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In this paper, geodetic graphs of diameter two are studied. A structural 
description of them is given in terms of the number of vertices, valences, and 
complete subgraphs. 

1. INTRODUCTION 

In this paper, G will denote a connected undirected graph without loops 
or multiple edges. 

G is geodetic if every pair of vertices is connected by a unique shortest 
arc. The problem of characterizing all geodetic graphs was first proposed 
by Ore [2, p. 1051. A characterization of planar geodetic graphs was 
found by Watkins [5], who together with this writer changed and shortened 
the proof and presented it in [4]. 

A partial characterization of geodetic graphs of diameter two, along 
with some of the work in [4], first appeared in the doctoral dissertation 
of this writer [3]. These results, together with a number of improvements, 
are presented here. 

2. DEFINITIONS AND NOTATION 

Except where otherwise indicated, the notation and terminology in this 
paper are the same as that used in [2] and [II}. 

We shall denote the vertices of a graph G by V(G). If H is a subgraph 
of G, G - H denotes the subgraph of G obtained by deleting V(H) from 
V(G) and removing all edges from G that have an endpoint in V(H). A 
subset S of V(G) is said to generate a subgraph if H is the section subgraph 
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GEODETIC GRAPHS 267 

on S (i.e., V(H) = S and H contains all edges of G connecting two vertices 
of S). 

An arc A whose terminal vertices are x and y will be denoted A[x, JJ]. 
If a, b E V(A) then A[a, b] is the subarc whose terminal vertices are a, b. 
An edge between a and b is denoted [aa, b]. 

If S is a set, then 1 S 1 will denote its cardinality. In the case where S is 
an arc, 1 S 1 will mean the length of S. A circuit C is even or odd if its 
length is even or odd respectively. We can assign an orientation to each 
circuit C. If C is an even circuit and X, y E V(C), we shall say that x, y are 
C-opposite if 1 C[x, ~11 = ] C[y, xl]. If C is an odd circuit and x E V(C), 
then there are vertices y, z E V(C) such that y, z are adjacent on C and 
1 C[x, ~~11 = I C[z, xl\; we then say that y, z are each C-opposite to x. 

The distance between x, y E V(G), denoted d(x, r), is the length of a 
shortest arc connecting these vertices. The diameter of G is the maximum 
of the distances between two vertices. If there is a unique shortest arc 
joining x, y, we call it a geodesic and denote it P[x, JJ]. Clearly, if r[x, y] 
exists then d(x, JJ) = 1 r[x, ~~11. Any subarc of a geodesic is also a geodesic. 
If every pair of vertices of G is connected by a unique shortest arc, then 
G is geodetic. 

Any vertex o with valence p(o) 2 3 is called a node; u is an antinode if 
p(v) < 2. If A[x, JJ] is an arc in which x, y are the only nodes, then A is 
called a suspended arc. Let C be a circuit and S[x, ~1 be an arc which 
intersects C only in x, y. We say that S is a secant of C if it is a geodesic 
(i.e., S[x, JJ] = r[x, JJ]). Clearly, in a geodetic graph every even circuit 
must contain a secant. The subgraph of G consisting of a circuit C and all 
secants of C is called the wheel induced by C. 

We shall let p,, denote the maximum valence in G. If H is a subgraph 
of G, then ~~(0) is the valence of u in H. If x E V(G) we define the vertex 
distance sets At(x) by 

Ai = {u E V(G)] d(x, u) = i}. 

If u E V(G), we shall then use the notation P+&ZJ) to mean the number 
of edges from o to vertices in A,(x). 

A clique is defined as a maximal complete subgraph U, , k > 3; that is, 
a complete subgraph on at least three vertices which is contained in no 
larger complete subgraph. A clique vertex is a vertex belonging to some 
clique; clique edge is similarly defined. If a vertex lies on no clique, it is 
called a nonclique vertex. 

