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Human Pharyngeal Microbiome May Play
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Abstract The human pharyngeal microbiome, which resides at the juncture of digestive and respi-

ratory tracts, may have an active role in the prevention of respiratory tract infections, similar to the

actions of the intestinal microbiome against enteric infections. Recent studies have demonstrated

that the pharyngeal microbiome comprises an abundance of bacterial species that interacts with

the local epithelial and immune cells, and together, they form a unique micro-ecological system.

Most of the microbial species in microbiomes are obligate symbionts constantly adapting to their

unique surroundings. Indigenous commensal species are capable of both maintaining dominance

and evoking host immune responses to eliminate invading species. Temporary damage to the pha-

ryngeal microbiome due to the impaired local epithelia is also considered an important predisposing

risk factor for infections. Therefore, reinforcement of microbiome homeostasis to prevent invasion

of infection-prone species would provide a novel treatment strategy in addition to antibiotic treat-

ment and vaccination. Hence continued research efforts on evaluating probiotic treatment and

developing appropriate procedures are necessary to both prevent and treat respiratory infections.
Introduction

Respiratory tract infections (RTIs) continue to be a leading

cause of morbidity and mortality worldwide, despite the
emergence of antibiotics. According to a recent report by the
World Health Organization (WHO), RTI-related mortality
remains high, second only to that of cancers and cardio-

cerebrovascular diseases (World Health Statistics 2013,
www.who.int). RTIs often result from new invasion and
abnormal propagation of specific pathogens into airways.

Apart from the number and virulence of such invasive patho-
gens, host defenses also govern the occurrence and severity of
infection. Over the past several decades, advancements in the

understanding of adaptive immunity –– a major protective
mechanism against pathogenic infection –– have greatly
influenced medical practice and are invaluable to the develop-
ment of effective vaccines against infections by many lethal
hosting
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pathogens. In accordance, further elucidation of local mucosal
and non-specific immunity is also important for the develop-
ment of therapies to prevent pathogenic invasion [1]. Recently,

increasing lines of evidence have indicated that the human
microbiome (complicated bacterial communities residing in
specific anatomic sites of the human body, see Box 1) is exten-

sively involved in infections and other pathogen-related dis-
eases, and has an important role in the maintenance of
overall health [2]. Additionally, probiotic supplementation to

restore microbiome balance may be useful as an adjuvant
treatment against infections and has therefore gained much
attention in current clinical research and practice especially
in intestinal infections, because the overall effectiveness of

antibiotics continues to decrease due to the emergence of
drug-resistant pathogens [3]. We hypothesize that the pharyn-
geal microbiome, which resides at the juncture of the digestive

and respiratory tracts, may share common features with intes-
tinal microbiomes and could serve as a key player in the devel-
opment of respiratory diseases. Here, we provide our

perspective on potentially similar protective roles of the pha-
ryngeal microbiome and discuss the strategy of using probio-
tics as an adjuvant therapy for treatment of RTIs based on

an in-depth review of the current literature.

The pharyngeal microbiome and microecosystem

Complexity of the human pharyngeal microbiome

Hundreds of microbial species inhabit the human nasal, oral
and pharyngeal cavities, including 25–40 families of bacteria,
Box 1 Glossary

Metagenome: A composite of genomes or genes of heteroge-
neous taxa from a defined environment. Metagenomic
analysis is directly performed on samples based on high-

throughput sequencing which makes it possible to charac-
terize all microbial compositions, including uncultivable
organisms, and to analyze the collective properties of the

community as a whole and its microbial interactions in situ.

Pangenome: A superset of genes or genomic information of
all strains of a species (mainly applicable to bacteria or

archaea, which have significantly variable gene contents
among strains). Pangenomic analysis delivers a whole pic-
ture of species genomic properties in the context of global

distribution or evolution.

Microbiome: Species surveyed at different coverages for a

microbial community in a defined environment. In recent
years, microbial communities within human body have
been studied by using metagenomic tools and methodology.

