 )

F (
√−3 ) F ′(

√−5 ) F ′(
√

11 ) F ′(
√−55 ) F ′(

√−5,
√

11 )

F (
√−3 ) F ′(

√−5 ) F ′(
√

95 ) F ′(
√−19 ) F ′(

√−5,
√−19 )

F (
√−3 ) F ′(

√−5 ) F ′(
√

19 ) F ′(
√−95 ) F ′(

√−5,
√

19 )

F (
√−3 ) F ′(

√−5 ) F ′(
√

209 ) F ′(
√−1045 ) F ′(

√−5,
√

209 )

F (
√−3 ) F ′(

√−1 ) F ′(
√

7 ) F ′(
√−7 ) F ′(

√−1,
√−7 )

F (
√−3 ) F ′(

√−1 ) F ′(
√

11 ) F ′(
√−11 ) F ′(

√−1,
√−11 )

F (
√−3 ) F ′(

√−1 ) F ′(
√

13 ) F ′(
√−13 ) F ′(

√−1,
√−13 )

F (
√−3 ) F ′(

√−1 ) F ′(
√

17 ) F ′(
√−17 ) F ′(

√−1,
√−17 )

F (
√−3 ) F ′(

√−1 ) F ′(
√

19 ) F ′(
√−19 ) F ′(

√−1,
√−19 )

F (
√−3 ) F ′(

√−1 ) F ′(
√

23 ) F ′(
√−23 ) F ′(

√−1,
√−23 )

Table 3
F ′ = Q(

√−2,
√−3,

√−5 )

F ′ L M N k

F(
√−3,

√−5 ) F ′(
√−1 ) F ′(

√
7 ) F ′(

√−7 ) F ′(
√−1,

√−7 )

F (
√−3,

√−5 ) F ′(
√−1 ) F ′(

√
11 ) F ′(

√−11 ) F ′(
√−1,

√−11 )

F (
√−3,

√−5 ) F ′(
√−1 ) F ′(

√
19 ) F ′(

√−19 ) F ′(
√−1,

√−19 )

F (
√−3,

√−5 ) F ′(
√−11 ) F ′(

√
209 ) F ′(

√−19 ) F ′(
√−11,

√−19 )

Table 4
F = F ′ = Q(

√−23 )

F ′ L M N k

F F(
√−46 ) F (

√−2 ) F (
√−1 ) F (

√
2,

√−1 )

thm 8 thm 9 thm 8

F F(
√−46 ) F (

√−6 ) F (
√−3 ) F (

√
2,

√−3 )

thm 8 thm 8 thm 8

F F(
√−46 ) F (

√−138 ) F (
√−69 ) F (

√
2,

√
3 )

thm 8 thm 8 thm 8

F F(
√−46 ) F (

√−26 ) F (
√−13 ) F (

√
2,

√−13 )

thm 8 thm 9 thm 8

F F(
√−46 ) F (

√−598 ) F (
√−299 ) F (

√
2,

√
13 )

thm 8 thm 8 thm 9

F F(
√−46 ) F (

√−78 ) F (
√−39 ) F (

√
2,

√−39 )

thm 8 thm 8 thm 8

F F(
√−46 ) F (

√−1794 ) F (
√−897 ) F (

√
2,

√
39 )

thm 8 thm 8 thm 8
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Table 5
F ′ = Q(

√−23,
√

2 )

F ′ L M N k

F(
√

2 ) F ′(
√−3 ) F ′(

√
3 ) F ′(

√−1 ) F ′(
√−3,

√−1 )

F (
√

2 ) F ′(
√−3 ) F ′(

√
39 ) F ′(

√−13 ) F ′(
√−3,

√−13 )

F (
√

2 ) F ′(
√−3 ) F ′(

√−39 ) F ′(
√

13 ) F ′(
√−3,

√
13 )

Table 6
F ′ = Q(

√−23,
√

2,
√−3 )

F ′ L M N k

F(
√

2,
√−3 ) F ′(

√−1 ) F ′(
√

13 ) F ′(
√−13 ) F ′(

√−1,
√−13 )

Remark 17. Our new Theorem 9 is necessary for the iteration because we need a large amount
of biquadratic fields to get extensions of degree 8, 16 and so on and, among these fields, one is
bound to find some in which 3 (or p in general) totally splits.

Remark 18. For all the k’s in Tables 1–6 we have proved that Y
kF̃

∼Λ2 0 hence ideals capitulate
in this Z2

3-extension. These fields have degree 8 (Tables 1, 4), 16 (Tables 2, 5) and 32 (Ta-
bles 3, 6). So in this setting capitulation comes quite early since k̃/k is a Z5

3, Z9
3, Z17

3 -extension,
respectively.
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