G is a Moore graph with diameter k if G is a regular graph with diameter 
k and ] V(G)] = 1 + p &, (p - I)“-l where p is the constant valence. 
For a Moore graph of diameter 2, this condition becomes I V(G)1 = 1 + p2. 

s82b/v/3-5 
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A graph P is a pyramid if it has a decomposition P = H v B where B 
is a complete graph on it vertices for some n (let a, , a2 , a3 ,..., a, be these 
vertices) and H = uk, Ai[u, ai] where the Ai are arcs (called the sides 
of the pyramid), Ai n Aj = (~1 for i # j, and Ai n B = {ai} for i = 
1) 2, 3 )...) n. B is called the base of the pyramid and v is the apex of the 
pyramid. We say that P is a regular pyramid if j Ai / = 1 Ai / for all 
Ai, Ai E H; then 01 = [ Ai I is called the altitude of the pyramid. 

3. GENERAL RESULTS ON GEODETIC GRAPHS 

The following two theorems are proven in [4]. 

THEOREM 3.1. G is geodetic if and onIy if every lobe graph of G is 
geodetic. 

THEOREM 3.2. In a geodetic graph, a suspended arc is a geodesic. 

The appearance of circuits of even length in a geodetic graph often 
induces certain types of configurations in the graph. In our study of 
diameter two geodetic graphs, the 4- and 6-circuits play important roles. 
We thus obtain the following two theorems, the first being obvious. 

THEOREM 3.3. If a geodetic graph contains a circuit of length four, then 
it contains a complete graph on the vertices of this circuit. 

THEOREM 3.4. If a geodetic graph contains a circuit C of length six, 
then C and its secants form one of the for/owing three conjigurations: 

(I) A complete six-graph. 

(II) Labeling the vertices of C cyclically as v, , v$ ,. .., v6 , an edge 
[vl , vg] and an arc A[v 2 , v5] of length two whose intermediate 
vertex is not on C. 

(III) Labeling as in (II), three arcs of length two, A,[v, , up], A,[v, , v5], 
A,[v, , vJ, whose intermediate vertices are all d@rent and not 
on C. 

Proof. Assume the wheel induced by C is not U, . 
If there is an edge connecting a pair of C-opposite vertices, repeated 

application of Theorem 3.3 will result in U, . Similarly if two secants of C 
are edges joining nonadjacent vertices on C, a 4-circuit will be formed and 
U, will result. 

Thus, the secants of C can be either one edge such as [vl , v3] or arcs of 
length two connecting C-opposite vertices. The only way to put in secants 
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so as to avoid creating 4-circuits (which will result in U,) and to still 
guarantee that unique shortest arcs exist between all vertices of C, is by 
configurations (II) and (III). 

THEOREM 3.5. If H = U, C G where G is any geodetic graph and tf 
there is a vertex v E V(G) - V(H) such that v is adjacent to two vertices 
of H, then V(H) u {v} generates a complete subgraph H’ = U,,, . 

Proof. Assume a, b E V(H) are adjacent to v. Let c E V(H), c # a, b. 
Then a, c, b, v determine a 4-circuit, thus generating a complete 4-graph. 
So v is adjacent to each vertex c E V(H). Thus V(H) u {v} generates a 
complete graph H’ = U,,, . 

COROLLARY 3.5.1. If H1 = U, , H, = Uj are subgraphs qf a geodetic 
graph G, and if H1 and H, have an edge in common, then V(H,) v V(HJ 
generates a complete subgraph H C G. 

Proof. Let [a, b] be the common edge and v be any vertex of HI. 
Then v is adjacent to a, b E V(H,) n V(H,). So, by Theorem 3.5, v is 
adjacent to every vertex of Hz . Thus, every pair of vertices, one from H1 
and the other from Hz , are adjacent. Hence V(H,) U V(H,) generates a 
complete graph H. 

COROLLARY 3.5.2. Let G be a geodetic lobe graph and let x E V(G), 
If there are vertices a, , a, E A,(x) and b, , b, E A,(x) where [a, , b,] and 
[az , b2] are edges, then at least one of the edges [a, , az] or [b, , b,] cannot 
exist. 