Microecosystem: A system includes the microbial commu-
nity and its defined environmental components within lim-
ited spacing and is organized in general through a

network of nutrient exchanges and energy flows. In the
human body, the microecosystem includes microbiome,
immunity, epithelial lining and other local physiochemical

factors (such as pH, temperature and nutrients).
archaea, ameba and fungi, according to ample evidence from
laboratory cultures [4]. The number of newly discovered species
has considerably increased owing to the recent advances in

metagenomic (Box 1) research techniques, especially high-
throughput sequencing technology, that enable the discovery
of non-culturable species [5–7]. In the pharynx, five major bacterial

phyla have been identified thus far according to data released by
theHumanMicrobiomeProject (HMP): Firmicutes, Bacteroidetes,
Proteobacteria, Actinobacteria and Fusobacteria (Figure 1A).
Figure 1 Relative abundance of major phyla in the microbiomes of

different sites or conditions in the human body

A.Microbiomes in stool, skin, vagina and pharynx.B.Microbiomes

in nares, saliva, buccal mucosa and pharynx.C.Microbiomes in the

lung of healthy individuals and patients with asthma, COPD and

CF. Microbial abundances (%) in panels A and B are calculated

based on raw data from the Human Microbiome Project (http://

hmpdacc.org/HMBSA), whereas microbial abundances (%) in

panel C are calculated based on data described previously [8,9].

COPD, chronic obstructive pulmonary disease; CF, cystic fibrosis.

http://hmpdacc.org/HMBSA
http://hmpdacc.org/HMBSA
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The pharyngeal microbiome (referred as throat in HMP) is dis-
tinguished by having more Bacteroidetes than those found in
other body sites, including the skin, intestines and vaginal cav-

ity. Meanwhile, the pharyngeal microbiome comprises 27%
Bacteroidetes and 10% Proteobacteria, whereas the nearby sal-
iva microbiome contains 9% Bacteroidetes and 51% Proteo-

bacteria (Figure 1B). These two phyla are important to
human infections because the major causative pathogens of
periodontitis are Bacteroidetes and the most common Gram-

negative pathogens (e.g., Acinetobacter, Moraxella, Pseudomo-
nas, Haemophilus, Klebsiella and Legionella spp.) in chronic
respiratory diseases, such as cystic fibrosis (CF) and chronic
obstructive pulmonary disease (COPD), are Proteobacteria

(Figure 1C). Located at the lowest part of the respiratory track,
the lung microbiome does not contain any particular set of
species distinguishable from that of the pharynx, although

there are variations in the proportions of the known species
[10]. However, a healthy lung microbiome is characterized by
a relatively reduced biomass, which is often 2–4 fold less than

that of the pharynx [11].
The pharyngeal microecosystem

In the human body, a microecosystem includes an anatom-
ically defined microbiome together with local immune

system and the epithelial lining of the host (Box 1). Studies
of the intestinal and other microbiomes have shown that
co-habitating microbes within a microbiome are not random

assortments, but rather often exhibit various interactions,
such as competing for or mutually utilizing metabolic
resources in coordinated ways [12]. As such, microbiomes

are always organized to maintain a homeostatic status,
thereby increasing the demand for greater metabolic
efficiency [12]. Consequently, all components of the microbiome
are constrained in optimized proportions [12]. Meanwhile,

the microbiome provides critical signals to promote matura-
tion of immune cells and differentiation of the tissue lining
to promote a protective entity to prevent dominance of

aggressive members and infections from non-residential
pathogens [13].

In the human pharynx, the most common genera in

descending order are Prevotella, Capnocytophaga, Campylo-
bacter, Veillonella, Streptococcus, Neisseria and Haemophilus,
which account for 9.72%–1.26% of the members of the

indigenous microbiome, according to the HMP data. Each
of these genera includes species that are well-known fastidi-
ous bacteria hosted by the human body. Although it may
not be easy to demonstrate a subset of bacterial species

unique to the pharyngeal microbiome, it is possible to
differentiate it from the corresponding gut microbiomes in
terms of the proportions of constituents. Because of the

limited number of studies on the pharyngeal microbiome,
many interactions among microecosystem components
remain unclear. However, homeostasis and interactions of

microbes with local environmental factors are universal
features of microbiome. Therefore, it is rather reasonable
to infer that the pharyngeal microbiome also share such
common features of all human microbiomes, although the

understanding of which mainly comes from studies on
intestinal microbiome.
Habitat-specific variability

It is necessary to clearly differentiate the inner and outer
microbiomes of the human body, i.e., the human-associated
microbiomes and the habitat-specific microbiomes of the host

(Figure 2). Habitat-specific microbiomes can be characterized
as either restricted or open. As an example of a restricted
microbiome, consider the hospital environment where contin-
uous antibiotic stress drives both species variability and con-

tent limitation. Moreover, species in hospital environments
are often multi-drug resistant and may be opportunistic patho-
gens that cause severe infections especially in patients with

chronic illness, often leading to hospital-acquired pneumonia
(HAP). On the contrary, microbiomes within an ordinary
human habitat are perceived as relatively open, where it is

assumed not to be directed by any one specific stressor other
than seasonal, geographic and biological variables [14]. Patho-
gens from such a microbiome may lead to infection even in

healthy persons when there is sufficient competitiveness among
species and toxicity to host, rendering a condition widely
termed as community-acquired pneumonia (CAP).