Proof. If both edges exist, then by Theorem 3.3 {al, a2, b, , b,} 
generates a complete 4-graph. Since x is adjacent to two of the vertices 
of the U, , Theorem 3.5 implies that x is adjacent to bl, contrary to 
assumption. 

4. PRINCIPAL RESULTS 

The following two theorems can be proven in a straightforward manner. 

THEOREM 4.1. If G is a geodetic graph of diameter two that is not a 
lobe graph, then it consists of a set of complete graphs, all attached at a 
single vertex. 

THEOREM 4.2. G is a geodetic lobe graph of diameter two if and only 
tf the minimal circuit containing any pair of vertices is of length three or$ve. 
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While the preceding theorem gives a necessary and sufficient condition 
for a lobe graph to be geodetic of diameter two, it does not adequately 
describe the types of graphs involved. The characterization we are aiming 
at gives specific results on the structure of such graphs, with relationships 
involving the number of vertices, clique sizes, and valences. 

From here on, we shall only be discussing geodetic lobe graphs of 
diameter two. The letter G will denote such a graph. We will let n represent 
the number of vertices in G. 

The major results of this paper, which will be proven in section 5, are 
summarized here. 

I. If G contains a vertex of degree two, then G is a regular 
pyramid with altitude two and base U,,, , m 3 2. 

II. If G contains no cliques then G is a Moore graph of diameter 
two. 

For the rest of this summary, assume that G contains a clique. 

III. 
IV. 

V. 

VI. 

VII. 

VIII. 
IX. 
X. 

XI. 

All cliques in G are of the same order; call it k. 

If an edge has each endpoint on a clique, then the edge itself 
lies in a clique. 
If x is a nonclique vertex and u E A,(x) then p(v) p(x) = n - 1. 
p,, = p(x) if and only if either x is a clique vertex or x is at 
distance two from all clique vertices. 

If x is a nonclique vertex at distance one from some clique 
then p(x) = pO - (k - 2). 

po 3 W - 1). 
If all vertices are clique vertices then p. 3 k(k - 1). 
n = po2 - po(k - 2) + 1. 
If G contains a clique H = U, with the property that, for 
each vertex ai E V(H) there exists a clique Hi where 
V(H) n V(HJ = {a,} and AI C V(H) u V(Hi) then G1 = 
G - H is a geodetic lobe graph of diameter two. If k = 3, 
then G1 is the Petersen graph. If k > 4 then G, has clique size 
k - 1 and no two distinct cliques have a common vertex 
(by IV there cannot be an edge connecting them either). 

The graphs in Figs. 1 and 2 are graphs of the type described in XI. 
The graph in Fig. 1 is for the case k = 3 (the outer triangle is IS). This 
graph is the smallest (in terms of number of vertices) nonregular geodetic 
lobe graph of diameter two in which all vertices are nodes. The graph in 
Fig. 2 has k = 4 and the complete 4-graph with darkened edges is H. 
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FIGURE 1 

FIGURE 2 

5. PROOFS OF RESULTS 

In this section we shall continue to let G denote a geodetic lobe graph 
of diameter two and to let n represent the number of vertices in G. 

LEMMA 5.1. For every vertex v E V(G) there exists at least one vertex 
w  E V(G) such that d(v, w) = 2. 
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Proof. Assume that u is of distance one from all other vertices. Let 
X, y E V(G) be distinct from u and let B[x, y] be the minimal arc joining 
x and y which doesn’t pass through v. If 1 B[x, y]l > 1 let x = x,, , x1 , 
x2 ,..., xn = y be the vertices, in order, on B. u is adjacent to each xi and 
so x, v, x2 , x, are on a 4-circuit, thus giving the edge [x, x2], contrary 
to the minimality of B. Hence / B[x, y]I = 1. Therefore all vertices of G 
are joined by an edge and so G is a complete graph, contrary to the fact 
that G is of diameter two. 

LEMMA 5.2. For any x E V(G), A,(x) is contained in no clique. 

ProoJ Assume A,(x) is contained in a clique. Let b, E A,(x) where b, is 
adjacent to a, E A,(x). Since, by Theorem 3.3, b, is not adjacent to any 
other vertex in A,(x), there is a vertex b, E A,(x) such that b, and b, are 
adjacent. Let a, E A,(x) be adjacent to b, . By Corollary 3.5.2, a, and a, 
cannot be adjacent. However, since A,(x) is contained in a clique, this 
only leaves the possibility a, = a2 . But then all paths from b, to x pass 
through a, , contrary to the assumption that G is a lobe graph. 

LEMMA 5.3. If al , a2 E A,(x) for some x E V(G), then if al , a, are not 
adjacent and if b, E A,(x) is adjacent to a, , there exists exactly one vertex 
bz E A,(x) which is adjacent to a2 and b, . 

Proof. In Theorem 3.3, b, has at most one neighbor in A,(x). Hence 
d(a, , b,) = 2, and the unique common neighbor of a2 and b, must 
necessarily lie in A,(x). 

THEOREM 5.1. If al , a2 E A,(x)for some x E V(G), then 

f.4,&J = f,4,da2). 

Proof. Assume a, , a2 are not adjacent. 
Let S(aJ = {y E A,(x)/ y is adjacent to ai}, i = 1, 2. 
If x1 E S(a,) then there is a vertex y1 E S(a,) such that x1 , y1 are adjacent 

(Lemma 5.3). Let x2 E S(a,) with xz # x1 . If x2 is adjacent to y1 then 
y1 , x1 , a, , x2 are on a 4-circuit, giving Iv1 , al]. Then x, a, , yl , a, are 
on a 4-circuit, giving [x, yl] contrary to the fact that y1 E AZ(x). 

Continuing in this manner, for each xi E S(al) there is a distinct yt E S(a,> 
such that [xi , yi] exists. So we have I S(a,)I < I S(a& Similarly, we can 
reverse the roles of a, and a2 to get 1 S(a,)l < I S(a&. 

Hen= pAad = I Wd = I %>I = pA,d4. 
If a, , a2 are adjacent, let a3 E A,(x) be a vertex not adjacent to either 
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of them. The existence of such a vertex is guaranteed by Theorem 3.5 
and Lemma 5.2. Then by the above, 

COROLLARY 5.1.1. I f  x E V(G) is not a clique vertex and ifal , a2 E A,(x), 

then ~(4 = ~(a~). 

THEOREM 5.2. If x is a nonclique vertex in G and if v E A,(x), then 
p(v) -p(x) = 12 - 1. 

Proof. Since x is not on a clique, no two vertices of A,(x) are adjacent. 
Hence, if wean we have pa,cr)(w) = P,+(V) = p(v) - 1. Also, if 
b E A,(x) is adjacent to a, E A,(x), then it is adjacent to no other vertex 
in A,(x). 

We know that n = I A,,(x)1 + 1 A,(x)1 + 1 A,(x)]. 
It follows that n = 1 + p(x) + p(x) [p(v) - I]. 
Thus p(v) . p(x) = IZ - 1 

THEOREM 5.3. If G has no cliques then G is regular and n = 1 + p02. 

ProoJ Let x E V(G). 
By Corollary 5.1.1, we know that all vertices in A,(x) have the same 

valence, call it p1 . 
If a E A,(x), let b E A,(x) be adjacent to a. Then p(x) = (n - 1)/p(b) = 

p(u). Hence all vertices in A2(x) have the same valence as each other and 
as x; call this valence p2 . Let c E A,(x) be a vertex not adjacent to a E A,(x). 
Then d(a, c) = 2 and hence c E A,(a). So by the preceding argument, 
p(u) = p(c). Hence, p1 = p2 and so G is regular. 

That n = 1 + po2 follows from Theorem 5.2. 