Potential roles of the pharyngeal microbiome

in preventing RTIs

Living in a microbe-dominant world, all animals, including
humans, must develop strategies to avoid unpredictable inva-
sion of microbial pathogens. Hence, introduction of a handful

of harmless microbes, as co-habitant defenders, presents an
effective means to accomplish this requirement. Through the
development of an efficient metabolic network, symbiotic com-

mensal bacteria become established internally and externally
and cooperate with the immune response of their hosts, thus
excluding other foreign microbes (‘‘strangers’’) from establish-
ing habitats. In the meantime, they release toxins or boost host

immunity to kill other invasive species (‘‘aggressors’’) [15]. It
has been well demonstrated that the intestinal microbiome
plays an active role in the prevention of local infections [16].

Whether or not a pathogen can cause an infection depends
on the balance between pathogenic expansion and microbiome
homeostasis, which has been extensively studied in murine

models [17]. Although the role of the pharyngeal microbiome
in RTIs has not been thoroughly elucidated, there is some evi-
dence suggesting similar protective effects to those of the gut

microbiome as discussed below.
The pharyngeal microbiome has an essential role in the air-

way linings to protect against infection of air-transmitted
pathogens, in addition to the host immunity, especially against

the newly emerging infectious agents. The importance of the
microbiome integrity is supported by the so-called herd effect
in vaccination. That is, vaccination to a limited number of

people offers protection from infection to others without
vaccination. One well-known example is the epidemic of
Haemophilus influenza type b in Finland, where a low vaccina-

tion rate of 50% resulted in a 95% reduction in the number of
the invasive infections [18].

To prevent infection by indigenous species, it is necessary to
maintain the microbiome homeostasis with beneficial abun-

dance of each species. In the pharynx, many pathogenic
species, including Streptococcus pneumonia, Staphylococcus



Figure 2 Open or restrained habitat-specific microbiomes and RTI

The human pharyngeal microbiome is unavoidably influenced by environmental microbiomes in the habitat where the host lives. Some of

the habitat-specific microbiomes are open and stable, such as those of residential communities, and others are restrained, such as those in

hospitals or even ICU rooms. Examples of infections related to such microbiomes are CAP and HAP. ICU, intensive care unit; CAP,

community-acquired pneumonia; HAP, hospital-acquired pneumonia; RT, respiratory tract.
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aureus, H. influenza and Mycoplasma pneumonia, are
well-adapted to the pharyngeal environment and become
established in the resident microbiome, rendering the host

asymptomatic [19–21]. Epidemiological studies suggested that
the proportion of aforementioned resident pathogens in
human hosts varies by season, as does the incidence of RTIs
attributed to them [22]. Our recent study revealed that for each

species in a set of common bacterial respiratory pathogens,
there exists an abundance threshold, above which the risk of
infection increases. Therefore, this threshold indicates the

stringently-regulated homeostasis of a microbiome [23].

Damages of the pharyngeal microbiome prior

to RTIs

Although the microbiome often acts as a line of defense

against infection, the strength of such defense is largely depen-
dent on the state of the host, especially that of the local epithe-
lia [24]. To maintain a highly efficient and mutual metabolic
support network, a spectrum of microbial species in appropri-

ate proportions becomes prerequisite. However, the epithelia
of the respiratory tract, including the pharynx, can become
damaged by many factors, such as air pollutants, smoking,
immune injury and infection. In hosts with genetic defects or
epithelial dysfunction, such as in CF or COPD, the defensive

abilities of the microbiome may decrease and render the host
susceptible to pathogenic invasion. Such conditions often lead
to repeated and chronic infection, which, in turn, further dam-
ages the epithelia and deteriorates the protective characteristics

of the microbiome over time, similar to what occurs in dental
and intestinal infections [25,26].

Recent studies have shown that an unhealthy status of the

respiratory microbiome persists in high-risk populations, such
as infants, the elderly and patients with COPD, CF or bronchi-
ectasis, in whom the microbial communities are much less

diversified than those found in healthy individuals [27–32].
Diversity is a major factor that promotes system stability
[33], loss of diversity thus lessens the protective effects of the
microbiome and renders patients vulnerable to infection. In

patients with chronic RTIs, the defending frontier retreats
from the throat to the trachea or bronchia as indicated by
increased number of microbial sequences found in bronchoal-

veolar lavage fluid (BALF) and sputum samples [27,29]. These
ectopic microbiomes are abnormal and usually fragile, result-
ing in repeated infections. In addition, susceptible populations
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may share a reduced abundance threshold, thereby allowing
specific pathogens to easily establish infection [23].