It is clear that all geodetic lobe graphs of diameter two without cliques 
are Moore graphs with diameter two. Conversely, given a Moore graph 
with diameter two, the graph is clearly a lobe graph and contains no 
cliques. It is easy to verify that every pair of vertices in this graph lies on 
a 5-circuit. So, by Theorem 4.2, the graph is geodetic. Hence, the set of 
geodetic lobe graphs of diameter two without cliques is the same as the 
set of Moore graphs with diameter two. 

We then have the following theorem, which stated for Moore graphs, 
is proven in [I]. 
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THEOREM 5.4 (Hoffman and Singleton). If G has no cliques then the 
only possibilities for pO are 2, 3, 7, and 57. If p,, = 2 we have a 5-circuit; 
for pO = 3 we get the Petersen graph. lf p. = 7 the graph obtained is unique 
(its incidence matrix is given in [I]). 

The existence of a graph as described in the preceding theorem with 
pO = 57 is still undecided. 

LEMMA 5.4. If H = U, is a clique of G, then all vertices of H have the 
same valence. 

Proof. Let X, y E V(H) and take z as any other vertex of H. Then 
x, Y E A,(z). 

BY Theorem 5.1, pa,&) = P~,M(Y). 
But 

P(X) = PA*&) + (k - I), 

P(Y) = PA,dY) + (k - 1). 

Hence, P(X) = P(Y). 

LEMMA 5.5. Let H = LJ, be a clique of G. If a E V(H), b 4 V(H), and 
the edge [a, b] exists and is not on any clique, then p(b) = p(a) - (k - 2). 

Proof. Let c E V(H), c # a. Then c, b E A,(a). 

BY Theorem 5.4 p.+)(b) = pa,d4. 
But 

p(b) = p/w@) + 1, 

P(C) = PA*&) + (k - 0 

Hence, p(b) = p(c) - (k - 2). Since p(a) = p(c), the result follows. 

LEMMA 5.6. If Hl = U, , Hz = Vi are cliques of G with a vertex in 
common, then k = j and all vertices on HI and Hz have the same valence. 

Proof. Let x be the common vertex and let b E V(HJ, c E V(H,) with 
b # x, c # x. 

Then, by Lemma 5.4, p(b) = p(x) = p(c). 
But 

p(b) = pAa + (k - 1)s 

P(C) = PA&)(C) + (j - 1). 

Since p,+)(b) = p+)(c), it follows that k = j. 
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DEFINITION. Given two cliques H1 and H, , the distance between 
them is defined as: 

d(fh , K) = min(d(a, b)l a E V(H,), b E V(H,)}. 

LEMMA 5.7. Let HI = U, , H, = Uj be cliques of G. Ifd(H, , H,) = 1 
then k = j and, if x E V(H,), y E V(H,) are vertices such that d(x, y) = 1, 
then there exists a clique H3 = U, containing [x, y]. The valences of the 
vertices of HI , H, , and H3 are all the same. 

Proof. If [x, y] does not lie on a clique then by Lemma 5.5: 

P(Y) = ~(4 - (k - 21, 

PW = Pcv> - 0 - 2). 

Hence k + j = 4 which is impossible since k, j > 3. 
So [x, y] is an edge of some clique having a vertex in common with 

HI and H, . The result now follows from Lemma 5.6. 

LEMMA 5.8. Let HI = U, , Hz = Uj be cliques in G and let pi be the 
valence of the vertices of Hi , i = 1,2. If d(H, , Hz) = 2 then p1 = pz 
andk = j. 

Proof. Let x E V(H,), y E V(H&. Then there is a vertex b adjacent to x 
and y. If there is a clique containing b then the desired results follow from 
Lemma 5.7. 

If b is not on a clique, then by Lemma 5.5: 

p(b) = P(X) - (k - 2) = p1 - (k - 2), 

p(b) = P(Y) - (j - 2) = pz - (j - 2). 

Sop,-- =pz-j. 
Theorem 5.2 tells us that: 

p1 = ~(4 = (n - W(b) = P(Y) = pz . 

fience, pz = pz and k = j. 

In a geodetic lobe graph of diameter two, the distance between any two 
cliques is zero, one, or two. The results of the preceding three lemmas can 
then be summarized as the following theorem. 

THEOREM 5.5. If HI = U, , H, = Uj are cliques of G then k = j and 
all clique vertices of G have the same valence. 
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LEMMA 5.9. Assume that G contains a clique H. If x E V(H) then 
p(x) = p,, . Zf there is a vertex y E V(G) such that y is distance two from all 
cliques, then p(y) = p,, . 

Proof. By Theorem 5.5, all clique vertices have the same valence, 
call it p’. If b is a nonclique vertex at distance one from some clique, then, 
by Lemma 5.5, p(b) < p’. 

If there is a vertex y E V(G) which is distance two from all cliques 
and if x is a clique vertex, then there is a nonclique vertex b adjacent to 
both x and y. By Theorem 5.2: 

P(X) = @ - 1)/p(b) = P(Y). 

Hence, p(y) = p’ = p,, . 

DEFINITION. If G contains a clique Wt we call k the clique size of G. 
If G contains no clique, we let k = 2 be the clique size. 

THEOREM 5.6. If k is the clique size of G then for any x E V(G) either 
p(x) = p,, or p(x) = pO - (k - 2). If G contains a clique then p(x) = 
pO - (k - 2) ifand only ifx is a nonclique vertex at distance one from some 
clique. 

Proof. This follows from Lemmas 5.5 and 5.9, and from Theorem 5.3. 

THEOREM 5.7. If G contains a vertex of valence two, then G is a regular 
pyramid with altitude two and base L?, , m > 2. 

Proof. If G is an odd circuit then it is a 5-circuit, which is a regular 
pyramid with altitude two and base U, . 

If G is not an odd circuit, then the suspended arc S containing the vertex 
of valence two must be of length two because suspended arcs are geodesics. 
Let the vertices of S be a, b, c where p(b) = 2 and p,, = p(a) = p(c) > 2. 

By Theorem 5.2, 2p,, = p(b) p(a) = n - 1 or n = 2p, + 1. 
Since G is not regular it has a clique U, . By Theorem 5.6, 2 = p(b) = 

po-(k-2)givingk=p,andn=2k+l. 
Let H = U, be a clique in G and let the vertices of H be v1 , v2 ,..., vk . 

Since pn(vi) = k - 1 and p(vJ = k, every vertex in H is adjacent to a 
single edge not in H and these edges cannot be clique edges. Let the other 
end points of these edges be a, , a2 ,..., a, . 

The ai are nonclique vertices at distance one from a clique, so p(ai) = 2, 
i = 1, 2 ,..., k. 

Let x be the vertex other than vr which is adjacent to a1 . Then p(x) = 
pO = k. 
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Since rr = 2k + 1 and we already have this number of vertices, the 
graph can only be completed by x being adjacent to u2, a3 ,..., ak: . Thus 
we have a regular pyramid with altitude two, apex x, and base H = U, . 

THEOREM 5.8. Zf k is the clique size of G then n = pea - p,(k - 2) + 1. 

Proof. If k = 2, the result follows from Theorem 5.4. 
If G contains a clique and also has a nonclique vertex, then Theorem 5.2 

and Lemma 5.5 give n - 1 = p,,(p,, - (k - 2)) and the result follows. 
If all vertices of G are clique vertices then for any x E V(G) we have 

n = I A,(x)1 + I Al(x)/ + I A2W H en=, n = 1 + p. + po[po - (k - 01 
and the desired result follows. 

THEOREM 5.9. Assume that G has no vertex of valence two and that G 
contains a clique U, . Then p. > 2(k - 1). 

Proof. If all vertices are clique vertices, then Lemma 5.7 implies that 
every edge lies on a clique. Lemma 5.2 then says that each vertex lies on 
at least two cliques, so p. 3 2(k - 1). 