In addition to the loss of diversity, the loss of protective

species is also detrimental to homeostasis. Generally, among
patients with chronic RTIs, those with CF are most vulnerable
to infection, followed by those with COPD and then

asthma. Metagenomic studies indicate that the proportion of
Bacteroidetes spp. in sputa gradually decreases in the sequence
of asthma, COPD and CF, whereas Proteobacteria, which

include most of the common respiratory pathogens and are
abundant in saliva, gain their proportions (Figure 1C) [8,9].
Therefore, it seems that Proteobacteria gradually expand when
Bacteroidetes retreat. Although the protective effect of Bacter-

oidetes spp. remains to be validated, it is still reasonable to
believe that not all species bear equal weight in maintaining
pharyngeal microbiome homeostasis.

Impaired pharyngeal microbiome homeostasis may also be
involved in the onset of acute infection. Predisposed infection
with influenza or other viruses is commonly observed in

patients with bacterial pneumonia, often leading to intensive
aggravation of disease [34]. The predisposed viral infection is
reported to be able to alter the local microbial ecology, epithe-

lial function and immunity [35]. In such cases, some dormant
pathogens may disengage from homeostatic control, propagate
abnormally, and invade downward into the lung, eventually
causing secondary bacterial infections [36–39].
Restoration of the pharyngeal microbiome

In addition to antibiotics and vaccines, restoration of a stable
and healthy microbiome is another strategy that should be
considered in infection control and anti-infective therapy, since

the microbiome plays a direct role in fighting pathogenic infec-
tion. This strategy capitalizes on the protective roles of intact
microbiomes, as described in both large-scale pangenomic
[40] and metagenomic [41] studies. To reinforce host defense

during infection, methods for evaluating the stability and
imbalances of the microbiomes are needed to identify the infec-
tion-prone status and the species that should be replenished as

recently reported [42].
Currently, the stability of microbiomes can only be evalu-

ated based on resident biodiversity. Although many diversity

indices have been developed [43–45], most consider only
species richness and equilibrium in a given community, but
disregard different beneficial effects specific to each species.

Therefore, next-generation evaluation methods are in demand
to specify appropriate proportions of each species in specific
microbiomes, especially those with protective roles, in order
to define deficiency and to further develop appropriate treat-

ment regimens.
Large-scale clinical trials have already demonstrated several

protective effects of probiotics or microbiome transplantation

in combating intestinal infections, especially in managing sec-
ondary pathogens, such as Clostridium difficile [46–50]. These
treatments have been shown to modulate host immune status

and improve host resistance to pathogens [51,52], and have
also been applied to the treatment of tooth [53], urinary tract
[54] and vaginal infections [55].

Regarding the respiratory tract, recent studies have

suggested potential protective effects of probiotic
supplementation against infections with influenza virus and
Corynebacterium tuberculostearicum [56,57], as well as
pneumococcal [58] and ventilator-associated pneumonia [59],
although other studies disputed the efficacy of probiotics for

treatment of RTIs [60]. It is of note that main management
in all these studies was orally-administrated Lactobacillus
which may not be a good choice because of the low

proportion of Lactobacillus in pharyngeal or respiratory tract
microbiomes [61]. In addition, effective administration
methods that can detain probiotics in the pharynx and multi-

ple probiotic regimes may further improve the overall treat-
ment outcome [62]. Therefore, there are no straightforward
conclusions regarding the efficacy of probiotics for treatment
of RTIs, based on the findings of current reports.

Conclusions

The constituents of human microbiome, which form an impres-
sive biomass, are regarded as ‘‘permanent guests’’ of the body
[63]. Increasing evidence suggests that resident microbiomes

act more as guards than guests, in consideration of the benefits
to the host. In the scope of the respiratory tract, there have been
clues to suggest a potential protective role of the pharyngeal
microbiome against pathogens invading the lungs. However,

our current knowledge on this friendly microbiome is rather
limited. Metagenomic and pangenomic studies based on high-
throughput sequencing technologies are thus warranted to

obtain additional molecular details of the airway infections.
We therefore are able to ultimately develop new treatments
based on the possibility of restoring the pharyngealmicrobiome.
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