If G contains both clique and nonclique vertices, then assume p. = k + r 
where k + I < 2(k - I), hence r + 2 < k. Let x be a clique vertex. Then 
x lies on one clique H = U, and p(x) = k + r. Let a, , a, ,..., ak+r be the 
vertices of A,(x), labeled so that a, , a2 ,..., a,-, are vertices of H. It follows 
from Lemma 5.7 that uk ,..., u~+~ are not clique vertices. If a E A,(x) then 
p,++(u) = r + 1 by Theorem 5.1. Note that r > 1, for if r = 0 then 
,o(ak) = p. - (k - 2) = k - (k - 2) = 2. 

For each ai E A,(x), let {ais , ui,2 ,..., u~,,+~} be the set of vertices in A,(x) 
adjacent to ai . We may assume by Lemma 5.3, that &I is adjacent to each 
of %l , ~Z*l 9.*.7 4-1.1 * By the same lemma, each of these vertices must 
also be adjacent to a vertex in the set {ak+1,j}5+: . This set has r + 1 
members and {a&:: has k - 1 members. Since r + 1 < k - 1, there is 
a member Ofthe fOIITEX Set, say uk+l,l, which is adjacent to two members 
of the latter set; we may assume these to be a,,, and us.1 . But then a,,, , 
%,l 3 a2.1 3 4+1.1 lie on a 4-circuit, thus generating a U, . Since all cliques 
of G are the same size, this U, lies on a clique HI = U, . But a,,, E V(H,) 
and so d(H, HI) < 1. If d(H, HJ = 0 then p. = p(u,,J 3 2(k - 1). If 
d(H, H1) = 1, then Lemma 5.7 implies that there is another clique H, 
adjacent to both of these. So d(H, Hz) = 0 and again p. > 2(k - 1). 

THEOREM 5.10. Assume all vertices of G are ctique vertices and let k 
be the clique size. Then p. > k(k - 1). 

Proof. It follows from Lemma 5.7 that every edge of G lies on a clique. 
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Theorem 5.6 says that pO = p(v) for all v E V(G). Let x E I’(G) and let m 
be the number of cliques containing X. Then p(x) = m(k - 1) since every 
edge containing x lies on a clique and all cliques are edge disjoint (by 
Corollary 3.5.1). 

Let a, E A,(x) and a,, E A,(x) be adjacent to a, . Let H1 be the clique 
containing [x, a,] and let H, , Hz ,..., H, be the other cliques containing X. 

By corollary 3.5.2, a,, is adjacent to no vertex that is adjacent to any 
vertex in HI other than a, . By Lemma 5.3, there is a vertex us1 adjacent 
to both a,, and H, . Then [al1 , azl] is contained in a clique H. If v E V(H) 
then u # x since d(x, all) = 2. If u E A,(x) then we may assume u # a1 . 
Then a,, , U, x, a, lie on a 4-circuit, thus generating a complete 4-graph 
with x adjacent to a,, which we noted is impossible. So V(H) C A,(x). 

Assume v1 , vz E V(H) where u1 and ~1~ are adjacent to the same Hi for 
some i < m. Since we then have the edge [ul , ~1, Corollary 3.5.2 implies 
that ul, vz are adjacent to the same vertex D E V(Hi). But v 4 V(H) and so, 
by Theorem 3.5, V(H) u {u} generates a larger complete graph than H, 
contradicting the fact that H is a clique. 

Hence, H contains at most one vertex adjacent to Hi for each i, 
1 < i < m. Since V(H) C A,(x) and H contains k vertices we must have 
m >k. 

Therefore, pO = p(x) = m(k - 1) > k(k - 1). 

THEOREM 5. Il. Let G have clique size k > 3 and assume G contains 
a clique H with the property that, for each vertex ai E V(H), i = 1,2,..., k, 
there exists a clique Hi where 

V(H) n VWd = {ad and AI C V(H) U V(Hi). 

Then G, = G - H is geodetic of diameter two with clique size k - 1. If G, 
contains cliques (i.e., k > 4) then each clique in G, is at distance two from 
every other clique. 

Proof. Let x, y E V(G,). If r[x, y] in G contains two vertices ai , 
ai E V(H), then r[x, y] = I’[x, ai] + [ai , UJ + r[uj , ~1 > 3. If r[x, yl 
in G contains one vertex ai E V(H), then since d(x, y) < 2, x and y would be 
adjacent to ai . But then, x, y E V(Hi) which would make r[x, y] = [x, y]. 

Thus, if x, y E V(G), then F[x, y] in G does not contain a vertex of H 
and so F[x, y] C G, . Hence, G, is geodetic of diameter two. 

Hi = U, is a clique of G which means that Hi - {ai) = U,-, is a 
clique of Gl (or an edge if k = 3). Hence, k - 1 is the clique size of G, . 

To prove the last statement of the theorem, assume k 3 4 and let 
Hi’ = Hi - {ai], i = 1, 2,..., k. The Hi’ are the only cliques in G1 . If not, 
there would be a clique H” = U,-, in G, which is also a clique in G. But 
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this is impossible since the clique size in G was k. (Similarly, the Hi and 
H are the only cliques of G.) 

Let x E V(H,‘), y E V(H,‘) where i # j. If d(x, y) = 0 then, in G, ai 
would have been adjacent to two vertices of H5, thus giving a complete 
(k + I)-graph in G (by Theorem 3.5) which is impossible. If d(x, JJ) = 1 
then x, y, ai , a, would be on a 4-circuit in G, generating a U, , and hence 
giving a contradiction by Corollary 3.51. So d(x, y) = 2. Hence, 
d(H,‘, Hj’) = 2 for i # j. 

6. QUFSTIONS REMAINING 

While the preceding investigation of geodetic graphs of diameter two 
is quite detailed, it is still not complete. Some questions still to be answered 
are presented here, along with brief comments about them. 

QUESTION 1. Are there geodetic lobe graphs of diameter two in which 
all vertices are clique vertices? 

If such graphs exist, theorem 5.10 gives a lower bound for p,, . It can be 
shown in a somewhat detailed but straightforward manner that for k = 3 
and p0 = 6 (the minimum possible value for pO) no such graph exists. 

We define the clique incidence graph of G, denoted G’, by: V(G’) is the 
set of cliques of G; if HI , H, E V(G’) then [HI , Hz] exists if and only if 
HI and Hz have a common vertex in G. 

QUESTION 2. If G is ageodetic lobe graph of diameter two,is G’geodetic? 
What can be said about the diameters of the connected components of G’? 

The clique incidence graph was used by this author in trying to answer 
Question 1. It can easily be shown that if every vertex of G is a clique vertex, 
then G’ is connected and has diameter at most three; it is geodetic if and 
only if the diameter is two. In this case, if G’ is geodetic, then in G p0 = 
k(k - 1). It would then follow from the comments after Question 1 that 
the answer to that question would be no for k = 3. 

QUESTION 3. For each set of values {n, k, pO} satisfying n = 
pea + p,(k - 2) + 1 with p,, > 2(k - l), does there exist a corresponding 
geodetic lobe graph of diameter two? If yes, is it unique? 

It can be shown that the graph G described in Theorem 5.11 exists and 
is unique for each k 3 3. (In such graphs p,, = 2(k - l).) Hence, for each 
k and the second smallest value for p,, , p,, = 2(k - 1) + 1, a geodetic lobe 
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graph of diameter two exists having k + 1 disjoint cliques and all non- 
clique vertices at distance one from each clique (this is the graph G, 
obtained in Theorem 5.11 if the clique size of G is k + 1). This graph is 
not uniquely determined by (n, k, p,,} since for n = 21, k = 3, p. = 5 
two geodetic lobe graphs can be constructed, one containing four cliques 
and the other containing ten. 
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